沖合への土砂損失防止のためのサンドレイズ工法の提案

A Method Preventing Offshore Sand Loss Owing to Ebb Tidal Currents

宇多高明¹·芹沢真澄²·三波俊郎³·古池 鋼³·石川仁憲⁴·宮原志帆³

Takaaki UDA, Masumi SERIZAWA, Toshiro SAN-NAMI, Kou FURUIKE Toshinori ISHIKAWA and Shiho MIYAHARA

In a tidal inlet, a part of littoral sediment is transported offshore owing to the ebb tidal currents, resulting in permanent loss of nearshore sand. The ordinary sand-bypassing method, in which simply sand deposited upcoast is transported downcoast, is ineffective for preventing this sand loss. In this study, a sand-raise method, in which sand is pumped up from an offshore zone and disposed of on downcoast shoreline, is proposed, taking Imakiri-guchi inlet of Lake Hamana as an example. The effectiveness of the method is numerically investigated using the BG model proposed by Serizawa et al. (2006). It is shown that this method can be a practical tool to prevent offshore sand loss.

1. はじめに

一方向に卓越した沿岸漂砂が構造物により阻止された 場合,構造物の上手側に堆積した砂を下手側へと運ぶ手 法はサンドバイパスとして知られており、多数の海岸で の実績がある.この手法は文字通り「砂をバイパス」す ることに主眼があることから、上手側で堆積したと同量 の砂が下手側海岸から失われていることを前提としてい る.しかし海岸の条件によってはこれが必ずしも成立し ない場合もある. tidal inletを跨ぐ海岸の場合がこれに該 当する. すなわち, tidal inletにあっては入退潮流があり, この流れはその性質上沿岸流とほぼ直交する方向に流 れ,結果として強い沖向き,または岸向き漂砂を引き起 こし、沿岸漂砂の系からの砂の損失を引き起こすと考え られるからである.とくに退潮流の作用により、沖合に 規模の大きなebb tidal delta (以下,沖合デルタと呼ぶ) が形成されることを考えると、沖向き漂砂の発生とそれ による土砂損失は無視できない. このような視点から, 宇多ら(2008)は、芹沢ら(2006)によるBGモデル (BaGnold 概念に基づく海浜変形モデル)を沖合デルタの 発達過程へ応用した宇多ら(2007)のモデルを基本とし, 漂砂量式を改良し岸沖漂砂と沿岸漂砂の強度の違いを考 慮できるようにすることにより,静岡県の浜名湖今切口 を対象として沖合デルタの発達を定量的意味から明らか にした. その上でtidal inletにおける沖への土砂損失防止 策について検討し、例えば導流堤沖の250m×250m、水 深6~7mの矩形領域で浚渫を行い,導流堤のすぐ下手側

1	正会員	工博	(財) 土木研究センター常務理事なぎさ総合 研究室長兼日本大学客員教授理工学部 海洋建築工学科
2	正会員		海岸研究室(有) 海岸研究室(右)
4	正会員	工修	(財) 土木研究センターなぎさ総合研究室

の水深0~2mに投入する手法の有効性を示した.この手 法を宇多ら(2008:前報)ではサンドバイパスの一タイプ としたが、沖合への砂の損失を防止可能という特徴は従 来のサンドバイパスとは意味が全く異なることから,本 研究では新たに「サンドレイズ工法」と名づけることと する.この工法は、導流堤上手側の堆積域から砂を掘削 して下手側へ投入するのではなく, 導流堤沖で砂を掘削 し、それを下手側海岸へ投入する手法を用いる.この工 法によれば、サンドバイパス工法と相違し、上手側の汀 線後退を招くことなしに下手側の汀線を前進させること ができる.しかしながら、サンドレイズ工法による砂の 掘削位置などを変えた場合の砂の損失防止効果の相違 や、周辺地形への影響は明らかではない、そこで導流堤 の先端付近から噴流軸線上で掘削位置を変えるととも に,同一水深であるが噴流軸の東西に掘削域がある場合 の地形変化予測を行い、掘削域の違いと沖合への砂損失 防止効果の関係について調べた、掘削における砂の採取 量はいずれも10万m³/yrとし、予測期間は前報と同様10 年とする.

2. 基本式と計算条件

基礎式については,既に宇多ら (2008) に示したので 要点のみ示す.沖から岸向きにx軸を,汀線とほぼ平行に y軸をとったデカルト座標 (x,y) を考え,高さZ(x, y, t)を解くべき変数とする.波が $\tan\beta$ の一様勾配海岸に斜め 入射する場合,ネットの砂輸送フラックス (q_{wx}, q_{wy}) は 式 (1) で与えられる.

ここに, G_{wx}, G_{wv} については式 (2) ~ (6) が成立する.

$$G_{wx} = \frac{K_x}{K_y} G_{wy} \cdots (2)$$

$$G_{wy} = C_0 K_y \Phi = C_0 K_y \varepsilon (Z) (EC_g)_b \cos^2 \alpha_b \tan \beta_c \cdots (3)$$

$$C_0 = \frac{1}{(\rho_s - \rho)g(1 - p)} \cdots (4)$$

$$\int_{-h_c}^{h_R} \varepsilon(Z) dZ = 1 \cdots (5)$$

$$\varepsilon(Z) = \begin{cases} = \frac{1}{h_c + h_R} (-h_c \le Z \le h_R) \\ = 0 (Z < -h_c, h_R < Z). \end{cases}$$
(6)

なお、 q_x は漂砂フラックスの岸沖成分(岸向きが正)、 q_y は沿岸成分、 θ_w は波向とx軸のなす角、($\partial Z/\partial x$, $\partial Z/\partial y$) はZの勾配ベクトルで、その方向は等深線直角方向岸向 き、その大きさは $\tan\beta$ に等しい、 ϕ は単位時間、単位面 積当りの波のエネルギー逸散率、(EC_g)_bは砕波点におけ るエネルギーフラックス、 α_b は砕波角、 K_x は岸沖漂砂量 係数、 K_y は沿岸漂砂量係数、 C_0 は水中重量表示と砂の堆 積表示での漂砂量係数の比、 $\rho_s \ge \rho$ は砂と海水の比重、gは重力加速度である。またpは砂の空隙率、 h_c は波によ る地形変化の限界水深、 h_R はバーム高である。 $\epsilon(Z)$ は沿 岸漂砂量強度の水深方向分布で、本研究では一様分布と し、 h_c から h_R までの積分値が1となるよう式(6)で与え る、 $\tan\beta_c$ は平衡勾配であり、直角入射条件の下で岸沖漂 砂が0となるときの海底勾配である。

一方,退潮流に伴う漂砂 $\vec{q_{k}}=(q_{Rx},q_{Ry})$ についてはBagnold (1963)による掃流砂式を海底勾配に関して線形近似した Bailard and Inman (1981)が与えた式(7)を用いる.

ここに添字Rは退潮流の値を表す. θ_R は退潮流の流向 とx軸のなす角, $tan\phi$ は土砂の安息勾配である.また, 係数 G_R は式(8)で与える.

$$G_{R} = \begin{cases} = C_{0}K_{R}F_{w}K_{v}^{3} & (-h_{c2} \leq Z \leq h_{R2}) \\ = 0 & (Z < -h_{c2}, h_{R2} < Z). \end{cases}$$

$$F_{w} = \frac{(EC_{g})_{b0}}{h_{c} + h_{R}} \quad \dots \quad (9)$$

$$K_{V} = \frac{V}{V_{0}} = K_{V1} \left(\frac{h_{o}}{h}\right) \quad \dots \quad (10)$$

$$K_{V1} = \left(\frac{V_{1}}{V_{0}}\right) \quad \dots \quad (11)$$

ここに, K_Rは退潮流の流砂量係数, K_Vは退潮流の流速 比 V/V₀, Vは退潮流速, V₀は河口での基準流速, F_wは波 浪の作用強度の代表値であり,基準点における砕波点で の波エネルギーフラックス(ECg)_{b0}を移動高で割って与え

た (式 (9)). V₁, K_{V1}は水深変化のない場合の退潮流速 と、河口での基準流速に対する比である. h_{c2}, h_{R2}は退潮 流作用時の地形変化の限界水深および限界高である.退 潮流による地形変化の限界水深・限界高さの範囲外では $G_{P}=0$ と置く(式(8)). 流速比 K_{V} は,式(11)の水深変 化のない場合の流速比K₁₁の平面分布を予め求めておき, 予測計算ではそれを利用した.本研究では、字多ら (2008)と同様,退潮流を噴流と考え,Knは不規則波の 方向分散法(酒井ら, 2003)を応用して計算した.これ に水深変化に伴う流速の変化を考慮するため、流量保存 則を満足するよう、地形変化の計算過程で各時刻の水深 値を用いて式(10)により補正した.なお,式(10)の 右辺の分母の水深hには下限値を設けた.計算では、海 浜の長期的変化予測を考え,人工構造物建設前の平均勾 配を平衡勾配とおく.本モデルは、波の作用と退潮流を 各時刻同時に作用させて計算するものであるが、河口で は退潮流の作用のみ考え、海岸への土砂供給源としては 考慮しない. また退潮流による地形変化の限界水深hっは 波による限界水深h_cと同じとした.退潮流による地形変 化の限界高さhg2は静水面に取った.主な計算条件とし て、初期地形は勾配1/70の一様勾配斜面とする、平衡勾 配は同じ1/70とし、水中での砂の安息勾配は1/2、h_=8m, $h_{R}=3m$, $H_{b}=3m$, 砕波点の入射角 $\alpha_{b}=10 \deg とおく$. その ほかの条件は表-1に示す.

表-1 計算条件

初期地形	一様勾配斜面1/70
平衡勾配	$\tan\beta_c = 1/70$
安息勾配	tan¢=1/2
波浪条件	$H_{b}=3m$ 砕波波向 $\theta_{w}=10^{\circ}$ $(EC_{g})_{b0}$ 算出用の砕波波高 $H_{b0}=1m$
漂砂量の水深方向分布	一様分布
沿岸漂砂量係数K _y 岸沖漂砂量係数K _y	$K_y = 0.0105$ $K_x = 0.2K_y$
バーム高	h _R =3m
波による地形変化の限界水深	<i>h</i> _c =8m
退潮流の流砂係数	再現:K _V =0.1~0.3 将来予測:K _V =0.3
退潮流の作用限界高さ	<i>h</i> _{<i>R</i>2} =0m
退潮流の作用限界水深	<i>h</i> _{c2} =8m
河口基準水深	h ₀ =1m
流速補正の水深下限値	<i>h</i> =1m
計算メッシュ	$\Delta x = \Delta y = 50 \text{m}$
計算時間間隔	$\Delta t = 5$ hr
計算期間	現況再現:27年(1978年→2005年) 将来予測:10年
境界条件	岸沖端q _x =0 左右端dq _y /d _y =0

図-1 再現された漂砂フラックスとebb tidal deltaの地形 (1978~2005年)

図-2 海底掘削の位置(噴流軸上:掘削域1~7,同一等深線 上:掘削域5,5A,5B)

3. 沖合デルタの掘削域と海底地形変化

図-1は、初期平行等深線を仮定して動的安定地形を計 算し、次に1978年地形を再現し、これを初期地形として、 初期の墳流に係る係数を与えて2005年まで計算した結果 のうち、2005年の漂砂フラックスと海底地形を示す。前 報で明らかにしたように、1978年から2005年にかけて退 潮流により西向きの沿岸漂砂がトラップされ, ebb tidal deltaの規模が増大した. また delta 外縁では h_cより深く,波の作用による砂が再び汀線に戻ることができない水深 10m以深へと3.6万m³/yrの割合で土砂が落ち込んだ.こ れらの実態を,計算結果はよく再現できた(宇多ら, 2008の図-3.4.5参照). またその際の漂砂フラックスは, 導流堤開口部から右斜め沖に向かう噴流の軸(宇多ら, 2007の図-3参照)を境として、漂砂フラックスが一対の 循環流を形成し, 東側では反時計回りの, 西側では時計 回りの循環流となる. このように退潮流の作用と沿岸漂 砂の作用が重合した形で沖合デルタの定量予測が可能な ことから、現況再現結果を初期地形として与え、サンド レイズ工法の効果予測を行った.計算条件を同一として

図-3 噴流軸上での掘削水深を変えた掘削域1,5,7での掘削後 10年の地形比較

図-4 噴流軸上での掘削水深を変えた掘削域1,5,7での掘削後 10年の地形変化

新たに掘削穴を設けて予測計算を行った.図-2は, 墳流 の軸線方向に250m四方の掘削域を配置した掘削域1から

図-5 同一等深線上で掘削位置を変えた掘削域5,5A,5Bでの 掘削後10年の地形比較

7の配置と、水深7mの等深線形状に合わせて墳流の東西 に掘削穴を配置した掘削域5Aと5Bの条件を示す. 掘削 域5Aと5Bは、墳流軸線上にある掘削域5と同一等深線 上に載ることから同じ番号5を付け,さらに沿岸漂砂の 上手(A),下手(B)の区別を付けた.現況地形におい て図-2に示す掘削域を設定し,現況再現と同一の表-1の 条件を与えて各ケースとも10年後までの予測計算を行っ た.その上で、予測結果から2005年の再現地形を差し引 いて地形変化量の平面分布を求めた. なお掘削土砂は導 流堤下手側の水深0~2mの区域に投入している.

図-3は、噴流軸上での掘削水深を変えた掘削域1,5,7 での掘削後10年の地形比較である。沖合のテラス面上 の-7m付近を掘削した掘削域5を基準とすると、墳流の 出口に近い掘削域1の場合、掘削域5では導流堤脇の-7m の閉じていた等深線が沖合の-7mと繋がり、やや反時計 回りの方向に傾いた水路が形成される。掘削域5では沖 合の前置斜面の一部が削られたため、そこは埋め戻しを 受けることなく一部に深い穴が残される。最も沖合の掘 削域7では、テラス面にはほとんど変化が生じない。

同じケースについて2005年再現地形を基準とした地形 変化量の平面分布を図-4に示す.いずれの場合もサンド レイズ工法では掘削土砂を導流堤の下手側直近に置くた め導流堤下手側での堆積状況はほぼ同一である.しかし 掘削穴周辺では著しい相違が見られる.掘削域が墳流の 出口に近い掘削域1では,沖合デルタの中央から上手側の

図-6 同一等深線上で掘削位置を変えた掘削域5,5A,5Bでの 掘削後10年の地形変化

広い区域での地盤高を下げる効果がある.図-1にも示し たように,墳流軸の東側では反時計回りの漂砂フラック スがあるので,掘削域外側の広い区域から砂を集める結 果となる.これに対して掘削域5では沖合デルタの中央部 から下手側区域の地盤高の低下を引き起こす.十分沖合 で掘削を行う掘削域7では,テラス面の地盤高の低下では なく,沖合に-16mに至る非常に深い掘削穴が形成される.

次に、同一等深線上で掘削位置を変えた掘削域5,5A, 5Bでの掘削後10年の地形を比較したのが図-5である. 軸線上の掘削域5を基準に比較すると、上手側の5Aでは 図-3の掘削域1とよく似た効果が現れ、図-1に示した現 況再現における導流堤脇の-7mの閉じた等深線が沖合 の-7mの等深線と繋がり、水路が形成された.このこと から墳流の軸線上より東(上手)側で掘削を行うことは、 今切口を出入りする漁船の航路維持にも有効なことが分 かる.一方、墳流軸線の下手側で掘削を行う掘削5Bでは、 沖合の-7mの等深線の凹みが助長されるのみとなる.図-6は、同一等深線上で掘削位置を変えた掘削域5,5A,5B での掘削後10年の地形変化量の比較である.5Aでは沖 合デルタの最突出点より上手側の広い区域の地盤高の低 下が起こる.対照的に下手側の5Bでの掘削では沖合地盤 の低下域は沖合デルタの最突出点より下手側となる.

4. 汀線変化比較と沖への土砂損失防止効果

図-7は、掘削域を墳流の軸線方向に並べた掘削域1~5

と、水深7mの等深線上において墳流を跨いで東西に並 べた掘削域5A,5Bの場合において,導流堤を挟む区域に おける各ケースの汀線変化比較を示す.併せて現状のま ま放置した案と前報で示したサンドバイパス案の汀線変 化も示す.放置と比較してサンドバイパスは導流堤上手 側での一方的な後退を招く.一方サンドレイズ工法は, いずれの場合も上手側で汀線の後退を招くことなしに下 手側で三角形状に汀線の前進を図ることが可能であり, サンドバイパスと比較して優位である.

従来のサンドバイパス工法は、沿岸漂砂阻止構造物の 上手側から下手側へと砂を移動させることを目的とした ものであって、退潮流に伴う沖への砂の損失防止にはほ とんど効果がない.これに対し、サンドレイズ工法は、 退潮流のある場において沖合への土砂損失を防止するこ とを主眼としている.したがってその効果は沖合への土 砂損失量を比較することによってのみ評価される。この ため図-1に示したように、デルタの沖側部分を包含する 沿岸方向に1.8km,岸沖方向に1.2kmの矩形状の検査区域 を設け、ケースごとにこの区域内で、かつ、水深10m以 深の領域を対象に海浜土砂量の変化を算出することで水 深10m以深への損失土砂量を求め、現況でそのまま10年 間放置した場合と比較した、図-8は、掘削域を増流の軸 線方向に並べた掘削域1~5と、水深7mの等深線上にお いて墳流を跨いで東西に並べた掘削域5A,5Bの場合にお ける水深10m以深への損失土砂量の経時変化を示す.ま た、比較のために前報で検討した放置案とサンドバイパ ス案における損失土砂量の経時変化も示す.図-8によれ ば,放置案やサンドバイパス案と比較して, 墳流の軸線 方向に並べた掘削域1~5のいずれも沖合への土砂損失 低減効果があるが、デルタの外縁近くの掘削域5の場合 が最も効果的である.なお掘削域を6,7と、さらに沖合 にした場合には掘削域がh_以深に及び,海底面には掘削 穴がそのまま残されてしまい、退潮流による沖合への土 砂損失の防止の視点からずれるので比較対象外となる. 一方, 掘削を水深7mの等深線に沿って中央(掘削域5) および東西(掘削域5A,5B)に配置した場合を比較する と、最も効果があるのは墳流軸線上に配置した掘削域5 であり、これらと比較して墳流軸に対して下手(西)側、 上手(東) 側とも効果が落ちる.また東西の比較では東 側の5Aでの掘削が効果的であり、さらに5Aでは今切口 沖の航路維持にも効果がある.

5. 結論

BGモデルを用いて浜名湖今切口のebb tidal delta (沖合 デルタ)の地形変化を再現し、それをもとに新たにサン ドレイズ工法を提案した.この工法は、導流堤上手側の 堆積域から砂を採取し、その砂を下手側へ投入するサン

ドバイパスと異なり, 導流堤沖で砂を掘削し, それを下 手側海岸へ投入する手法である.この工法によれば,上 手側の汀線後退を招くことなしにネットの土砂損失を防 止し,下手側の汀線を前進させることができる.掘削位 置を種々変えた予測計算によれば,導流堤の先端付近か らの噴流の軸線上の沖合の水深7m付近のテラス面上で の掘削が最も有効であること,掘削位置を上手側と下手 側にずらす案では上手側のほうが有効でかつ航路維持に も役立つことが明らかになった.

参考文献

- 宇多高明・芹沢真澄・三波後郎・古池 鋼・石川仁憲 (2007):波と河口流の作用下での大規模河口沖テラスの 形成予測モデル,海岸工学論文集,第54巻, pp.406-410.
- 宇多高明・芹沢真澄・三波俊郎・古池 鋼・石川仁憲 (2008) : Ebb tidal deltaの地形変化予測と沖への土砂損失 防止策の検討,海岸工学論文集,第55巻,pp.626-630.
- 酒井和也・小林昭男・宇多高明・芹沢真澄・熊田貴之 (2003) :波の遮蔽構造物を有する海岸における3次元静 的安定海浜形状の簡易予測モデル,海岸工学論文集,第50 巻, pp.496-500.
- 芹沢真澄・宇多高明・三波後郎・古池 鋼(2006) : Bagnold 概念に基づく海浜変形モデル, 土木学会論文集 B, Vol.62, No.4, pp.330-347.
- Bagnold, R. A. (1963) : Mechanics of Marine Sedimentation, in The Sea, M. N. Hill (editor), Vol. 3, pp. 507-528, New York, Wiley.
- Bailard, J. A. and D. L. Inman (1981) : An energetics bedload model for a plane sloping beach: Local transport, J. of Geophys. Res., Vol. 86, C3, pp. 2035-2043.