波浪状態の分類に基づく海面抵抗係数の評価に関する研究

Evaluation of Drag Coefficient over the Ocean Surface Based on Wave-Field Conditions

安東卓哉¹·桜木幸司²·杉原裕司³·芹澤重厚⁴·吉岡 洋⁵

Takuya ANDO, Koji SAKURAGI, Yuji SUGIHARA, Shigeatsu SERIZAWA and Hiroshi YOSHIOKA

Estimations of the drag coefficient over the ocean surface were made by means of the eddy correlation and inertial dissipation methods. The variation of the drag coefficient with the wave age and swell conditions was investigated by using data set, showing good agreements between both methods. On the basis of directional wave spectra, we classified swell conditions into five groups, i.e., Pure windsea, Swell-dominated sea, Cross, Following and Counter swells. The present data show that the drag coefficient increases obviously with decreasing the wave age under same wind speeds, whereas the dependence of the drag coefficient on the swell conditions is unclear in comparison with that on the wave age. This suggests that the drag coefficient depends strongly on microstructures of the wave field, not lower-frequency structures for swells.

1. 序論

海面を通しての運動量フラックス,すなわち海面風応 力が,波浪状態(海面形状)に依存して変化することは 当然のことのように思われる.海面風応力は,海面抵抗 係数として定量化されることが多い.しかし,海面抵抗 係数が,波の発達とともに増大するのか減少するのかと いう非常に基本的な問題についてすら確定した結論は得 られていない.実海洋では風波やうねりが混在しており 非常に複雑な波浪場が形成されている.海面抵抗係数の 変化が波の発達状態(波齢)の違いによって生じたのか, うねりの作用によって生じたのかを明らかにするために は,波浪場がどのような風波成分波やうねり成分波から 構成されているのかを評価する必要がある.

本研究の目的は,波の方向スペクトルに基づいて波浪 状態を分類することにより,波齢とうねりが海面抵抗係 数と海上風速の関係に及ぼす影響について検討すること である.実海洋では風向に対して様々な角度からうねり が伝播してくる.そこで,波の方向スペクトルを用いて, 風向とうねりの伝播方向の偏角によってうねりの条件を 分類する.また,複雑で微妙な海面抵抗係数の波浪依存 性を見出すためには,測定方法に起因する誤差の小さな データセットを構築する必要がある.本研究においては, 理想的な接水大気境界層では渦相関法(Eddy Correlation

1			九州大学大学院総合理工学府 大気海洋 環境システム学専攻 修士課程
2		你 (丁)	環境ノハノムナ寺以 修工体性 IEEフチール株式合社
4		1多(上)	近日ハノ ル本代云江
3	正会員	博(工)	九州大学准教授 大学院総合理工学研究
			院流体環境理工学部門
4			京都大学助教 防災研究所流域災害研究
-			ヤンター
5	正会員	理博	愛知県立大学教授 情報科学部地域情報
			科学科

Method: ECM) と慣性散逸法(Inertial Dissipation Method: IDM) によって得られた摩擦速度の値が一致するという 考えに基づき,両者の相対誤差が小さいデータを抽出し, 精度の高いデータセットを構築する.さらに,波齢や うねりの影響を正しく見るためには,一方のパラメー タの値を固定して調べる必要がある.本研究では,そ の点に着目して海面抵抗係数の波浪依存性について検 討する.

2. 海面抵抗係数の算定

海面抵抗係数*C_{Dz}*は,平均風速*U_zと摩擦速度u**を用い て次式のように定義されている.

ここで, 添え字zは海面高度zにおいて定義される諸量 であることを示す. 摩擦速度u_{*}は次のように与えられる.

 $u_* = (\tau/\rho_a)^{1/2} = (-\overline{u'w'})^{1/2}$ (2)

ここで、u' (m/s)、w' (m/s) は平均風向および鉛直方向 の風速変動、 τ (N/m²) は海面せん断応力、 ρ_a (kg/m³) は空気の密度、 (N/m²) は時間平均を示す.

摩擦速度u_{*}の代表的な算定方法として渦相関法 (ECM) と慣性散逸法 (IDM) がある. ECMは,式 (2) におけ る風速の乱流変動成分を応答性の高い測器を用いて計測 し, u_{*}を直接算定する手法である.一方, IDMは乱流エ ネルギー散逸率εを用いてu_{*}を算定する手法であり,乱 流運動エネルギー方程式においてシアーと浮力による生 成項と散逸項がバランスする局所平衡性や,Taylorの凍 結乱流仮説など様々な仮定を用いている.理想的な接水 大気境界層においては, ECMとIDMによって算定され たu_{*}の値は一致すると考えられる.本研究では,両者の

適合性の高いデータのみを解析対象としている.

3. 現地観測の方法と観測期間における気象・海 象特性

(1) 海洋観測塔と計測システム

観測は、和歌山県西牟婁郡白浜町の田辺湾沖合約2km (東経135°20′08″,北緯33°42′19″)に位置する田辺 中島高潮観測塔(京都大学防災研究所流域災害研究セン ター所有)において実施された.図-1に、観測塔および 計測システムの概略図を示す.観測塔の高さは、海上約 23mである.観測塔の設置海域は南西方向が外海に面して おり、比較的大きなうねりは主に南西方向から伝播して くる.観測塔付近の平均水深は約30mである.ただし、観 測塔は海域にある水深約10mの岩礁の上に設置されてい る.本研究で解析対象とするデータは、2006年3月22日 から5月4日の45日間(観測期間A)、および2007年1月24 日から3月14日までの50日間(観測期間B)の2回の観測 期間において取得された.

(2) 気象・海象特性量の時系列

図-2に、観測期間Aにおける中立状態に換算された高度 10mにおける平均風速 U_{10N} (m/s),平均風向WD (deg), 渦相関法による運動量フラックス $\overline{u'w'}$ (m²/s²),渦相関法 および慣性散逸法により算定された摩擦速度 u^*_ECM (m/s) および u^*_IDM (m/s),有義波高 H_s (m),ピーク波周期 T_p (s)の時系列を示す.ここで, H_s および T_p に関しては20 分間平均値 (毎時1点)を表しており,他の時系列につ いては15分間平均値 (毎時4点)を表している.また,図 中の風速および風向は,高度12.5mに設置された超音波風 速温度計のデータから評価されている.超音波風速温度 計の設置位置が塔の南側であるために,風向が±30°の範

囲にあるデータ(北寄りのデータ)を解析対象から除外 している.運動量フラックスは観測期間を通じて概ね負 の値をとっている.このことは,運動量が大気から海洋 へ輸送されていたことを示している.なお,図中の*u*.お よび*U*_{10N}の時系列において,運動量フラックスが正の値 をとる場合のデータは除外されている.図の観測期間Aに おける有義波高は最大で2.5m程度であったことがわかる. また,ピーク波周期においては時折,非常に長い周期が 観測されているが,これらはうねりに対応するものであ ると考えられる.

(3) うねりの条件の分類

うねりの条件の分類のために,解析対象であるすべて の時間帯における波の方向スペクトルを算定した.本研 究ではうねりの条件を5つのケースに分類した.図-3にそ れら5つのケースの波の方向スペクトルの代表的な一例を 示す. (a) はPure windsea, (b) はSwell-dominated sea, (c) はCross swell, (d) はFollowing swell, (e) はCounter swellを 示している.図中にはこの時間帯における U_{10N} , u_* , WD, H_s , T_p , D_p が示されている.ただし, D_p はピーク波向き である.図中の矢印は風速ベクトルを示し,方向スペク

(a) Pure windsea, (b) Swell-dominated sea, (c) Cross swell, (d) Following swell, (e) Counter swell

トルの方位は波が伝播してくる方角を表わしている.た だし, 方向スペクトルは各時間帯の最大値を用いて無次 元化されている. また, 図中のコンターは方向スペクト ルの値を示しており、半径軸方向は波の周期を示している. ここで、Pure windseaは風波が卓越する波浪場、Swelldominated sea はうねりが卓越する波浪場である.ここで は、風波の卓越周波数におけるエネルギースペクトルの 大きさが、うねり成分波のそれに比べて1オーダー大きい 場合をPure windsea, 逆にうねり成分波の方が大きい場 合を Swell-dominated sea とした. また, 風向とうねりの 伝播角の偏角が±135°~180°の場合をCounter swell, ± $45^{\circ} \sim 135^{\circ}$ の場合をCross swell, $0^{\circ} \sim \pm 45^{\circ}$ の場合を Following swellとしている. この分類の基準は, Donelan ら(1997)およびDrennanら(1999)の風波とうねりの伝 播方向の偏角に基づく分類に準じている. なお, うねり と風波が判別できないデータは解析対象から除外した.波 の方向スペクトルからうねりが外洋に面している南西方 向から主に伝播してくることがわかる.

4. 海面抵抗係数の風速依存性

図-4に観測期間AにおけるECMおよびIDMによって算 定されたu_{*}の比較を示す.ここでは、風波が卓越する波 浪場(Pure windsea)とうねりと風波が混在する波浪場

(Others) の2つのケースに分類されている.実線は両者 の値が等しい場合の比例関係を示し、2つの破線に囲ま れたデータは両者の相対誤差が±20%未満に収まるデー タを示している.この図より、データの分散は大きいが、 ECMとIDMによって算定された両者のu*の値は統計的 にはほぼ1:1の関係をとっている.また、ECMとIDM の適合度はPure windseaのデータの方が高く、うねりが 混在する場合には適合度が低下するように見える. Grachev (2003) は平均風向に対してうねりが斜めに伝播

する場合に,海面風応力がうねりの伝播方向に偏向する ことを報告している.本研究の結果はこのことを反映 している可能性がある.ECMとIDMの相対誤差の大き なデータは算定の前提条件が破綻していることが予想 されるため,そのようなデータの信頼性は相対的に低 くなる.

図-5に中立換算された海面抵抗係数 C_{D10N} と海上高度 10mでの平均風速 U_{10N} の関係を示す.図中には、観測期 間A,Bにおける全てのデータとECMとIDMによって得 られた摩擦速度の相対誤差が±20%未満に収まるデータ を、風速レンジにより9つのグループに分け、標準偏差 と共に示している.また、本研究のデータは、Panら (2005)、Wu (1980)、Drennanら(1999)、Yelland・Taylor (1996)と比較するとYelland・Taylor (1996)の経験式 (3)と概ね一致するため、比較のための参考値として Yelland・Taylor (1996)の経験式のみを表示する.

$$1000C_{D10N} = 0.29 + \frac{3.1}{U_{10N}} + \frac{7.7}{U_{10N}^2} \quad (U_{10N} < 6m/s)$$

$$1000C_{D10N} = 0.60 + 0.070U_{10N} \quad (6m/s \le U_{10N} \le 26m/s)$$
(3)

この図より、 C_{D10N} は低風速域では U_{10N} の増加と共に急激 に減少し、風速が6m/sを超えると増大する傾向を示すこ とがわかる.また、全てのデータと比較して、ECMと IDMの相対誤差が $\pm 20\%$ 未満に収まるデータは標準偏差 の値が小さく、データの分散が小さいことがわかる.

5. 海面抵抗係数の波浪依存性

(1) 波齢に対する依存性

図-6に, 観測期間Aにおける波齢を指標としたPure windseaにおける C_{D10N} と U_{10N} の関係を示す.ここでは, 波齢を4つのグループに分類している.波齢 c_{pw}/u_* は, 風 波成分波の位相速度 c_{pw} に基づいて定義されており, c_{pw}

図-6 波齢を指標とした Pure windseaの海面抵抗係数と風速の 関係(観測期間A)

は風波成分波のピーク角周波数と分散関係から算定され ている。なお、低風速域では相対的に測定精度が低下す るため、以降の解析においては2m/s以下のデータを解析 対象から除外していることに注意する.この図では、う ねりの条件をPure windseaに固定することによって,波 の発達状態(波齢)が海面抵抗係数に及ぼす影響を正確 に評価することができると考えられる. また、波齢依存 性をより明瞭に示すために、観測期間Bのデータも含め て各波齢のデータを風速レンジにより7つのグループに 分け, それらをグループごとに平均化した. 平均化され た海面抵抗係数の値とその標準偏差を図-7に示す.この 図より、波齢が小さいほど、CDIONは相対的に大きな値を 示すことが明瞭である.波齢が小さいほど波の非線形度 が大きくなり、波齢が大きいほどピーク波のスケールは 増大する.このことは、海面抵抗は波のスケールそのも のよりも微細な海面起伏の状態を反映することを示唆し ている. Masuda · Kusaba (1987) は、C_{D10N}は波風径数 (波齢の逆数)が大きくなるほど増大し、そのような依 存性は高風速域ほど拡大する傾向があるとしている.本 研究の結果は、C_{D10N}は波齢が小さいほど増大するという 点では彼らの結果と定性的に一致するが、CDIONの波齢依 存性の強さに関しては風速領域による違いは顕著でない ように見える.いずれにしても、本研究の結果は、海面 抵抗係数は波齢が小さいほど(波風径数が大きいほど) 増大するという性質を強く支持するものである.

(2) うねりに対する依存性

次に,波齢の値を固定した*C*_{D10N}と*U*_{10N}の関係に対し て,うねりの条件が及ぼす影響について検討する.波齢 をそろえることにより,*C*_{D10N}に対する純粋なうねりの影 響を見ることができる.図-8にうねりの条件を指標とし た波齢が12より大きく24以下の場合に対する*C*_{D10N}と *U*_{10N}の関係を示す.ここでは,得られたデータをPure

図-7 波齢を指標としたPure windseaにおける平均化された海 面抵抗係数と風速の関係

windsea, Swell-dominated sea, Cross swell, Following swell, Counter swellの5つのグループに分類している. さらに、その依存性をより明瞭に示すために、両期間に おける各条件のデータを風速レンジにより最大14のデー タ群に分け、それらをグループごとに平均化した. 平均 化された海面抵抗係数の値とその標準偏差を図-9に示 す. これらの図より, Following swellのCDIONは, 他の条 件のものと比べて相対的に小さく, Swell-dominated sea のデータは大きな値をとるように見える. また, Cross swellのデータはPure windseaのデータと比べて明瞭な差 はないように見える.しかしながら、本研究の結果から は、うねりの条件に対する依存性については系統的な傾 向を見出すことは難しいように思われる. Donelanら (1997) は本研究と同様の分類を行い、低風速領域での CDIONはCounter swellの場合に大きくなると指摘してい る.しかし、彼らのデータでは波齢の値が固定されてい ないため、うねりの影響を純粋に評価できていない可能 性がある.

6. おわりに

本研究の結果より,同一風速条件では波齢が小さい (海面起伏の非線形度が大きい)ほど海面抵抗係数が大 きくなることがわかった.一方,海面抵抗係数のうねり の条件への依存性は相対的に弱いかもしくは非常に複雑 であると考えられる.これらのことは,海面抵抗は海面 の微細な海面起伏の状態に強く規定されており,海面変 動の低周波帯のスペクトル構造には明瞭に依存しないこ とを示唆している.

本研究を行うにあたり,九州大学松永信博教授にご助 言を頂きました.本研究の一部は,科学研究費補助金基 盤研究(C)(代表者:杉原裕司),京都大学防災研究所 一般共同研究(代表者:杉原裕司)および科学研究費補

図-8 うねりの条件を指標とした12<波齢≤24の海面抵抗係 数と風速の関係(観測期間A)

図-9 うねりの条件を指標とした12<波齢≤24における平均 化された海面抵抗係数と風速の関係

助金基盤研究(A)(代表者:小松利光)の援助を受けま した.ここに記して謝意を表します.

参考文献

- Donelan, M. A., W. M. Drennan and K. B. Katsaros. (1997): The airsea momentum flux in conditions of wind sea and swell, J. Phys. Oceanogr., Vol. 27, pp. 2087-2099.
- Drennan, W. M., K. K. Kahma and M. A. Donelan. (1999): On momentum flux and velocity spectra over waves, Boundary-Layer Meteorol., Vol. 92, pp. 489-0515.
- Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson and S. D. Miller (2003): Wind stress vector over ocean waves, J. Phys. Oceanogr., Vol. 33, pp. 2408-2429.
- Masuda, A. and T. Kusaba. (1987): On the local equilibrium of winds and wind-waves in relation to surface drag, J. Oceanogr. Soc. Japan, Vol. 43, pp. 28-36.
- Pan, J., D. W. Wang and P. A. Hwang (2005): A study of wave effects on wind stress over the ocean in a fetch-limited case, J. Geophys. Res., Vol. 110, pp. 1-15.
- Wu, J. (1980): Wind-stress coefficients over sea surface near neutral conditions – A revisit, J. Phys. Oceanogr., Vol. 10, pp. 727-740.
- Yelland, M. and P. K. Taylor. (1996): Wind stress measurements from the open ocean, J. Phys. Oceanogr., Vol. 26, pp. 541-55.