格子ボルツマン法による自由表面流れの解析

Numerical Modeling of Free Surface Flow by the Lattice Boltzmann Method

荒木 健¹·越村俊一²

Takeru ARAKI and Shunichi KOSHIMURA

The Lattice Boltzmann Method (LBM) has been developed as a new and robust numerical model to solve the fluid dynamics. In this study, we applied LBM for free surface flow, which Shallow-water approximation cannot provide accurate estimation. LBM was tested in some benchmark problems and laboratory experiment. The model results are in good agreement with dam-break experiment, including the movement of free surface of water body, splash against the upper wall, and a wave traveling back to the other side of the tank. Through the model validation, we found that LBM can be applied to simulate the complex behavior in tsunami wave front.

1. はじめに

格子ボルツマン法(Lattice Boltzmann Method,以下LBM) とは、分子動力学に基づく数値流体解析手法(CFD)で ある(McNamara・Zanetti, 1988; Qianら, 1992; Chen・ Doolen, 1998).流体を格子上を移動する仮想粒子の集合体 として近似し、粒子の並進・衝突の時間発展を格子ボル ツマン方程式により計算してマクロな流れ場の諸量(水 位,流速等)を求めるメゾスケールの解析手法として位 置づけられている.格子ボルツマン方程式は粒子の各速 度成分の頻度(粒子分布関数f)を変数として完全に陽 的なスキームで表現され、その解はナヴィエ・ストーク ス式(N-S式)と2次精度で一致することが数学的に保証 されている(渡辺, 2006a, 2006b).従来のN-S式の直接解 法に比べて圧倒的な計算効率と簡便なアルゴリズムが LBMの利点である.

津波などの水災害シミュレーションへの応用を考えた 場合には簡易な自由表面の追跡アルゴリズムの開発が課 題であり,これまでLBMを波浪や津波遡上先端部などの 局所的かつ乱れの大きい流れ場に適用した例は極めて少 ない.海岸工学分野では,大家ら(2008)やFrandsen (2008)により,浅水理論と等価なLBM(Zhou,2004)に より津波陸上遡上解析が試みられているが,長波近似の 成立しない流れ場においてはその精度は著しく低下する. 本研究では,砕波や街路を走る津波氾濫流など,複雑な 流れ場を再現するための数値解法としてのLBMの発展を 目指し,自由表面流れを高精度で追跡できるLBMの構築 を行うことを目的とする.

まず, Körnerら (2005) およびThürey (2007) を参考に, N-S式に対応したLBMの自由表面追跡アルゴリズムを構

1	学生会員	條(T)	東北大学大学院	工学研究科	

2 正会員 博(工) 東北大学大学院准教授 工学研究科

図-1 LBMの2次元9速度格子モデル

築し,静水面への水滴の自由落下および水柱崩壊(ゲー ト急開流れ)の2つの典型的なベンチマーク問題において その妥当性を検証する.特に水柱崩壊現象ついては,崩 壊後の流れ先端部の到達位置と時間の関係について,既 往の実験データとの比較を通じて定量的に検証する.ま た,アクリル製実験水槽を用いて,ゲート急開により発 生する流れ場の再現実験を実施し,水面形の時間変化に ついて,高速デジタルカメラにより撮影した実験映像を 用いてLBMの精度を検証する.

2. 格子ボルツマン法

(1) 格子形状

本研究では格子形状に図-1の2次元9速度格子モデルを 用いる.仮想粒子の運動はこの格子によって9方向に制 限され、粒子の速度 e_i (i = 1, 2, ..., 9)は、それぞれ0(i= 1)、e (i = 2, 3, 4, 5)、 $\sqrt{2}e$ (i = 6, 7, 8, 9)となる.ここ で、 $e = \Delta x / \Delta t$ ($\Delta x, \Delta t$ はそれぞれ空間、時間の格子間 隔)である.

(2) 格子ボルツマン方程式

時刻*t*, 位置**x**で*i*方向の速度を持つ粒子分布関数*f_i*(**x**,*t*)の時間発展を式(1)の格子ボルツマン方程式により解く. 格子ボルツマン方程式は仮想粒子の並進と衝突の2つの過 程を表しており,並進過程において粒子は速度に応じた 方向の隣接する格子点へと移動し,衝突過程において粒 子分布が単一割合で局所平衡状態へ再配分される(格子 BGKモデル).

$$f_i(\mathbf{x} + \mathbf{e}_i \Delta t, t + \Delta t) = \left(1 - \frac{1}{\tau}\right) f_i(\mathbf{x}, t) + \frac{1}{\tau} f_i^{eq} \cdots (1)$$

ここで、 τ は単一時間緩和係数であり、 τ により流体の 平衡状態へ達する早さ(粘性)が決まる.流体の動粘性 係数vと式(2)のような関係が成り立っている.また f^{eq} は局所平衡状態における粒子分布関数(局所平衡分布関 数)であり、各セルの密度 $\rho = \Sigma_i f_i$ および流速 $\mathbf{u} = \Sigma_i e_i f_i / \rho$ から式(3)のように求められる.

$$f_i^{eq}(\mathbf{x}, t) = w_i \rho \left[1 - \frac{3}{2} (\mathbf{u})^2 + 3(\mathbf{e}_i \cdot \mathbf{u}) + \frac{9}{2} (\mathbf{e}_i \cdot \mathbf{u})^2 \right]$$
$$w_i = \begin{cases} 4/9 & (i = 1) \\ 1/9 & (i = 2, 3, 4, 5) & \cdots (3) \\ 1/36 & (i = 6, 7, 8, 9) \end{cases}$$

(3) 固定壁境界条件

a) bounce-back条件

壁面と隣接する流体セルにおいて,壁面から流体へ流 れる方向の粒子分布関数は式(1)では求めることがで きない.そこで,次のbounce-back条件を用いる.例えば 図-1において下部に壁面が存在する場合, f₄, f₈, f₉を求め る.bounce-back条件は粒子を壁面で180°跳ね返すもの で,次式で表される.壁面の隣のセルでは運動量が0に なり, no-slip条件の一種である.

$$f_4(\mathbf{x}, t + \Delta t) = f_5(\mathbf{x}, t)$$

$$f_8(\mathbf{x}, t + \Delta t) = f_7(\mathbf{x}, t)$$

$$f_9(\mathbf{x}, t + \Delta t) = f_6(\mathbf{x}, t)$$
(4)

b) mirror条件

一方, slip条件に対応する条件として, mirror条件があ る. mirror条件では粒子の壁面に垂直な速度成分の合計 は0となるが,壁面に平行な成分は保存される.粒子分 布関数は次式で表される.

$$f_{4}(\mathbf{x}, t + \Delta t) = f_{5}(\mathbf{x}, t)$$

$$f_{8}(\mathbf{x}, t + \Delta t) = f_{6}(\mathbf{x}, t)$$

$$f_{9}(\mathbf{x}, t + \Delta t) = f_{7}(\mathbf{x}, t)$$
(5)

図-2 LBMにおける自由表面の表現 (F:流体セル, IF:界面 セル, G:空隙セル)

3. 自由表面追跡アルゴリズム

(1) 3種類のセル

本研究では、Körnerら(2005)およびThürey(2007) に倣い、N-S式に対応したLBMの自由表面追跡アルゴリ ズムを構築した.VOF法(Hirt・Nichols, 1981)の類推 から、図-2のように各セル内の流体の充填率εに応じて その属性を空隙セル($\varepsilon = 0$),界面セル($0 < \varepsilon < 1$)およ び流体セル($\varepsilon = 1$)に分類する.流体セルは従来通り取 り扱い、間隙セルは計算では考慮しない.界面セルでは 後述する特別な操作を行ない、その界面セルの位置によ り自由表面を追跡する.

(2) 界面セルの境界条件

界面セルは空隙セルと隣り合っているため,空隙セル から流入する粒子分布関数を境界条件に基づき補完する 必要がある.粒子分布関数により表すと,次式のように なる.

$$f_{\tilde{i}}(\mathbf{x},t+\Delta t) = f_i^{eq}(\rho_A,\mathbf{u}) + f_{\tilde{i}}^{eq}(\rho_A,\mathbf{u}) - f_i(\mathbf{x},t) \quad \dots \quad (6)$$

ここで、界面において液体(流体セル)と空気(間隙 セル)の流速は等しいため、 ρ_A は空気の密度、uは界面セ ルでの流体の速度である、「界面では大気圧と圧力が釣り 合っている」という条件を界面での力の釣り合いを保つ ため、次式で求められる界面の傾きnを考慮し、n· $e_i > 0$ が成り立つ場合、粒子分布関数を補完する.添字 \tilde{i} はiと 逆方向であることを意味し、 $e_i = -e_i$ である.

ここで, x_m,は*m*行, *n*列のセルを表している. (3) **質量の計算**

充填率εは,各セル内の質量mと密度ρの比で表す.界 面セルにおける質量の変化量は,次式のように隣り合う セル同士の粒子分布関数のやりとりから求める.

$$\Delta m_i(\mathbf{x}, t) = \begin{cases} 0 & \\ f_{\tilde{i}}(\mathbf{x} + \mathbf{e}_i, t) - f_i(\mathbf{x}, t) \\ (f_{\tilde{i}}(\mathbf{x} + \mathbf{e}_i, t) - f_i(\mathbf{x}, t)) \frac{\epsilon(\mathbf{x} + \mathbf{e}_i, t) + \epsilon(\mathbf{x}, t)}{2} \\ \mathbf{x} + \mathbf{e}_i \in \begin{cases} G & \cdots (8) \\ F \\ IF \end{cases}$$

周囲の各セルとの質量の変化量を全方向に渡って足し 合わせることで,次ステップでの質量が求まる.

$$m(\mathbf{x}, t + \Delta t) = m(\mathbf{x}, t) + \sum_{i=1}^{9} \Delta m_i(\mathbf{x}, t) \dots (9)$$

(4) 界面セルの判定と変換

各セルの質量および密度の値から求めた流体の充填率 ϵ により,界面セルが「流体で満たされた $(1 < \epsilon)$ 」か「空 になった $(\epsilon < 0)$ 」かを判断し,セルの状態を変換する. ここで,界面セルが流体で満たされた $(1 < \epsilon)$,または空 になった $(\epsilon < 0)$ ということは,界面が隣のセルへ移動 したということを意味する.そのため,界面セルの変換 に伴い,周囲の流体セルまたは空隙セルが新たに界面セ ルに変換される.その際に界面セルにおいて生じる余分 な質量 (多く流入しすぎた分 $(1 < \epsilon)$ または,流出しす ぎた分 $(\epsilon < 0)$)は質量保存するように周囲のセルへ分配 する.このようにして界面セルを追跡することで自由表 面の位置を追跡する.

4. ベンチマーク問題による検証

(1) 静水面への水滴の自由落下

図-3のように、水滴が重力により落下し、静水面に衝突 する現象を2次元計算で再現した.計算パラメータは、表-1のように設定し、重力加速度は鉛直下向きにg=9.81m/s² とした.境界条件にはbounce-back条件(no-slip条件)を用 いた.水滴は重力により徐々に加速し、静水面に衝突する と水面が跳ね上げられる.その衝撃により水面は押し下げ られ、一方跳ね上げられた水面は、先端部が丸く分裂しな がら飛び出し、いわゆるミルク・クラウンを形成している. その後壁面で反射した水は中央へ集まり、水面が押し上げ られる.以上のように、衝撃により大きく変化する水面や 分裂して飛び散る水滴など、一連の水の挙動を精度良く再 現し得るといえる.

(2) 水柱の崩壊

図-4のように、左側1/4を水槽の半分の高さまで水で 満たした状態から、仕切り板を瞬時に取り除くことで、 水柱が崩壊する様子を2次元計算で再現した. Martin・ Moyce (1952)の実験と条件を合わせるため、四方の壁 面境界にはmirror条件 (slip条件)を用いた.計算パラメ ータは、表-2のように設定し、重力加速度g=9.81m/s²と した.図-4には、セル数80×80での結果を示す.

水柱が崩壊すると、勢いよく右側の壁面へ水塊が衝突 し、大きく跳ね上がる.その後水滴が分裂し飛び散り、

表-1 計算パラメータ:水滴の落下

grid resolution	Δx (m)	Δt (s)	τ
250 imes 250	0.002	$5 imes 10^{-5}$	0.51875

(0.1 m	t=0.19s	t=0.27s	t=0.30s
				times for
	0.2 m			1 C
0 F	0.5 11	t=0.42s	t=0.59s	t=0.69s
0.5 m	•		1	
	0.1 m			i l'i

図-3 ベンチマーク問題の検証:水滴の落下

図-4 ベンチマーク問題の検証: 水柱の崩壊 (Martin · Moyce, 1952)

空気を含みながら左側へ反射する波と落下する水塊とが 混ざり合い,複雑な挙動を呈する.定性的な評価は後述 するが,一連の水の動きを自然に表現できていることが 分かる.

さらに、水柱崩壊現象における水の先端到達距離と時 間の関係をMartin・Moyce(1952)の実験結果と比較し て詳細な検討を行った.格子サイズは固定し、80×80セ ルおよび160×160セルで計算を行なったところ、分解 能の違いから両者の解析結果に差異は現れたが、図-5の ようにどちらも実験結果とほぼ一致し、従来のCFDモデ ル同様に高精度で計算が可能であることが分かる.なお、 本ベンチマーク問題では実時間で2秒の計算を行ったと ころ、1時間ステップ当たりに要する計算時間は0.0600 秒(160×160セル)および0.0078秒(80×80セル)で あった.

5. ゲート急開流れの実験と再現計算

縦1m×横1m×奥行0.5mのアクリル製実験水槽(図-6) を用いて、ゲート急開により発生する流れ場の再現実験 を行なった。ゲートは空気圧により上に引き上げること で急開した。自由表面の時間的変化についてLBMの界面 追跡精度を検証するため、高速ビデオカメラで実験画像 を撮影した。LBMによる再現計算は表-3の計算パラメー タを用いて、250×250セルおよび2倍の分解能である 500×500セルの2ケースで行なった。ゲートの開く速度

表-2 計算パラメータ:水柱の崩壊

grid resolution	Δx (m)	Δt (s)	τ
80 imes 80	0.0014	$5 imes 10^{-5}$	0.51837
160×160	0.0014	$5 imes 10^{-5}$	0.51837

図-6 実験の諸元:ゲート急開流れ(A, B, C点は水位の出力点)

は十分に速く影響は小さいが、全開までの過渡的な現象 も完全に一致させるために、固定境界の位置をゲートの 動きに合わせて逐次変更することで工夫した.四方の壁 面およびゲートの境界条件にはmirror条件(slip条件)を 用いた.図-7および図-8に解析結果と実験結果の比較を 示す. 図-7は水槽内A, B, C点(図-6参照)における水位 の時間変化であり、図-8は水面形の時間変化である.実 験値は実験画像から目視により水面を抽出した.ゲート 急開後の過渡的な水面形,壁面での水の跳ね上がり,壁 面反射後の水面形がほぼ一致しており、今回のケースで はどちらも水の挙動の特徴を良く表していることが確認 できる.図-7から、ゲート急開直後は計算結果と実験結 果は両ケースともに良く一致していることが分かる. -方, t=1s付近では,壁面で跳ね上がった水塊が勢いよく 水面と混ざり合って細かな気泡が混入するようになり, 計算結果と実験結果は差異が大きくなる.2次元計算で あるということもあり、このように気泡と水とが激しく

表-3 計算パラメータ:ゲート急開流れ

grid resolution	Δx (m)	Δt (s)	τ
250×250	0.004	$5 imes 10^{-5}$	0.51875
500×500	0.002	$5 imes 10^{-5}$	0.51875

複雑に混ざり合う現象の完全な再現は難しい. また, t = 1s付近からは分解能の違いによる差異も現れ始めるが, 空間分解能を細かくとった方がより実験値に近づく傾向 を確認できる.

6. 結論および今後の展開

本研究で得られた結論を以下に列挙する.

LBMの自由表面追跡アルゴリズムを構築し,水滴の自 由落下および水柱崩壊現象の2つのベンチマーク問題で 検証した.特に,水柱崩壊現象における水の先端到達距 離と時間の関係について,既往の実験結果と比較して詳 細な検討を行った.水先端の動きの解析結果は実験結果 とほぼ一致し,LBMが従来のCFDモデル同様に高精度 で計算が可能であることが示された.

さらに、ゲート急開流れによる自由表面の時間的変化 について、高速ビデオカメラで撮影した実験画像を用い てLBM解の検証を行った.ゲート急開後の過渡的な水面 形,壁面での水の跳ね上がり,壁面反射後の水面形がほ

図-8 ゲート急開流れの実験と再現計算の比較 (上段:250×250セル,中段:500×500セル, 下段:実験画像,白色の実線は水槽手前側壁面の水面をトレースしたもの)

ぼ一致することを確認した.

水塊が激しく混ざり合い細かな気泡が混入するような 場合には計算結果は実験値との差異が大きくなるが、空 間分解能を細かくとるとより実験値に近づく傾向を確認 できた.

今後は市街地の津波氾濫流の高度な解析の実現に向け てモデルの改良に取り組む予定である.津波遡上の流れ 場に対応した3次元問題への拡張に際しては,精度良く 自由表面を追跡することに加え,大規模計算を効率良く 行なうことが必要となる.LBMの計算スキームは完全な 陽的解法であることに加え,従来のN-S式の直接解法で 問題となる圧力項の計算が不要である.そのため,計算 効率では従来手法に対し強みを持っているといえる.よ り効率的な津波災害シミュレーションコードの構築に向 けて,最新のMulti-Core CPUやGPUを用いた効率的な並 列計算アルゴリズムの開発や,求められる計算精度に応 じて平面2次元(例えば,大家ら,2008)と3次元計算 を選択できる Hybrid計算法の開発が課題となる.

謝辞:本研究の一部は科学研究費補助金(挑戦的崩芽, 代表:越村俊一,課題番号:21651078),および独立行 政法人 原子力安全基盤機構(INES)の補助を受けて実 施された.ここに記して謝意を表する.

参考文献

- 大家隆行・越村俊一・荒木 健 (2008) :格子ボルツマン法に 基づく津波遡上シミュレーション手法の開発,海岸工学論 文集,第55巻,pp.221-225.
- 渡辺 正 (2006a) : 格子ボルツマン法 (1),ボルツマン方程式 から格子ボルツマン方程式へ,応用数理, Vol. 16, No. 1, pp. 31-35.
- 渡辺 正 (2006b) : 格子ボルツマン法 (2),ボルツマン方程式 からナビエ-ストークス方程式へ,応用数理, Vol. 16, No. 2, pp. 64-69.
- Chen, S. and G. D.Doolen (1998) : Lattice Boltzmann Method for fluid flows, Annual Review of Fluid Mechanics, 1998 Vol.30, pp. 329-364.
- Frandsen, J. B. (2008) : A 1-D Lattice Boltzmann model applied to tsunami runup onto a plane beach, Advances in coastal and ocean engineering, vol. 10, pp. 283-309.
- Hirt, C. W. and B. D. Nichols (1981) : Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, Journal of Computational Physics, Vol. 39, pp. 201-225.
- Körner, C., M. Thies, T. Hofmann, N. Thürey and U. Rüde (2005) : Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming, Journal of Statistical Physics, Vol. 121, (1-2), pp.179-196.
- Martin, J. C. and W. J. Moyce (1952) : An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane, Phil. Trans. R. Soc. Lond., A244, pp. 312-324.
- McNamara, G. R. and G. Zanetti (1988) : Use of the Boltzmann Equation to Simulate Lattice-Gas Automata, Physical Review Letters, 61, pp. 2332-2335.
- Qian, Y. H., D. d' Humieres and P. Lallemand (1992) : Lattice BGK Models for Navier-Stokes Equation, Europhysics Letters, 17(6), pp. 479-484.
- Thürey, N. (2007) : Physically based Animation of Free Surface Flows with the Lattice Boltzmann Method. University of Erlangen-Nuremberg, Phd-Thesis, 145p.
- Zhou, J. G. (2004) : Lattice Boltzmann Method for Shallow Water Flows, Springer, 112p.