滑らかな縦断形を予測可能な3次元モデルを利用した養浜効果検討

Investigation of Movement of Nourishment Sand of Different Grain Sizes Using Model for Predicting Bathymetric and Grain Size Changes

野志保仁¹ · 小林昭男² · 宇多高明³ · 芹沢真澄⁴ · 熊田貴之⁵

Yasuhito NOSHI, Akio KOBAYASHI, Takaaki UDA, Masumi SERIZAWA and Takayuki KUMADA

A model for predicting bathymetric and grain size changes considering equilibrium slopes corresponding to the composition of grain size and each grain size was applied to predict the beach changes on the Chigasakinaka coast. The cross-shore sorting of sand, in which the grain size gradually decreases with increasing depth, and the formation of a gradually changing longitudinal slope were reproduced well. The diffusion of colored sand with different grain sizes placed on the shoreline and at a depth of 4 m was predicted and compared with the results of a field observation using colored sand on the Chigasakinaka coast. Both results were in good agreement.

1. はじめに

防波堤が沖に建設されると、波の遮蔽域外から遮蔽域内 へと向かう沿岸漂砂が発生し、結果として波の遮蔽域内で は砂が堆積し、遮蔽域外では侵食が進行する. このような 変化が起こる場合、堆積域である遮蔽域内では主に遮蔽域 外から移動してきた細砂が堆積し,侵食域では細砂が流出 した結果粗粒分が残されて砂の粗粒化が起こる、このよう な底質の変化は底生生物の生息にも大きな影響を及ぼすと 考えられ、このため沿岸域の環境変化を考える上では、地 形変化予測のみでなく底質変化予測も重要となる.一方, 波の作用下での底質分級を考えると,一般に粒径の大きな 砂は前浜付近で急勾配をなして堆積するのに対し、細砂は 沖合で緩い勾配で堆積するという特性があるが、このよう な底質分級に関し、熊田ら(2003)は、粒径に応じた平衡 勾配を考慮することにより混合粒径砂の縦断分級を予測す るモデルを提案した. さらに, 平衡勾配は底質粒度組成と 密接な関係を有すること(野志ら, 2004, 2005)から, 熊 田ら(2005)は、この粒度組成に応じた平衡勾配を等深線 変化モデルに組み込んだ.しかしこのモデルでは、波の遮 蔽域において等深線の空間的振動が起こり, 安定性が確保 できない場合があることが課題として残された. 熊田ら (2007)は、この問題の解決のために海岸にはいくつかの 粒径集団が存在し、その集団ごとに平衡勾配が存在すると 仮定することにより3次元地形・粒径変化の予測モデルを 開発した.このモデルの実用性はかなり高く,各地の海岸

1 2 3	正会員 正会員 正会員	博 (工) 工博 工博	(有) アイコムネット 環境コンサルティング部 日本大学教授 理工学部海洋建築工学科 (財) 土木研究センター常務理事なぎさ
			総合研究室長兼日本大学客員教授理工学
			部海洋建築工学科
4	正会員		(有)海岸研究室
5	正会員	博(工)	(株)水圏科学コンサルタント 技術部

での地形・粒径変化予測に用いられている(勝山ら, 2007; 字多ら,2007)が、このモデルでは、ある粒径集 団内で砂の含有率がわずかに変化してもそれに伴う縦断勾 配の変化は起こらないとしている.現地海岸では、波の遮 蔽域などにおいて細粒分の含有率が高まると海底勾配が次 第に緩くなるが、このような縦断形の沿岸方向変化は上記 モデルでは予測できない、野志ら(2008)はこの点を改良 し、粒度組成に応じた局所縦断勾配を考慮でき、実現象と 同様、沿岸・岸沖方向の緩やかな縦断勾配の変化を予測可 能なモデルを開発した.

このように粒径を考慮した地形変化モデルが多く開発 されている中,現在各地では防護のみではなく環境への 配慮のために養浜工を選択する事例が増えている.この ような養浜では養浜後の海浜形状と粒径変化の予測が求 められる.既往養浜事例を調べると,その多くは汀線よ りも陸側で養浜を行う前浜養浜である.一方,前浜養浜 に比べ沖合養浜はバージによる大量の土砂輸送が可能な ために低コストという利点がある.このとから,沖合養 浜における地形・粒径変化を精度良く予測可能とするこ ともまた大事である.しかし既往の沖合養浜時の予測は, 沖浜を固定床扱いする方法があるのみで,実際の海浜形 状と粒径分布まで考慮可能な予測法はない.本研究では, 粒度組成に応じた海浜勾配の変化を考慮でき,実現象と

図-1 モデル海岸の神奈川県茅ヶ崎中海岸の位置

同様,沿岸・岸沖方向の緩やかな縦断勾配の変化予測も 可能な野志ら(2008)のモデルを,神奈川県茅ヶ崎中海 岸(図-1)に適用し,沖合養浜時の地形・粒径変化の予測 手法について検討した.

2. モデル概要

野志ら(2008)のモデルの概念図を図-2に示す.混合 粒径砂からなる海浜に波が斜め入射した場合,堆積域に ある測線Aでは粒径の細かい砂が選択的に堆積し細粒化 する.一方,侵食域にある測線Bでは粒径の細かい砂が流 出し結果的に粗粒化する.地形変化後,Aの縦断勾配は初 期縦断勾配tan βよりも緩くなり,Bでは急になる.さら に実海岸では,沿岸方向の粒径分級にとどまらず,岸沖 方向の粒径分級も観察される(宇多,1997;熊田ら,2003). 粒径の岸沖分級により標高の高い場所には粗粒砂が堆積 するが,水深が大きくなるに従い細粒となり,粒度組成 に応じた勾配が形成される(野志ら,2005).この結果, 等深線にはゆがみが生じ,侵食域から堆積域に近づくに 従い勾配が緩くなる現象が起こる.このような現象は現 地海岸においてもしばしば観測される.

野志ら (2005) は、底質粒径と平衡勾配の経験式をも とに、粒径含有率 $\mu^{(k)}$ と粒径毎の平衡勾配 tan $\beta_c^{(k)}$ から局 所縦断勾配 tan β_c を算定する式を示した. この式は漂砂 機構を踏まえた因果律を含んでいないため、結果的にあ る安定した局所勾配になったことを示すのみである. し かし定性的意味では合理性を有し、粒径が粗ければ勾配 は急であり、粒径が細かければ勾配は緩いという観察結 果をよく説明している. そこで本研究では、野志ら (2005) の考え方をモデルに取り込み、粒度組成に応じて勾配が 変化するモデルを構築する.

熊田ら(2007)は岸沖漂砂量式を式(1)のように定め、 粒径集団毎の平衡勾配角 $\overline{\beta_c}^{0}$ のみを仮定している.すなわ ち個々の粒径毎に海底勾配の応答が起こるのではなく、対 象海岸の粒径集団毎の平均的な海底勾配を定め、それを 平衡勾配角 $\overline{\beta_c}^{0}$ としている.

$$\begin{aligned} q_{z}^{(i,k)} &= \mu^{(i,k)} \cdot \varepsilon_{z}(z) \cdot \gamma \cdot K_{1}^{(k)} \cdot \\ (EC_{g})_{b} \cos^{2} \alpha_{bs} \sin \beta_{c} \cdot (\cot \beta / \cot \overline{\beta}_{c}^{(i)} - 1) \cdots (1) \\ ; i &= 1, 2, \dots, NI, k = 1, 2, \dots, N \\ K_{1}^{(k)} &= \frac{A}{\sqrt{d^{(k)}}} \cdots (2) \\ \varepsilon_{z}(z) &= \begin{cases} (2/h_{c}^{3})(h_{c}/2 - z)(z + h_{c})^{2}, -h_{c} \leq z \leq h_{R} \\ 0, & z \leq -h_{c}, z \geq h_{R} \end{cases} \cdots (3) \end{aligned}$$

ここに, xを沿岸方向座標として, zはある等深線の地 盤高, q_z^(i,k), i=1, 2, ..., NI, k=1, 2, ..., Nは粒径集団 (iグルー プ)内の粒径毎 (k番目の粒径)の岸沖漂砂量, µ^(i,k)は交 換層内の粒径毎(k番目の粒径)の含有率, ε₂(z)は宇多・ 河野(1996)の漂砂量の水深方向分布関数, d^{4b}は底質粒 径を示す. Aは未知数とし,対象海岸の変形過程に応じて 設定できる. γは漂砂量係数の比率であり,沿岸漂砂に対 する岸沖漂砂の動き易さを表す. α_{bs}は砕波点において波 峰線が等深線となす角, βは等深線毎の勾配角である.

野志ら (2008) は式 (1) のように平衡勾配角 β_c を決め ず,野志ら (2005) の示した粒度組成に応じた局所縦断 勾配の算定法の概念をモデルに取り入れることで式 (1) を式 (4) のように拡張した

$$q_z^{(k)} = \mu^{(k)} \varepsilon_z(z) \cdot \gamma \cdot K_1^{(k)} \cdot (EC_g)_b \cos^2 \alpha_{bs} \sin \overline{\beta} \cdot \{r \cdot (\cot \beta / \cot \overline{\beta}_c - 1) + (1 - r) \cdot (\cot \beta / \cot \beta_c^{(k)} - 1)\} \cdots (4)$$

$$\vdots k = 1, 2, \dots, N \quad 0 \le r \le 1$$

ここに、xは沿岸座標, $q_z^{(h)}$;k=1,2,...,Nは粒径毎の沿岸漂 砂量, $\varepsilon_x(z)$ は $\varepsilon_z(z)$ と同様, 漂砂量の水深分布関数を示す. $\zeta = K_2^{(h)}/K_1^{(h)}$ とし、 ζ はAと同様, 対象海岸の変形過程に応じ て設定する定数とした. すなわち $K_2^{(h)}$ は $K_1^{(h)}$ の関数であり, 砕波波高の沿岸方向分布がある場合に付け加わる沿岸漂砂 を表す. tan β は砕波点での海底勾配, H_b は砕波波高であ る. 図-3には式(4)の粒度組成に応じた局所縦断勾配に

図-3 式(4)の粒度組成に応じた局所縦断勾配に係る項と, 各粒径に応じた平衡勾配に係る項の定義

係る項(野志ら,2005)と、各粒径に応じた平衡勾配に係 る項(熊田ら,2005)の定義を示す.式(4)の第1項は複 数の粒度組成に応じた平衡勾配 $\tan \beta_c$ に、第2項は粒径そ れぞれが単体として持つ平衡勾配 $\tan \beta_c$ ^(k)に近づこうとす るとき生じる岸沖漂砂である.これにより粒度組成に応じ た平衡勾配を考慮しつつ、沖方向の細粒化も予測可能とな る.全岸沖漂砂量をこれら2つの特性を有する漂砂量の加 重平均で表す.本研究では重みrは等しく0.5とした.粒径 毎の土砂量保存則(連続式)は次式で与えられる.

また,堆積時と侵食時における粒径毎の含有率変化は, Bを交換層幅,全粒径成分を考慮した等深線変化量をΔY としたとき,堆積時には次式により求める.

$$\frac{\partial \mu^{(k)}}{\partial t} = \frac{1}{B} \left\{ \frac{\partial y^{(k)}}{\partial t} - \frac{\partial Y}{\partial t} \cdot \mu^{(k)} \right\}; k = 1, 2, \cdots, N \quad \dots \dots (6)$$

同様にして,侵食時の粒径毎の含有率変化は次式より 算定できる.

$$\frac{\partial \mu_B^{(k)}}{\partial t} = \frac{1}{B} \left\{ \frac{\partial y^{(k)}}{\partial t} - \frac{\partial Y}{\partial t} \cdot \mu_B^{(k)} \right\}; k = 1, 2, \cdots, N \quad \cdots (7)$$

ここに、µ_B^(K)は、等深線位置の変化の起こる前の段階に おける、海底砂層のうち波の作用で底質交換が起こる層 (交換層)より下層に位置する砂層の粒径含有率を示す. 交換層幅Bは、鉛直方向に測った砂層厚に海浜勾配の逆数 を乗じて求めるものとし、この場合の交換層はKraus (1985)を参考に算出する.計算は以上の式を連立して解 くが、防波堤などの構造物境界の処理は、芹沢ら(2002) に従った.沖合に防波堤や離岸堤が設置されると、その背 後には波の遮蔽域が形成される.そのような場合には、酒 井ら(2003)の方向分散法を用いて遮蔽域内外の回折係 数、回折波向の分布を求め、さらにこの結果より、防波堤 がない場合の砕波波高に回折係数を乗じて波高を低減させた.また波向分布については回折波向をそのまま与えた.

3. 茅ヶ崎中海岸におけるカラーサンドの追跡調査 結果

宇多ら(2007)は茅ヶ崎中海岸において粒径砂の異なる カラーサンドの追跡調査を行った.調査はd50=0.2mm と d₅₀=2.0mmの砂を汀線付近と水深4mに1m³投入し,投入か ら62日間にカラーサンドの広がり(1粒でも検出された地 点)を追跡した.図-4はカラーサンド投入後62日の追跡 調査結果である.図-4(a)(b)はd₅₀=0.2mmの養浜砂を 汀線と-4mに投入した場合の養浜砂の分布である. 汀線お よび-4m地点で養浜を行った場合,いずれも広く拡散して いることが分かる.図-4 (c)はd50=2.0mmの養浜砂を汀 線投入した場合の養浜砂の分布である。この場合には、投 入砂は汀線付近に留まっている。図-4(d)は同じ粒径の 養浜砂を-4mに投入した場合であるが、投入砂は岸向きに 移動し汀線に近づいていることが分かる.このことから、 粒径の細かい砂は投入位置に関係なく海岸全域に拡散し, 一方粒径の粗い砂を汀線付近に投入した場合は汀線付近に 留まり、水深4mに投入した場合は岸向きに移動し汀線付 近に留まることがわかった、すなわち、平衡勾配の緩やか な細かい砂は広く拡散し、平衡勾配の急な粗い砂は岸向き に移動し安定するという傾向があることがわかる.

4. 茅ヶ崎中海岸への適用

茅ヶ崎中海岸ではヘッドランド (HL) 建設後の1991年 以降,毎年約5,000m³の養浜が行われたが,HLを越えて 漂砂下手側へ流出する漂砂約4,600m³/yrと土砂収支バラン スが取れていた.そこでまずHLが建設された1991年から カラーサンド投入前の2005年までの地形再現を行った.

図-4 カラーサンド投入から62日後の追跡調査結果

1300 1200 1100

300

500

, 菱沼海岸:養浜9

6700

(m) ≻ 500

計算条件を表-1に示す.計算での入射波は防災科学技術 研究所の観測データより算出したエネルギー平均波を採 用し,砕波波高H_b=0.83m,周期T=6.35s,波向はS6°W とした.地形変化の水深範囲は、実測の深浅図よりバー ム(h_R)から波による地形変化の限界水深(h_C)までとし た. 粒径は実測データをもとに0.106, 0.425, 2.0 mmの3 粒径とし、それぞれの平衡勾配は1/80、1/30、1/5とした. また粒径毎の含有率は実測値より決定した.

再現計算では実際に養浜が行われていたことを考慮し, 菱沼海岸では9,000m³/yr, 中海岸では5,000m³/yrの養浜を 行い, また, 実態に合わせ漂砂下手側では-14,000m³/yrの 境界条件を設定した.図-5は2005年の実測・計算等深線 である. ヘッドランド周辺の5mよりも深い部分の等深線 をほぼ再現できている.また沖に向かい緩やかになるとい う縦断形をよく再現できていることがわかる.図-5の測線

表-1	計算条件

初	0.106mm, 48% 0.425mm, 39% 2.0mm, 13%		
	0.106mm, 1/80 0.425mm, 1/20 2.0mm, 1/5		
交	交換層幅 B(m)		
1 白小市 冬 伊	砕波波高H _b (m)	0.8	
入射似来针	砕波波向α(deg.)	-6.0	
地形変化の	地形変化の限界水深 h _C (m)	9.0	
水深範囲	バーム高 h _R (m)	3.0	
	漂砂量係数 A	0.4	
漂砂量係数	小笹ブランプトン項の係数	1.6	
	岸沖·沿岸漂砂量係数比	0.4	
土砂落ち込みの	陸域	1/2	
限界勾配	海域	1/3	
計算範囲	沿岸方向 X(m)	3000	
可异地四	鉛直方向Z(m)	-10~5	
計管マッシュ	$\Delta \mathbf{Y}(\mathbf{m})$	100	
可昇クワシエ	$\Delta Z(m)$	1	
計算	4.4		
計	20,000		

7700 X (m)

7700 A X (m)

8200

8200

A, Bにおける, 実測と計算による縦断形と粒度組成を図-6,7に示す.実測縦断形と粒度組成(図-6)によれば、堆 積域を通る測線Aは緩やかな縦断形が形成されており、粗 砂は汀線付近のみに集積し、沖は細砂で覆われている. 侵 食域を通る測線Bは堆積域を通る測線Aよりも勾配が急で あり、全体に粗い砂の含有率が高くなっている。また、沖 合の緩やかな斜面を形成している砂は測線Aと同様に細砂 である. さらに、測線A、Bはいずれも沖向きに粒径が細 かくなる粒度組成の変化を示し、それに伴い縦断形が次第 に緩やかとなる.

計算縦断形と粒度組成(図-7)によれば、粗砂は主に前 浜付近に集積し,沖は細砂で覆われており,また,沖向 きに粒径が細かくなるに伴い縦断形が緩やかとなる実測 傾向をよく再現できていることがわかる. また、堆積域 (測線A)の前浜勾配のほうが侵食域(測線B)の前浜勾 配よりも緩やかになっており、沿岸方向の粒径分級作用 により地形変化も実測の傾向をよく再現できている.

次に、カラーサンドの追跡調査と同じ粒径・投入水深 条件であるが、分布状況をより明確にするために投入量 を5,000m³/yrと大きくした条件のもとで養浜砂の広がり予 測を行った.図-8にカラーサンド投入後62日の予測結果

▲中海岸

養浜5,000m³/y

8700

を示す.図-8(a)は汀線付近にd50=0.2mmの砂を養浜し た場合のカラーサンドの分布を示す. カラーサンドは水 深-4~6m付近まで拡散しHL付近まで到達していること がわかる.図-8(b)は水深-4mにdso=0.2mmの砂を養浜し た場合のカラーサンドの分布を示す.図-8(a)の汀線付 近に養浜した場合と比べさらに沖の-8mまで拡散してい る.これは細砂の投入位置が沖であるために細砂の拡散 範囲が拡大したことによると考えられる. 追跡調査期間 に年数回波程度の波浪が4回作用したが、本計算では暴波 浪を作用させていないためにどちらの予測結果も追跡調 査ほどの拡散状況は再現できていない.しかし、基本的 な拡散状況の傾向はよく再現されている.図-8(c)は汀 線付近にd₅₀=2.0mmの砂を養浜した場合のカラーサンドの 分布を示す. カラーサンドは沖に拡散することなく汀線 付近に留まっており、現地実験の傾向をよく再現できて いる.図-8(d)は水深-4mにd₅₀=2.0mmの砂を養浜した場 合のカラーサンドの分布を示す. 投入されたカラーサン ドは現地実験と同様に岸向きに移動し汀線付近に留まっ た.以上の計算結果から、野志ら(2008)のモデルは粒 径が3次元的に変化する場における沖合養浜時の土砂の広 がり予測にも適用可能なことが明らかとなった.

5. まとめ

本研究では野志ら(2008)の地形・粒径変化予測モデ ルを使用し、芽ヶ崎中海岸におけるカラーサンドの追跡 調査結果を再現した.計算結果から短期的な波浪を考慮 すれば、野志ら(2008)のモデルが前浜養浜だけでなく 沖合養浜時の投入土砂の広がり予測にも適用可能なこと がわかった.これより本モデルは今後の養浜事業時に有 効なツールのひとつとして使用可能と考えられる.

参考文献

- 宇多高明(1997):日本の海岸侵食,山海堂,442p.
- 宇多高明・河野茂樹(1996):海浜変形予測のための等深線 モデルの開発,土木学会論文集,539/II-35, pp.121-139.
- 宇多高明・青島元次・山野 巧・吉岡 敦・三波俊郎・石川 仁憲(2007):神奈川県茅ヶ崎中海岸の事例にみる養浜 の考え方,海洋開発論文集,第23巻,pp.1057-1062.
- 宇多高明・勝山 均・松浦健郎・熊田貴之・長山英樹・大木 康弘(2007) :利根川からの土砂流入のある波崎漁港周 辺の海浜変形の実態と予測,海岸工学論文集,第54巻, pp.586-590.
- 勝山 均・松浦健郎・宇多高明・熊田貴之・長山英樹・住谷 廸夫(2007) :鹿島灘海岸の侵食の実態と変形予測,海 岸工学論文集,第54巻, pp.576-580.
- 熊田貴之・宇多高明・芹沢真澄・小林昭男(2003) :混合砂 による養浜時縦断形予測モデル,海岸工学論文集,第50 巻,pp.596-600.
- 熊田貴之・宇多高明・芹沢真澄・三浦正寛(2005) : 波の遮 蔽域形成に伴う3次元地形・粒径変化の予測法:海洋開発 論文集,第21巻, pp.1029-1034.
- 熊田貴之・宇多高明・芹沢真澄(2007):卓越粒径集団に応 じた平衡勾配を考慮した等深線・粒径変化モデル,土木 学会論文集B,第63巻,No.2,pp.154-167.
- 酒井和也・小林昭男・宇多高明・芹沢真澄・熊田貴之 (2003) : 波の遮蔽域構造物を有する海岸における3次元 静的安定海浜形状の簡易予測モデル,海岸工学論文集, 第50巻, pp.496-500.
- 芹沢真澄・宇多高明・三波俊郎・古池 鋼・熊田貴之 (2002) :海浜縦断形の安定化機構を組み込んだ等深線変 化モデル,海岸工学論文集,第49巻, pp.496-500.
- 野志保仁・小林昭男・熊田貴之・宇多高明・芹沢真澄 (2004) :底質粒度構成に応じた局所縦断勾配の算定法, 海岸工学論文集,第51巻, pp. 406-410.
- 野志保仁・小林昭男・宇多高明・芹沢真澄・熊田貴之 (2005) :局所勾配算定式の適用範囲と底質特性の新しい 評価指標,海岸工学論文集,第52巻, pp.406-410.
- 野志保仁・小林昭男・宇多高明(2008): 粒度組成と個々の 粒径に対応した複合平衡勾配を考慮した海浜地形・粒径 変化予測モデル,地形,第29巻,第4号,pp.399-419.
- Kraus, N. C. (1985): Field experiments on vertical mixing of sand in the surf zone, J. Sedimentary Petrology, Vol. 55, pp. 3-14.