わが国太平洋岸における台風時波浪シミュレーションに基づく 波高極値の推定

Estimating Wave Extremes on the Pacific Coasts of Japan Based on Simulation of Typhoon-Generated Waves

野中浩一¹ · 山口正隆² · 畑田佳男³

Hirokazu NONAKA, Masataka YAMAGUCHI and Yoshio HATADA

Station by station wave computation on the Pacific coasts of Japan for typhoons generated over a period of either 20,000 years or 100,000 years is conducted using a Monte-Carlo simulation system. The system consists of a stochastic generation model of a parameterized typhoon and a backward ray tracing-based wave model on a nested grid with high space resolution. Extreme value analyses of typhoon-generated annual maximum wave height samples reveal that the simulation-based 50-year return wave heights on the coasts are in reasonable agreement with the measurement-based ones and that the probable maximum wave height deduced from 100,000-year wave simulation may be around 10 m greater than the maximum wave height measured in the recent several decades to the best degree.

1.緒言

社会的に重要度が高い海域施設の設計などに際して必 要とされるであろう超長期の再現期間に対する確率波高 を評価する方法として,異常波高の主要因である台風の 場合には確率的台風モデルを用いた波高極値の推定シス テム(野中ら,2000)が提案されている.しかし,格子 点深海モデルによる波浪推算で使用した格子網の地形解 像度は80 kmであることから,得られた結果は海岸工学 の主な対象となる陸地から数km以内の沿岸部における 推定値としては必ずしも適切でない.

そこで本研究では,波浪推算モデルを高地形解像度計 算が容易な1点浅海モデル(山口ら,1987)に変更した 野中ら(2000)のシステムをわが国太平洋岸に展開され た多くの波浪観測地点における台風時波浪推算に適用 し,波高極値に関して格子点深海モデルを用いた上記シ ステムに基づく結果(野中ら,2003)や観測資料に基づ く結果との比較検討を行うとともに,台風時年最大波高 に対して特定した母分布や確率波高とその変動特性およ び可能最大波高の沿岸方向の変化を考察する.

2. 台風時波高の極値の推定システム

(1) システムの概要

本システムは、①拡張型季節別確率的台風モデル、② 場の移動に伴う風を含む傾度風に変換係数(0.6)を乗じ て海上風を推定するモデル、③1点浅海(波浪推算)モ

1	正会員	博(工)	愛媛大学契約職	钱員 工学部
2	正会員	工博	愛媛大学教授	大学院理工学研究科
3	正会員	博(工)	愛媛大学講師	大学院理工学研究科

デル,④Gumbel分布と27種類の形状母数(k=0.5~10) をもつWeibull分布を候補分布とし,母数の推定を最小2 乗法による極値統計解析モデル(Yamaguchi・Hatada, 1997),からなる.確率的台風モデルは台風内気圧分布 を楕円型分布で近似した場合の中心気圧など6つの台風 属性に関する確率的発生・移動モデルを4期間別に構築 したものであり,各台風属性が北西太平洋に設けた格子 間隔80 kmの格子網上で6時間ごとに生成される.

(2) 波浪推算および極値統計解析の方法

波浪推算は図-1に示す格子間隔5 kmの北西太平洋領域 に,格子間隔1 kmまたは0.5 kmの波浪推算地点周辺小領 域を組み込んだ高地形解像度2段階格子網を用いて1時 間間隔で行う.図-1の小枠は小領域の範囲を表す.波浪

図-1 波浪推算用2段階格子網と波浪推算地点

推算地点は北海道,東北,関東,東海,近畿,四国の太 平洋岸,および九州,南西諸島の太平洋岸と東シナ海沿 岸に位置する18箇所の波浪観測地点であり,図-1に地点 名とその水深(括弧内,m単位)を記載する.波浪推算 に用いる周波数データの個数はf=0.036~0.5 Hzを不等分 割した21個,方向データの個数は波浪推算地点に到達す る成分波の方向範囲を等分割した37個である.海上風の 入力時間間隔は1時間であり,6時間間隔の台風属性を1 時間間隔で線形補間して海上風を求める.

シミュレーションの期間は確率波高の推定においては 20,000年,可能最大波高の推定においては100,000年であ る.発生台風の総数は100,000個を優に越えることから, 波浪推算地点から遠く離れた経路をとる台風を計算対象 から除外し,計算時間の短縮をはかる.極値統計解析で は,推算地点ごとに得た20,000個の台風時年最大波高資 料のうち値が相対的に小さい資料の影響を除去するため に,上位50%までの資料を用いる.

3. 太平洋岸における確率波高と可能最大波高の 推定

(1) 観測資料を用いた確率波高

最近公表された全国港湾海洋波浪観測年報 (NOWPHAS2007)(河合ほか,2009)によれば、2007年に は多くの地点で既往最大(有義)波高が更新されている.

図-2は各観測地点における2005年までの台風時年最大 (T-AM)波高資料に対する極値統計解析から求めた50年 確率波高H_{s50}とその標準偏差H_{so50}(山口ら,2008)およ び2007年までの同様の解析に基づく結果を沿岸方向に示 す.両者を比べると,既往最大波高を更新した中城,志 布志,潮岬や第1位波高が突出する室津を除き,確率波 高の推定値はそれほど差をもたないが,確率波高の標準 偏差はやや減少している.一方,中城,志布志,潮岬で は50年確率波高とその標準偏差が有意な程度に増加す る.また第1位波高が突出し,しかも2007年に第2位波 高が出現した室津では,確率波高とその標準偏差はとも

に減少し、とくに標準偏差においてその傾向が著しい.

ついで、NOWPHASによる最大波高資料の抽出は2005 年以降に順次従来の2時間単位から20分単位に変ってい るので、最大波高が大きくなる.20分ごとの記録に基づ く過去3年(2005~2007年)の台風別最大波高を採用し た台風時年最大波高資料に対する極値統計解析から得た 50年確率波高とその標準偏差(図中のT-AM20min (~ 2007)) は中城において12.78 mと1.24 mであり、2時間 ごとの記録に基づく解析値(12.39 m, 0.95 m)よりそれ ぞれ0.39 mと0.29 m大きい. また, 第2位波高が更新さ れた室津では、20分ごとの記録と2時間ごとの記録で50 年確率波高は14.69 mと14.11 m,標準偏差は2.47 mと 2.51 mでそれぞれ0.58 mの増加および0.04 mの減少とな っている.このほか50年確率波高は波浮で0.12m増加し ている.他の地点では最上位値付近の波高資料が同一で あるので、20分ごとの記録を用いた場合でも確率波高と 標準偏差の値は変化しない.

(2) シミュレーション資料を用いた確率波高

図-3は20,000年の波浪シミュレーションより得た台風 時年最大波高資料 H_{sAM} に対する最適分布のあてはめと Q-Qプロットを志布志について示す.資料は形状母数1.4 のWeibull分布でよく近似されており、その高い適合度 は相関係数 ρ =0.9997によって代表される.

図-4は格子点深海モデル(GPM)および1点浅海モデル(SPM)による波浪シミュレーション資料および2007年までの観測資料(NOWPHAS資料では2時間間隔)から得た台風時年最大波高資料に対する極値統計解析に基づく3種類の50年確率波高H_{s50}とその標準偏差H_{s050}を沿岸方向に示す.標準偏差H_{s050}はシミュレーション資料の場合の1mより小さいので、掲示を省略しているが.観測資料の場合にはその範囲を図に与えている.これからつぎのことが言える.①格子点深海モデル(GPM)による太平洋岸の沖合80kmの地点におけるH_{s50}は沖縄本島から関東沿岸の波浮付近まであまり変化しないが、波浮付近から東側では台風勢力の減衰を反映して50%程度に減少する.また、東シナ海に面する地点でも東シナ海の地理的制約のために2~3m小さい.②1点浅海モデル(SPM)による太平洋岸から1~2km沖合の波浪推算

(観測) 地点におけるH_{s50}は格子点深海モデルによるH_{s50} と同様の沿岸方向の変化を示すけれども、shoalingや屈 折および陸地による遮蔽効果など沿岸地形の細部の影響 が加わることから、全体的に小さい値を与え、しかも地 点別に値の凹凸を生じる. ③1点浅海モデルによるH₅₀ は観測資料によるH₅₅₀と最大2mの差を生じるけれども, 両者はおおむね対応すると言える.より詳細にみると, 計算によるH_{s50}は喜屋武岬で2m以上高く,佐喜浜から 波浮で最大2m程度大きい反面,室津で2m低く,波浮 より東側の鹿島などで最大1m程度小さい傾向にある. ④観測資料において第1位波高が突出する室津や伊王島 では観測資料によるH_{s50}が1点浅海モデルによるH_{s50}を上 まわるけれども,標準偏差H_{so50}もかなり大きいことから, 計算によるH_{s50}は観測資料によるH_{s50} ± H_{s050}近くの値に ほぼ収まる.同様の傾向は第1位波高や上位波高が突出す る他の地点(御坊沖,那覇,志布志など)でもみられる.

図-5は20,000年の台風時年最大波高資料に対してあて はめた最適分布の形状母数を沿岸方向に示す.台風時年 最大波高に対して最適分布は,地形解像度の低い格子点 深海モデルによる結果では3地点を除いておおむね形状 母数k=2前後のWeibull分布で代表される.一方,1点浅 海モデルによる結果では各波浪推算地点における最適分 布はGumbel分布(縦軸上の0で表示)または形状母数 k=1~4のWeibull分布をとり,広い範囲に分布するけれ ども,4~5地点を除く残りの地点で最適分布は格子点深 海モデルによる結果と同様に形状母数k=2前後のWeibull 分布で代表される.この場合,標本サイズが十分大きい ことから,最適分布は母分布とみなされよう.

つぎに、20,000年の台風時年最大波高資料を20,000年 1組の大標本あるいは50年400組の小標本とみなす.小 標本に対する解析は、大標本資料において選択された最 適分布を用いる既知母分布ケース(fixed)と個々の小標 本で最適分布を最大相関係数基準に従って選択する未知 母分布ケース(free)について行う.図-6はシミュレー ション資料より得た50年確率波高の平均値*F_{s50}とその標* 準偏差*H_{so50}および観測資料より得た結果を沿岸方向に示*

す.大標本から得られる確率波高 H_{s50} は既知母分布ケースの50年確率波高の平均値 \bar{H}_{s50} とほぼ等しいので,図に 掲載していない.50年確率波高の平均値 \bar{H}_{s50} については, 既知母分布ケースが未知母分布ケースよりわずかに大き い値を与えるが,両者の差は些少である.シミュレーシ ョン資料より得た50年確率波高と観測資料から得た H_{s50} の対応は図-4ですでに検討済みである.

一方,標準偏差H_{so50}については既知母分布ケースがす べての地点で未知母分布ケースより若干小さい値をと る.これは母分布の特定により確率波高推定値の信頼性 がやや向上することを表す.また,観測資料より得た標 準偏差は第1位波高が突出する室津や高知沖ではシミュ レーション資料より得た標準偏差よりはるかに大きい. 同様の傾向は伊王島や那覇でみられる.また御坊沖より 西側の地点では,シミュレーション資料と観測資料によ る標準偏差の大小関係が地点ごとに変化するのに対し て,潮岬より東側の地点では,一貫してシミュレーショ ン資料による標準偏差が大きい.これはシミュレーショ ン資料から得た400組の確率波高推定値が各組ごとに大 きく変動する特徴を反映する.

(3) シミュレーション資料を用いた可能最大波高

ここでは、100,000年相当の台風に対する波浪シミュレ ーションから得た地点別の最大波高を地点別台風時可能 最大波高*H*_{sPMWH}とみなす.

図-7は格子点深海モデルによる波浪シミュレーション (野中ら,2007)と1点浅海モデルによる波浪シミュレー ションから得た台風時可能最大波高および20分ごとの記 録を含む観測資料より得た台風時既往最大波高*H_{smax}*を沿 岸方向に示す.これからつぎのことが言える.①地形解 像度の低い格子点深海モデルによる結果では,房総半島 以西で台風時可能最大波高の推定値は20mを越え,とく に宮崎~紀伊水道で25~27mと大きい.また,房総半 島以東では波高は東に行くほど15mにまで低下する.② 地形解像度の高い1点浅海モデルによる台風時可能最大 波高は宮崎を除いて格子点深海モデルによる波高より2 ~10m小さい.この差は波浪推算(観測)地点の地理的

状況に依存する.沿岸方向にみると,可能最大波高は宮 崎〜潮岬の四国沿岸で20~27 mと大きく,この海域か ら西の沖縄や九州沿岸および東の房総半島以東の地点で 11 m程度に小さくなる.③期間が10~35年と短い観測 資料による既往最大波高はその最も大きいもので中城に おける13.61 m(台風0704号),ついで室津における 13.55 m(台風0423号)である.これらは1点浅海モデル による可能最大波高の推定値と比べて5~7 m小さいし, この値より大きい差を与える地点が大部分である.

なお,浅海平衡方向スペクトルの使用に基づいて砕波 減衰を評価する1点浅海モデルにおいては,水深の制約 に伴う砕波減衰のモデル化が十分と言えず,また浅海性 砕波の影響を考慮しうるほど地形解像度も高くないこと から,波高計設置水深が30 m以下の地点(室津,鹿島) では台風時可能最大波高を過大評価している可能性もあ ると推測される.

図-8は図-7に与えた1点浅海モデルおよび格子点深海 モデルによる台風時可能最大波高に対する再現期間Rを 示す.再現期間は20,000年の台風時年最大波高資料を解 析して得た最適分布を用いて求めている.台風時可能最 大波高の再現期間の基準をシミュレーション期間である 100,000年と仮定するならば,再現期間は台風時可能最大 波高が相対的に大きい九州から関東沿岸に至る地点で短 く,台風時可能最大波高が相対的に小さい房総半島以東 で長い傾向にある.また1点浅海モデルによる台風時可 能最大波高に対する再現期間の地点ごとの変動が格子点 深海モデルによる場合より大きい傾向にある.

4. 結 語

本研究の知見はつぎのようにまとめられる.

- 沿岸波浪に対して高地形解像度対応の1点浅海モデル に基づく50年確率波高は観測資料に基づく結果とおお むね符合する。
- 2) 母分布の特定は確率波高推定値の信頼性を若干向上 させる.また,確率波高標本より得た標準偏差は第1 位波高が突出する観測資料による標準偏差より小さく、それ以外では同程度か、あるいは大きい。
- 3)太平洋岸に沿う台風時可能最大波高は対象地点の地 理状況と台風の勢力や経路の特性に応じて変化し、11 ~27 mと評価される.これは地形解像度の低い格子点 深海モデルに基づく結果より最大で10 m低い.

参考文献

- 河合弘泰·佐藤 真·清水勝義·佐々木 誠·永井紀彦 (2009):全国港湾海洋波浪観測年報(NOWPHAS 2007), 港湾空港技術研究所資料, No.1193, pp. 1-93.
- 野中浩一・山口正隆・畑田佳男・伊藤吉孝 (2000): 拡張型確 率的台風モデルを用いた波高の極値推定システム,海岸 工学論文集,第47巻, pp. 271-275.
- 野中浩一・山口正隆・畑田佳男・大福 学(2003):北西太平 洋における気象要因別波高極値の母分布の推定,海岸工 学論文集,第50巻, pp.216-220.
- 野中浩一・山口正隆・畑田佳男・大福 学(2007):台風およ び低気圧時波浪シミュレーションに基づく日本周辺海域 における可能最大波高の推定,海岸工学論文集,第54巻, pp. 101-105.
- 山口正隆・大福 学・畑田佳男・野中浩一(2008):日本沿岸 における確率波高の推定値に及ぼす2004年異常波高の影 響,海岸工学論文集,第55巻,pp.136-140.
- 山口正隆・畑田佳男・宇都宮好博(1987):一地点を対象とし た浅海波浪推算モデルとその適用性,土木学会論文集, 第381号/Ⅱ-7, pp.151-160.
- Yamaguchi, M. and Y. Hatada(1997) : An extremal analysis system and its application to the estimation of extremes of meteorological and oceanographic elements around the coasts of Japan, Proc.WAVES97, Vol.2, pp. 932-946.