粒子法によるエプロン上のコンテナ 漂流挙動追跡のシミュレーション

Numerical Analysis on Drifting Behavior of Container on Apron due to Tsunami by Particle Method

後藤仁志¹·五十里洋行²·殿最浩司³·柴田卓詞⁴·原田知弥⁵·溝江敦基⁶

Hitoshi GOTOH, Hiroyuki IKARI, Koji TONOMO Takuji SHIBATA, Tomoya HARADA and Atsunori MIZOE

A container on apron may drift and collide with a coastal structure when a tsunami or a storm surge comes to a harbor. It is important to predict the behavior of container to reduce damages of coastal structures, however, tracking of the motion of container is difficult in a numerical model using a computational grid. Therefore, in this study, the behavior of drifting container due to tsunami is simulated by using the particle method, in which a moving object is easily treated, and the applicability of the particle method is examined.

1. はじめに

大規模な津波や高潮が港湾に来襲すると,係留船舶や 木材・コンテナなどのエプロン上に配置された貨物は, 漂流物となって港湾構造物に衝突し,被害を拡大させる. また,これらの漂流物がエプロン前面の水中に落下すれ ば,船舶の航行の障害となり,復旧作業に費やす日数や コストは増大する.したがって,港湾の安全を確保する ためには,津波・高潮来襲時の漂流物の挙動について充 分に検討を行うべきである.

本研究では、漂流物としてコンテナを扱うが、水谷ら (例えば、2005) や有川ら(2007)は、大規模な水理実 験を実施して、陸上遡上津波に対するコンテナの挙動お よび衝突力について検討を行っている.一方、数値シミ ュレーションを用いた研究としては、熊谷ら(2006)が 個別要素法を適用してコンテナの挙動の推定を行ってい るが、単一のコンテナモデルに使用された粒子数が少な く、また、平面二次元の流体計算からコンテナに作用す る外力を推定する解析モデルであるので、充分に詳細な 検討がなされているとは必ずしも言い難い.そこで、本 研究では、津波によるコンテナの挙動および壁面への衝 突力をより詳細に検討できる数値モデルを構築すること を目的として、粒子法による3次元シミュレーションを 実施し、その適用性に関する基礎的な検討を行う.

1 2 3 4 5	正会員 正会員 正会員 正会員 非会員	博(工) 博(工) 丁修	京都大学教授工学研究科都市環境工学専攻 京都大学助教工学研究科都市環境工学専攻 (株)ニュージェック 港湾・海岸グループ 関西電力株式会社 土木建築室 関西電力株式会社 土木建築室
5	非会員	工修	関西電力株式会社 土木建築室
6	学生会員		京都大学工学研究科都市環境工学専攻

2. 数値解析の概要

(1) 流体解析

本研究で用いた解析手法の概要について簡潔に記述す る.流体解析には,MPS法(Koshizukaら,1995)を用 いる.運動方程式は,Navier-Stokes式

$$\rho_{l} \frac{D\boldsymbol{u}_{l}}{Dt} = -\nabla p_{l} + \mu_{l} \nabla^{2} \boldsymbol{u}_{l} + \boldsymbol{f}_{l:p} + \rho_{l} \boldsymbol{g} \quad \dots \dots \dots (1)$$

$$\rho_{s} \frac{D\boldsymbol{u}_{s}}{Dt} = -\nabla p_{s} + \mu_{s} \nabla^{2} \boldsymbol{u}_{s} - \boldsymbol{f}_{l:p} + \rho_{s} \boldsymbol{g} + \boldsymbol{f}_{colp} \quad \dots \dots (2)$$

である.ここに、u: 流速ベクトル、p: 圧力、 ρ : 密度、 g: 重力加速度ベクトル、 μ : 粘性係数、 f_{lsp} : 固相-液相 間相互作用力ベクトル、 f_{colp} : 固相粒子間衝突力ベクト ルである.添字 l,s は、液相および固相を示している (五十里ら、2007). MPS法では、基礎式の各項は、粒子 間相互作用モデルを通じて離散化され、圧力項における gradient および粘性項における Laplacian は以下のように 記述される.

$$\langle \nabla p \rangle_i = \frac{D_0}{n_0} \sum_{j \neq i} \left\{ \frac{p_j - p_i}{|\mathbf{r}_{ij}|^2} (\mathbf{r}_{ij}) w(|\mathbf{r}_{ij}|) \right\} \quad \dots \dots \dots (3)$$

$$\langle \nabla^2 \boldsymbol{u} \rangle_i = \frac{2D_0}{n_0 \lambda} \sum_{j \neq i} (\boldsymbol{u}_j - \boldsymbol{u}_i) w(|\mathbf{r}_{ij}|) \quad \dots \dots \dots \dots (4)$$

$$\mathbf{r}_{ii} = \mathbf{r}_i - \mathbf{r}_i$$
(6)

ここに、 D_0 :次元数、 \mathbf{r}_i :粒子iの位置ベクトル、 λ :モデ ル定数である。粒子間相互作用の及ぶ範囲(影響円)は、 重み関数

$$w(r) = \begin{cases} \frac{r_e}{r} - 1 & for \quad r \le r_e \\ 0 & for \quad r > r_e \end{cases}$$
 (7)

と定義される.非圧縮条件は、粒子数密度を常に一定値 n_0 に保つことによって満足される(越塚, 2005).

(2) コンテナの挙動追跡

コンテナは、複数の固相粒子を剛体連結モデル(Koshizukaら、1998)によって連結させて構成する. コンテナ に作用する流体力 f_{lsp} は、剛体構成粒子を流体粒子と一緒 に前述の粒子間相互作用モデルに組み込むことで計算さ れる. 固相粒子間の衝突力 f_{colp} は、個別要素法(Cundall・Strack, 1979)と同様のバネ-ダッシュポットモデル を適用して計算する.

3. コンテナの挙動および衝突力に関する基礎的 検討

(1) 計算領域

図-1に、計算領域を示す. 模型縮尺は、有川ら(2007) の水理実験結果と比較するため、有川らと同様の1/5と した.本章では、エプロン上のみを計算領域とし、計算 領域最左端を流入境界とすることで津波を発生させる. 流入流量は、陸上遡上津波の波高と流速の関係式

 $C_x = 2\sqrt{g\eta_m}$ (9)

(ここに、 C_x : 遡上流速, η_m : 遡上津波の波高)に従い、流入境界の高さを波高、遡上流速を流入速度として決定した.また、本研究では20ft型のコンテナを想定し、満載状態(=1.77kN)と空載状態(=0.18kN)の2種類を重量を変えて扱う.次節以降に示すケースでは、満載および空載コンテナに流入流量を変えた津波を数ケース衝突させてコンテナと壁面との衝突力を推定する.なお、粒子径は、0.03mである.

(2) case1:1段積みコンテナ(長軸方向に衝突)

まず,有川らの水理実験と同様に,コンテナが面衝突 する条件で計算を実施し,衝突力に関して計算結果と実

験結果を比較することで本モデルの再現性を検討した. 図-2に,空載コンテナを用いたケースの計算結果の一例 を示す.右段は,コンテナの挙動を見易くするために水 粒子の大きさを小さくして表示したものである.コンテ ナは,津波の衝突によって動き出し,壁面に衝突した後, 浮上し,戻り流れによって沖側に向かう.図-3に,衝突 速度と最大衝突力の関係を示す.図中の*M*はコンテナの 質量であり,*1*は浮上限界水深である.図中には,有川ら の衝突力評価式(式(10),式(11)および式(12)),

$$F = \gamma_{\rho} \chi^{\frac{2}{5}} \left(\frac{5}{4}m\right)^{\frac{3}{5}} v^{\frac{6}{5}} \qquad (10)$$

を併示した.ここに、a:衝突面の縦横長さの平均の1/4, E:ヤング率、 ν :ポアソン比、m:質量、v:衝突速度、 γ_p :塑性による減衰効果を示すパラメータである.添字 1,2は、衝突体と被衝突体を示す.計算結果は衝突力評価 式よりも若干下回っているが、実験結果との一致は良好 である.

(3) case2:1段積みコンテナ(長軸と直交する方向に衝突)

次に、コンテナの長軸が流入方向に直交する状態で計 算を行った.図-4に、計算結果の一例を示す.このケー スでは、コンテナ下部に作用する津波の流体力による水 路幅方向軸周りの回転モーメントが比較的大きいので、 下流側が持ち上がるように回転する.また、この回転運 動によって不安定となったコンテナは、浮上と着地を間 欠的に繰り返しながら流下するが、運動は水路幅方向に 一様ではなく、底面摩擦の影響で、鉛直軸周りの回転が 生じる.したがって、case2ではcase1のように面的には 衝突しない.図-5に、壁面に作用した衝突力の0.005秒間 の力積の分布図の一例を示す.図-5に示した計算結果で

は、コンテナ下部の右側(y方向正)が先に衝突し、そ の後、コンテナ上部の左側(y方向負)が衝突する.コ ンテナは壁面との衝突後、水路幅方向軸周りに回転しな がら戻り流れに乗って沖側に向かう.

図-6に、衝突速度と最大衝突力を示す.このケースで は、上記のような衝突過程のため最大衝突力は小さくな り、コンテナ側面の面積を仮想的衝突面として算出した 衝突力評価式を大きく下回る.ただし、各瞬間の局所的 な単位面積あたりの衝突力は、衝突力評価式を上記の仮 想的衝突面で除した値と比較して、最大で約3倍大きく なった. t=0.45 s

(4) case3:3段積みコンテナ

次に、空載コンテナを3段積みにした状態で津波を作 用させる.図-7に計算結果の一例を示す.津波の作用に よって達磨落しのように3段積みされた最下段のコンテ ナが先行して動き出す.上2段のコンテナは、コンテナ 間に働く摩擦力の作用によって最下段のコンテナの移動 に追随するが、最下段のコンテナが壁面に衝突して移動 を停止すると慣性によって前転し、最上段のコンテナの 上部が壁面に衝突する(t=0.6s).その後,壁前面で吹き 上がる流体によって後転しながら沖側へ運ばれる(t= 1.35s). 図-8に、最大衝突力を示す. 本計算では、3つの コンテナが同時に衝突することはなかったので、図中に

併示したコンテナが1つの場合とほぼ同様の傾向を示す 結果となった.

4.2次元津波計算との接続

(1) 計算条件と計算領域

前章では、コンテナの壁面への衝突に焦点を絞ったの で,一定の流入流量を与えて無限に波長の長い津波とし, コンテナの壁面衝突後の挙動については言及しないもの としたが、実際にはコンテナの海中への落下可能性も重 要な検討項目である.したがって、津波がエプロン上を 遡上する過程を非定常性を含めて検討する必要があり, エプロン前面の海域での津波計算を実施しなければなら ない.本モデルは非常に計算負荷の高いモデルであるの で、全海域の3次元計算は、現時点では現実的ではない。 そこで、本章では、海域は2次元で解析し、その結果を3 次元計算の流入境界条件として両者を接続する.

図-9に、計算領域を示す、海域(2次元計算領域)は 勾配ゼロとし,図の状態から重力だけ作用させて水柱崩 壊を起こし,段波津波を発生させる.エプロン天端とエ プロン前面の水面との高さの差は0.45mとし、エプロン の端部に接続境界を設置する.2次元計算から得られた 断面流速分布を3次元計算の流入境界の流入速度として 与える(水路幅方向には一様).なお、本計算では、簡 単のために3次元計算結果を2次元計算に反映させない one-wayカップリングとした. 今回の計算では0.96mの波 高の津波を造波した.

(2) 計算結果

図-10に、計算結果を示す.この計算では、流入流量 がほぼゼロになるタイミングで流入境界を強制的に消去 している.図に示されるように壁面に衝突して跳ね返っ たコンテナが戻り流れによってエプロン前面海域に落下

図-10 コンテナの海域への落下

する過程が再現されている.本計算では計算領域を小さ く制限したのでtwo-wayモデルの適用が望ましいが,実 際にはエプロン端部から壁面までは大きく離れているの でone-wayモデルでも充分に対応できると考えられる. また,本計算では,断面2次元計算と接続したが,Boussinesqモデルなど格子法に基づく平面2次元計算と接続 すれば計算領域に斜め入射する津波を発生させることも 可能である.

5.おわりに

本研究では、粒子法を用いてエプロン上のコンテナの 津波による漂流挙動の追跡と壁面への衝突力についての 基礎的な検討を行った.既往の水理実験と同様の条件の 下では最大衝突力に関して良好に対応する結果が得られ た.また、コンテナが壁面に面衝突しないケースでは、 最大衝突力が減少するという妥当な結果が得られた.

今後は、3.3節および4.2節で扱ったような実際の現場 に即した条件で多段積みされた複数のコンテナ群に遡上 津波が来襲する状況での計算を実施したい.そのために は、本研究よりさらに広範囲の領域を計算対象とする必 要があり、例えばGPGPUの導入等の計算速度を向上さ せる技術開発や4章に示したような計算負荷の軽減手法 が重要となる.

参考文献

- 有川太郎・大坪大輔・中野史丈・下追健一郎・石川信隆(2007): 遡上津波によるコンテナ漂流力に関する大規模実験,海岸 工学論文集,第54巻, pp.846-850.
- 五十里洋行・後藤仁志(2007):津波氾濫による桁橋被災過 程の数値シミュレーション,海岸工学論文集,第54巻, pp.211-215.
- 熊谷兼太郎・小田勝也・藤井直樹(2006) :津波によるコン テナの漂流挙動シミュレーションモデルの適用性,海岸 工学論文集,第53巻, pp.241-245.
- 越塚誠一(2005) : 粒子法, 丸善, 144 p.
- 水谷法美・高木祐介・白石和睦・宮島正悟・富田孝史(2005): エプロン上のコンテナに作用する津波力と漂流衝突力に関 する研究,海岸工学論文集,第52巻,pp.741-745.
- Cundall, P. A. and Strack, O. D. L. (1979): A discrete numerical model for granular assembles, *Gétechnique*, 29, No.1, pp. 47-65.
- Koshizuka, S., H. Tamako and Y. Oka (1995): A particle method for incompressible viscous flow with fluid fragmentation, *Comp. Fluid Dyn. J.*, Vol.4, pp. 29-46.
- Koshizuka, S., Nobe, A. and Oka, Y. (1998): Numerical analysis of breaking waves using the moving particle semi-implicit method, *Int.J.Numer.Mech.Fluids*, Vol.26, pp.751-769.