任意水深の造波境界上に分布する複数の方向スペクトルによる 多方向不規則波の造波

Generation of Random Wave for Several Wave Spectra on Linear Incident Boundary

平山克也¹ · 岩瀬浩之¹ · 加島寛章²

Katsuya HIRAYAMA, Hiroyuki IWASE and Hiroaki KASHIMA

Generally, wave transformation in shallow water should be estimated for a representative offshore wave spectrum. However it may be difficult for a Boussinesq wave model which requires a relative narrow computational region for calculating wave fields that an incident wave boundary is expanded to offshore. In this paper, multi-directional random waves are generated by using Boussinesq wave model on the linear incident boundary with several wave spectra transformed in shallow water. Wave height distributions behind a spherical shoal can be reproduced with spatial distribution of multi-directional spectra estimated by an energy balance equation. In an actual harbor, the significant wave height in front of a revetment can be estimated larger in generation with several wave spectra.

1. はじめに

ブシネスクモデルに代表される位相分解型波浪変形計 算モデルでは、沖側境界から入射させる多方向不規則波 形は、一様水深上で与えた唯一つの沖波方向スペクトル に対して造波される.このとき沖側境界は、海底地形に よる屈折・浅水変形や沖の島や岬による回折・反射変形 などの影響が少なく、方向スペクトルの空間変化が小さ い沖合に設定することが求められるので、計算領域は必 然的に広くなる場合が多い.しかし、実務においては、 現地の地形特性や計算容量、演算時間等の制約により、 必ずしもこれらを満足できないケースも多くみられる.

そこで本研究では、沖側境界を岸側へ寄せた場合など に顕著となる方向スペクトルの空間変化を複数の方向ス ペクトルで代表させ、これらに対する多方向不規則波を 水深が一様でない沖側境界上で造波する方法を提案する ことにより、位相分解型の波浪変形計算の効率化、及び その沖合で実施される位相平均型の波浪変形計算モデル との片方向接続を同時に実現することを目的とした.

2. ブシネスクモデルにおける造波方法の改良

ここでは、エネルギー平衡方程式法によって算定され る複数の方向スペクトルをブシネスクモデルの沖側境界 に与え、多方向不規則波を造波する方法について述べる.

(1) 任意形状スペクトルの造波方法

平山・宮里(2009)は、関数スペクトルによらない任 意形状の方向スペクトルに対して、繰り返し法に基づく

1 正会員 博(工) (独)港湾空港技術研究所海洋·水工部

数値計算アルゴリズムを用いてエネルギー等分割を行い,式(1)に示すシングルサンメンション法によって 多方向不規則波を造波する方法を提案した.

$$\eta = \sum_{n=1}^{N_{n}} a_{n} \sin(k_{n} x \cos \theta_{n} + k_{n} y \sin \theta_{n} - 2\pi f_{n} t + \varepsilon_{n}) \cdots (1)$$

ここで、xは直交平面座標のうち岸向きを正とする座標 軸,yはx軸を右に見る向きを正とする沿岸方向の座標軸, tは時刻である.また、 a_n は各成分波の振幅、 k_n は波数、 f_n は周波数、 θ_n は波向、 ε_n は初期位相であり、添字nはn 番目の成分波であることを表す. N_s は成分波数である. このうち、周波数スペクトルS(f)に対する各成分波の振 幅は、式(2)によって算出することができる.

 $a_n = \sqrt{2S(f_n)\Delta f_n} \qquad (2)$

なお,周波数スペクトルをエネルギー等分割すること によって生成された各成分波は,一般に,互いに独立で あるため,長時間にわたり不規則な波形を造波すること が可能である.これに対し,周波数等分割により造波さ れる不規則波形では,成分波の最小周波数に依存して, 同じ波形が繰り返されるため,長時間の造波に際しては より多くの成分波数を必要とする.

また,シングルサンメンション法では,各成分波の波 向は,方向分布の累積曲線に対して乱数を当てはめ,各 周波数に対して唯一つ割り当てられる.一方,ダブルサ ンメンション法では,各周波数に対し,方向分布に応じ た複数の波向が割り当てられるため,前者に比べ,より 多くの成分波数を必要とする場合が多いと考えられる.

(2) 複数方向スペクトルの造波方法

沖・酒井(2006)は、ブレットシュナイダー-光易型 スペクトルに対してエネルギー等分割する方法を援用 し、エネルギー平衡方程式法によって算定された直線上 に分布するそれぞれのスペクトルに対して、少なくとも ピーク周波数付近で細かく分割された各成分波の代表周 波数を得る方法を示すとともに、これを用いたダブルサ ンメンション法に基づく多方向不規則波の造波方法を示 した.

一方,本研究では,前項で述べた任意形状スペクトル に対する造波方法を利用して,シングルサンメンション 法に基づき,ブシネスクモデルの造波境界上で与えた複 数の方向スペクトルに対する多方向不規則波の造波方法 を提案する.具体的な手順を以下に示す.

- ① 造波境界上の複数の代表地点(例ではL1, L2, L3 の3地点)で与えた図-1(a)に示す任意形状の方向 スペクトルを平均し、造波境界全長に対して仮想的 な方向スペクトルを1つ作成(図-1(b)).
- ②①で作成した仮想方向スペクトルに対しエネルギー 等分割法を適用し、各成分波の代表周波数を決定. さらに、各周波数に対する方向分布の累積曲線に乱 数を当てはめ、各成分波の波向を決定.
- ③②で決定した各成分波の代表周波数を用いて、代表 地点で与えた周波数スペクトルを分割し、式(2) に従い、代表地点における各成分波の振幅を決定.
- ④ 代表地点間の各計算格子上で与える各成分波の振幅 を,線形補間により決定.ただし、②で決定した周 波数,波向に加え、初期位相は各計算格子で共通.
- ⑤④で得た各計算格子上の各成分波諸元を用いて、従来の線境界入射法により、式(1)に従い、複数の方向スペクトルからなる1つの多方向不規則波を造波.

上記のうち,手順③は,各地点の方向スペクトルを厳 密にエネルギー等分割するものではないが,それぞれの ピーク周波数付近で細かく分割する各成分波が得られる などの利点はそのまま維持している.また,手順④で得

られる成分波諸元は、十分な成分波数に対して代表地点 で与えた任意形状の方向スペクトルを比較的よく表すと ともに、隣接する計算格子間で波峯線が揃った、より現 実的な水面波形を造波できると考えられる.

(3) 任意水深上での造波方法

水深が一様でない沖側境界上で斜め波を造波する場合 には、沖側境界に沿うy方向の隣り合う計算格子で波数 (波長の逆数)が異なるために生じる、波の位相差を考 慮する必要がある.一方、従来のブシネスクモデル(平 山、2002)では、この問題を回避するため、水深一定と した造波境界と実地形との間に緩衝帯を設け、一様勾配 斜面により実地形へ適切にすりつけることを推奨してい る.しかし、造波境界上の複数の代表地点で与える任意 形状の方向スペクトルは、エネルギー平衡方程式法など を用い造波境界上の実際の水深に対して算定されたもの であるため、造波水深に対して従来のような操作を行う ことは適切ではない、そこで以下では、糸井ら(2003) を参考に、任意水深の造波境界上に分布する複数の方向 スペクトルによる多方向不規則波の造波法を整理する.

すなわち,水深が一様でない造波境界上では波数*k*_nが y軸に沿って変化することを考慮すると,式(1)は式 (3)のように書き換えられる.

 $\eta = \sum_{n=1}^{N_{n}} a_{n}(y) \cdot \sin\left(k_{n}(y)x\cos\theta_{n} + \int_{0}^{y} k_{n}(y)dy\sin\theta_{n} - 2\pi f_{n}t + \varepsilon_{n}\right) \cdots (3)$

ここで,振幅*a*,がyの関数であることは,造波境界(y軸) に沿って方向スペクトルが変化することに対応してい る.しかし,このときにも各成分波の周波数f_nは変化し ないので,波数*k*_nは各計算格子の水深に応じて,各成分 波に対し一義的に決定される.

3. 球面浅瀬場を対象とした造波精度の検証

ここでは、前章で提案した造波方法を用い、造波境界 上の隣接する計算格子において振幅のみ、または振幅と 波数が互いに異なる(漸変する)成分波諸元を有する多 方向不規則波を造波して計算される領域内の波浪場と、 これらが一様とみなせる沖から造波したときの結果を比 較することにより、このような造波方法の妥当性、及び 波浪場の計算精度を検証した結果について述べる.

(1) 計算領域

図-2に示す球面浅瀬(天端水深5m,周囲は一様水深 15m)を設定し、図中のb-b'断面及びc-c'断面上に設定 した複数の代表地点に単一または複数の方向スペクトル を与え、ブシネスクモデルにより多方向不規則波を造波 した.ここで、これらの方向スペクトルには、以下に述 べるエネルギー平衡方程式法による算定結果を用いた. なお、計算格子間隔は、エネルギー平衡方程式法及びブ シネスクモデルともに2.0mとした.

(2) 方向スペクトルの抽出

まず, a-a' 断面を造波境界とした計算領域を対象とし て,エネルギー平衡方程式法及びブシネスクモデルによ り,表-1に示す単一方向スペクトルに対する多方向不規 則波を造波した.このうち,エネルギー平衡方程式法に より計算された波高分布を図-3に示す.球面浅瀬による 屈折・浅水効果により,浅瀬背後の中央で波高が高く, その両側で低くなる様子が確認できる.

エネルギー平衡方程式法で算定された方向スペクトル は、b-b'断面及びc-c'断面上で等間隔に設定した各25点 で出力した.図-4には、このうち代表5点(黒丸)で出 力した方向スペクトル図を示す.なお方向軸は、便宜上、 y軸の正の向きを方位Nと定義した.これらより、特に、 球面浅瀬の法肩付近の方向スペクトルは、屈折効果によ り方向分布に偏りが生じていることがわかる.

(3) 造波精度の検証

図-5(a) 及び(b)には, a-a'断面を造波境界とした単 一方向スペクトルによるエネルギー平衡方程式法及びブ シネスクモデルによる波高比分布を示す. なお,図-5(a) は図-3の再掲である.図より,エネルギー平衡方程式法 に比べブシネスクモデルのほうが,より顕著な屈折・浅 水変形が生じていることがわかる.

なお、図中に示した黒枠は、それぞれb-b'断面(破線) およびc-c'断面(実線)を造波境界としたブシネスクモ デルにおける計算領域である.ここで、複数方向スペク トルを造波する場合、各造波境界では、図-4で示した代 表5点を含む各25点で補間された方向スペクトルに対し て、水深が一様なb-b'断面では振幅のみ、水深が一様で ないc-c'断面では振幅と波数が異なる(漸変する)成分 波諸元を有する多方向不規則波を造波する.一方、これ らの計算領域で単一方向スペクトルを造波する場合に 表-1 造波境界(a-a'断面)で与える単一方向スペクトル諸元

有義波高	有義波 周期 (s)	波向き	(S _{max})	エネルギー平衡方程式法		ブシネスクモデル
(m)		(deg)		周波数分割	波向分割	成分波数
1.0	5.1	0	75	20	40	512

は、それぞれの断面中央の代表地点で得られた方向スペ クトルを、そのまま造波境界全長に与えて造波するもの とした.ただし、この場合にも、水深が一様でないc-c'断 面では、水深による波数の変化は考慮されることとした.

a)造波水深が一定の場合

球面浅瀬背後の水深が一様なb-b'断面を造波境界とし て算定されたプシネスクモデルによる波高分布を図-6(a) に示す. 左図は複数方向スペクトル(複数SP),右図は 単一方向スペクトル(単一SP)による計算結果である. 図より,単一方向スペクトルを造波して算定された波高 分布はほぼ一様で,球面浅瀬背後での波の集中は再現で きていないのに対し,複数方向スペクトルでは造波直後 から沿岸方向の波高変化が見られ,球面浅瀬背後の造波 境界における方向スペクトルの空間変化を適切に考慮で きていることが確認できる.しかしながら,これらの複 数方向スペクトルはエネルギー平衡方程式法で算定され たものであるため,これらをプシネスクモデルに与えて 算定された波高分布は,a-a'断面から入射させたプシネ

13

スクモデルによる波高分布ではなく,エネルギー平衡方 程式法による波高分布により近い結果となっている.

b)造波水深が一定でない場合

球面浅瀬上で水深が一様でないc-c'断面上を造波境界 としたブシネスクモデルによる波高分布を図-6(b)に示 す.同様に,左図は複数方向スペクトル,右図は単一方 向スペクトルによる計算結果である.この場合には造波 境界上で波数が変化するため,単一方向スペクトルの造 波においても造波直後から屈折による球面浅瀬背後での 波の集中が再現されている.しかし,造波境界上での波 高と波向の変化が考慮されていないため,入射する波エ ネルギーが過剰となるほか,波高ピーク地点もやや岸側 にずれている.一方,複数方向スペクトルの場合では, 球面浅瀬背後での波高増大は不十分ではあるが,波の集 中や全体的な波高分布傾向は,エネルギー平衡方程式法 ではなく,むしろa-a'断面で造波したブシネスクモデル による結果に近い.これは,造波後に,球面浅瀬による 波浪変形が計算されたためと考えられる.

c)造波境界の設定位置による計算精度の違い

以上の検討において,複数方向スペクトルを造波した 場合,設定した造波境界の位置によって球面浅瀬背後で 算定される波高の集中度合いに違いがみられた.そこで, これらをより詳細に検証するために,図-2に示す岸沖方

向の Y/L=3 断面,沿岸方向の X/L=7 断面で波高値を, P1, P2, P3 地点で周波数スペクトルを出力し,それぞれ比較した.結果を図-7 及び図-8 に示す.

図-7より,岸沖方向の波高分布は,b-b'断面よりも沖 側のc-c'断面から造波したほうが,球面浅瀬による波高 増大の再現性が低いことがわかる.これは,ともにa-a' 断面から計算されたエネルギー平衡方程式法とブシネス クモデルによる球面浅瀬上の波の集中過程に違いがみら れるため,その途上にあるc-c'断面(X/L=3)で両者を接 続したことにより,そのどちらの波高増大も再現できな かったためと考えられる.一方,この影響を受けにくい 球面浅瀬から離れた岸側での沿岸方向の波高分布 (X/L=7)は,b-b'断面ではエネルギー平衡方程式法,c-c' 断面ではブシネスクモデルによる結果に近いことがわ かる.

図-8より,球面浅瀬背後の周波数スペクトルは,岸沖 方向の波高分布と同様に,球面浅瀬の直背後ではb-b'断 面から造波したほうが波エネルギーの増加をよく表現で きているが,球面浅瀬から岸へ離れるほど,造波境界の 位置による違いが見られなくなることがわかる.

これらの結果より,実海域を対象とした計算において, ブシネスクモデルに与える複数方向スペクトルをエネル ギー平衡方程式法などの線形モデルで算定する場合に は,その造波境界は,顕著な屈折・浅水変形途上にある 浅瀬上は避けて設定することが望ましいものの,その 場合にも背後の波浪変形はある程度再現できると考えら れる.

4. 現地港湾への適用

以上のように,新たに開発した造波方法は,適切な位置に設定した沖側境界上で,任意水深上の方向スペクト ルの空間変化を考慮できることが確認された.そこで, ここでは,この造波方法を造波水深が比較的深い現地港 湾へ適用し,その効果を確認した結果について述べる.

(1) 計算条件

複雑な海底地形を有するK港を対象として、①一様水 深上で単一方向スペクトル、②任意水深上で単一方向ス ペクトル、③任意水深上で複数方向スペクトル、をそれ ぞれ与えた場合に計算される波高分布を比較し、違いを 考察した.対象とした計算領域を図-9に示す.また,単 一方向スペクトルはブレットシュナイダー - 光易型と し,有義波高8.12m,有義波周期12.4s,波向E, S_{max}=10 とした.多方向不規則波の成分波数はいずれも512とし た.なお,一定とした場合の造波水深は35mとした.

(2) 計算結果

任意水深上で複数方向スペクトルを造波した場合(条件③)に,K港で計算された波高分布を図-10(c)に示す. また,図-10(a)及び(b)は,この結果から条件①及び ②で計算された波高分布を差し引いた差分図である.こ れらより,K港において,方向集中度の低い風波に対し て複数方向スペクトルを造波した場合には,一様水深ま たは任意水深上での単一スペクトルの造波結果に対し て,全体的に出現波高が低下することがわかる.これは, エネルギー平衡方程式法による算定結果から唯一つの方 向スペクトルを抽出する際,実務上安全側となるよう, 対象海域の沖波とみなされるなかで比較的大きめの波高 値を示すものを設定しているためと考えられる.

しかしながら,沖防波堤のうち北側の沖合,及び港内 の護岸前面などでは,複数方向スペクトルを造波するこ とで波の伝播・変形状況が変化し,逆に波高が増加して いる.さらに,図-11では,このような造波条件の違い による波高値の変化を代表出力地点に対して示した.波 高分布と同様に,造波境界に近い海域(Line1,2,7,8)や 港内(Line5)や港奥の護岸前面(Line9)などで造波方 法による波高値の変化が確認できるが,出力地点が隣接 する同じ測線上でもその変化は一様ではなく,複数方向 スペクトルの造波によっても波高がほとんど変化しない か,むしろ逆に増加している箇所も少なくない.

これらの結果は、例えば、高波による被災原因の解明 のために行う被災波の再現計算などにおいて、単一方向 スペクトルによる場合には、造波境界の位置や造波スペ クトルの形状などにも、細心の注意を払う必要があるこ とを示唆している.一方、複数方向スペクトルによる場 合には、これらをあまり意識せずに任意に設定できる. しかし、この場合にも、仮想方向スペクトルの成分波の 波向分布が広範囲に及び易い島の直背後や、線形、非線 形モデルで表現される波浪変形の違いが生じ易い浅瀬上 等に造波境界を設定することは避けるべきである.

5.おわりに

本研究では、スペクトル法によって算定された任意水 深上の複数の方向スペクトルをブシネスクモデルに与 え、これらの空間分布を考慮した多方向不規則波を造波 する方法を提案し、その妥当性を検証した.この結果、 造波境界は極端な浅瀬を避けて設定したほうが良いこと

(a) 条件③一① (b) 条件③一② (c) 条件③の波高分布
 図-10 造波条件の違いによる波高分布の比較

や,被災波の再現計算などにおいては方向スペクトルの 空間分布を適切に考慮することが重要であることなどが 明らかとなった.今後は,実海域における波浪統計量の 出現特性の違いについても検討を進める予定である.

参考文献

- 糸井生夫・伍井 稔・成毛辰徳 (2003): ブシネスクモデルの 伏木富山港 (伏木地区) への適用とその課題, 平成14年 度ブシネスクモデルによる波浪変形計算に関する勉強会 資料, pp. 7-11.
- 沖 和哉・酒井哲郎(2006): 直線上に分布するスペクトルを 入射波条件とした多方向不規則波浪変形時系列解析,海 洋開発論文集,第22巻, pp. 259-264.
- 平山克也 (2002):非線形不規則波波浪を用いた数値計算の港 湾設計への活用に関する研究,港空研資料, No.1036, p. 162.
- 平山克也・宮里一郎(2009):任意形状スペクトルによる多方 向不規則波の造波法の提案,港空研報告,第48巻,第2 号,pp.199-214.