太田川デルタにおける河川と沿岸帯水層での水循環

Water Circulation between Tidal River and Coastal Aquifer in Ota River Delta

駒井克昭¹•日比野忠史²•阿部徹³

Katsuaki KOMAI, Tadashi HIBINO and Toru ABE

The characteristic of water cycle across a tidal river and a coastal aquifer and the storage potential of Ota river delta were investigated from long-term observations and geological data. Tidal variations of water table and salinity in a deep aquifer were more prominent than those in a shallow aquifer. Subsurface water environment changes sharply in a surface layer of riverbeds where saline water infiltrates as a density flow. Groundwater recharges smoothly across riverbanks during typhoon's flooding, and the water storage potential of Ota River Delta was estimated to be 0.3 billion cubic meters.

1. はじめに

近年,地球温暖化に伴う局地的な集中豪雨が多発して おり,地表面からの雨水浸透が制限された都市部での内 水氾濫の危険性が高まっている.それでもなお都市中心 部においては地下街などの地下空間の高度利用が進んで いるため,現在では様々な面から流出を抑制して水害リ スクを軽減する総合的な治水対策が必要である.一方で, 沿岸域においては水質浄化や親水性の確保などの観点か ら干潟や藻場等の保全が求められており,低水期におけ る地下水循環と生態系にも配慮した水辺環境の形成技術 の確立が必要である.特に,陸と海の境界での水循環は 物質収支にとって重要なプロセスであり(Simmons, 1992; Moore, 1996;Burnettら, 2003),地域特性を加 味して沿岸域固有の地盤に蓄えられた地下水と河川水の 循環を保全することが望ましい.

広島市内を流れる太田川では洪水疎通能力の確保のた めに放水路が構築されており,河口から約10kmの地点 において放水路と旧太田川に分岐している(図-1). 旧太 田川はさらに市内派川と総称される5河川(天満川,本川, 元安川,京橋川,猿猴川)に分岐しており,海抜約5mの 祇園大橋付近から下流は太田川が作った三角州(太田川 デルタ)である. この太田川デルタの沿岸域においても 河川への地下水の流出入が汽水環境の形成にとって無視 できない可能性がある(駒井ら,2007)ことから,デルタ 沿岸域における地下貯留の有効性と水辺環境の整備を検 討するには,沿岸帯水層と河川水の水循環の実態を把握 する必要がある.

本論文では、まず太田川デルタにおける地下水位と水

1	Æ	会	員	博(工)広島大学助教 大学院工学研究科	
2	正	会	員	博(工)広島大学准教授 大学院工学研究科	
3	Æ	会	員	中国地方整備局太田川河川事務所	所長

質の長期観測データに基づいて,デルタ地盤の地質特性 と地下水構造の関係を検討した.次に,太田川感潮域に おける河川水と河床間隙水の塩分等の連続測定結果から, 河床地盤における塩分変動特性および河川水と地下水の 循環機構を明らかにした.最後に,台風接近に伴う出水 に対する地下水位応答特性を考察し,浅層地下水の貯留 能力の定量評価を試みた.

2. 河川と沿岸帯水層での水位・水質変動特性

河川水と地下水の境界における水交換は、流下方向の 水流に伴う河床および河岸での出入り、潮汐、波、貯水 池の湛水や排水、湿地などに繁茂する植生からの蒸発散 などによって生じている(例えば、Alleyら、2002)、デ

図-1 太田川感潮域における地形,地盤高と調査地点.地盤 高は標高100mまでを表示. 括弧内は観測井の地表面 からの深度.

図-2 地下水位観測地点 (St.1~3-2) における地質柱状図 (柱 状図の左の数字は地表面からの深度 (m)を示す)

ルタ沿岸域では潮汐の影響が重要と考えられるため、ま ず、デルタの地質特性と地下水位および水質の潮汐変動 と季節変動から太田川デルタの地下水構造について検討 する。

(1) 解析対象データ

広島市内には国土交通省中国地方整備局で管理されて いる4箇所の観測井(祇園:St.1,大芝:St.2,八丁堀1: St.3-1, 八丁堀2:St.3-2)があり, 毎時の地下水位が記録 されている.図-1は太田川デルタの河岸・海岸線,地盤 標高、および本論文で用いたデータの調査地点を示して いる、図-2は観測地点における地質柱状図を示している。 破線はストレーナの位置,下線付きの数字はストレーナ の幅を示しており、St.1~3-1では透水性が低い厚さ1m を超えるシルトあるいは粘土層より深い位置, St.3-2で はそれより浅い位置にストレーナが設けられている. 各 観測井では地下水位の他,2006~2007年にかけて水温と 塩分を10分毎に連続測定した。測定高はそれぞれ標高 -10m, -23m, -34m, および-15mである. また, 同時期 には上流域(St.4)と河口域(St.5)における河川水位(国土 交通省)および、上流域(St.6)と河口域(St.5)の水温・塩 分が観測されている.

(2) 河川と沿岸帯水層での水位・水質変動特性

図-3はデルタ沿岸の帯水層(St.1~3-2)での地下水位と 河川(St.4~6)での水位,および水質(塩分,水温)の変 動特性を示している.河川水位および地下水位は東京湾 平均海面を基準高としている.平均値,潮差(半日周期 変動成分の振幅),および年較差(年周期変動成分の振幅) は2003/1/1~2005/12/31までの3年間の観測データを調和 分解することで求めた.また,塩分,水温についてはSt. 2以外は2006/9/15~2007/11/15, St.2は2007/7/12~2007/ 11/15での観測データを用いた.

河口水位(St.5)はM₂分潮の潮汐振幅が約1mあり、そ れが約12cmと約8cmの潮汐振幅となってSt.2と3-1まで伝 播している.一方,St.3-2では潮汐振幅がほとんど現れ ていないことから、シルト・粘土層より上の表層(約11

図-3 太田川デルタ地下(St.1~3-2)と河川(St.4~6)での水位・ 水質特性

図-4 St.7における河道断面と観測地点.1,2は大潮期,3,4は小潮期の満潮位と干潮位を示している.

m以上)が不圧帯水層であるために潮汐エネルギーが伝 播する過程で急減していることが考えられる. St.3-1と3-2では塩分が浸透し,標高の高いSt.2に比べて海水の影 響を強く受けている.平均水位の差は標高の違いが主な 原因であるが,St.3-1では同地点のSt.3-2に比べて水位が 約20cm低く保たれている.図-2に示すように,深度11m 以下にある透水性の低い粘土層が下部の帯水層を密閉し ていること,またそのシルト・粘土層が形成されている のはSt.1付近より下流側であること(建設省中国地方建 設局太田川工事事務所,1993)から,位置水頭の低い下 流域(海域)での水が連続した帯水層を通じて負の圧力水 頭を伝達し,約30mより深層の被圧帯水層の地下水位を 引き下げているものと考えられる.

以上のように、太田川デルタ中央部ではデルタ固有の 地盤特性によって深度約11~23mに存在するシルト・粘 土層の上下で異なる地下水構造が形成されている.

3. 河川表流水と河床間隙水の循環機構

太田川デルタ沿岸域では大潮期の潮差が約4mあるた

図-5 矢口第一(St.4)での河川流量推定値,広島地方気象台での降水量,および太田川放水路中流域(St.7)の低水路中央における 水位,河川水塩分と河床地盤内塩分

め、河岸の透水性によっては河道流量の変化を沿岸帯水 層が吸収する河岸貯留効果(bank storage effect, Freezeら, 1979)が非常に大きいと考えられる.また、太田川河口 には干潟地形が形成されていることから、干潟生物の棲 息環境形成のかぎとなる河道内と河床地盤内(hyporheic zone:河道内の水面下部および砂州や河岸の伏流部分) における水循環機構について現地観測結果から検討する.

(1) 現地観測

太田川放水路中流域(St.7,図-1参照)の河道断面は図 -4に示すように複断面形状を有しており,大潮干潮時に は低水路護岸前面に幅約30mの砂干潟が現れ,背面には タイドプールが形成される.図中の●印の地点(干潟最 先端部)において2007年8月25日~9月16日(観測①)と10 月3日~15日(観測②)の2度,水温・塩分計および水深計 を地中に設置し,干潟地盤内の塩分,水温の鉛直分布と 地下水位を連続測定した.データの測定間隔は10分,地 下水位の基準高さは河床面から-30cmとした.観測①で は河床面(図中でGLと記す)から-10cm, -15cm, -30cm, 観測②では-5cm, -10cm, -30cmで間隙水の水温・塩分 を測定した.河川水と間隙水の交流を考察するため,同 時に河床面直上の河川水の塩分・水温も測定している.

(2) 河川表流水と河床間隙水の循環機構

図-5は矢口第一(St.4)での河川流量(推定値),広島地 方気象台における降水量,および太田川放水路中流域 (St.7)の低水路干潟における河川水塩分(GL+0cm),お よび河床地盤内塩分を示している.ここに干出時のデー タは除かれている.なお、8月31日~9月2日と10月8日~ 9日にかけては広島地方気象台において10mm/h未満の降 雨が観測されており,St.4の河川流量が増加している.

観測①,②の両期間ともに河川水塩分は干潮付近で地 盤内塩分よりも低い状態になる.観測①の期間では,河 床面より水位が低下する大潮干潮時(8月31日~9月3日頃) にGL-15cm以上の地盤内で塩分が低下しており,河床面 からの低塩分水の浸透が示唆される.ただし,GL-30cm では河床面からの低塩分水の浸透の影響は小さく,最低 地下水位面より下に位置し,間隙水の流動が小さいこと が影響していると考えられる.また,9月3~4日頃に水 位低下が小さくなると塩分低下も小さくなる.一方,海 水遡上に伴って河川水塩分が上昇すると,速やかに地盤 内塩分は回復している.以上のことから,大潮干潮付近 で河床面付近に淡水が供給されることで河床面付近の地 盤内塩分が低下し,一方,高低潮時には河川水塩分が高 くなり,地盤内塩分が回復されるという水循環が形成さ れている.

観測②の期間には水位上昇時にGL-30cmの塩分が河川 水より低くなる時間が長くなり、河床面近傍(GL-10cmお よび-15cm)の塩分が期間①より高い.これは9月18日頃に 150m³/s規模の出水に伴って河床地盤内の塩分が低下した 後、河川流量(淡水流入)の減少と共に河川水塩分が高まっ たために河床面近傍で塩分が速やかに回復したのが原因 である.GL-30cmでは河床表面からの河川水浸透の影響 が小さいため、塩分が維持されたと考えられる.したがっ て、地盤内の水環境を安定的に維持するには河川と浅層 地下水の循環にも配慮することが重要と考えられる.

4. 出水に伴う地下水位変動と浅層地下水の貯留量

地下水利用の視点からは地盤内への貯留がメンテナン ス・フリーで自然環境への影響が小さいことや雨水浸透 によって再生可能であること等の利点がある.一方で, 適地選定の難しさや貯水効率の低さ,およびその容量の 見積りの難しさ等が技術的問題として挙げられる(例え ば, Tuinhof ら, 2002).本章では,デルタ地盤内での 出水に対する地下水位の応答特性を明らかし,地下水の 貯留能力を試算した.

図-6 2004年7月~9月における(a)海面気圧(A:台風10号, B:台風16号, C:台風18号), (b)河川水位と2日間降水量,および(c)地下水位

(1) 出水に伴う地下水位変動特性

2005年9月7日には台風14号(TY0514)が広島周辺を通 過し、矢口第一地点で推定約7,200m³/sの既往最大流量を 記録した.この時期を含めた2004~2005年における河川 水位と地下水位の関係について、主要4分潮を含めた13 分潮を考慮して調和分解し、天文潮成分を除いて検討し た.

図-6は2004年7~9月における(a)広島地方気象台での 海面気圧(SLP),(b)河川水位(RWL,St.4)と広島地方気 象台での2日間降水量,(c)地下水位(GWL)の毎時変動を 示している.図中の矢印の時期には瀬戸内海沿岸に甚大 な被害を及ぼした台風16号と18号を含む3つの台風が接 近している.台風10号接近時には2日間降水量が約 200mmに達し,St.3-1に比べてSt.3-2の地下水位が上昇し ていることから,St.3-2では潮汐よりも中間流出の影響 が卓越していると推測される.St.2も同様に中間流出の 影響が強く現れている.降水量は10号より少ないが最低 気圧が980hPaを下回った台風16号および18号の接近時に はSt.3-2に比べてSt.3-1が上昇しており,地表面からの浸 透よりも海面上昇に伴って河岸から浅い帯水層に効率的 に地下水が浸透したと考えられる.

図-7は2004~2005年における河川水位(St.4)の変動に 対するSt.2~3-2の地下水位の応答特性を示している. こ

地質分類	粒径	地質分類	粒径	
100 C	(mm)		(mm)	
表土	0.04	中砂	0.55	
粘土	0.025	砂	1.425	
泥	0.04	礫	3.375	
細砂	0.163	有機泥	0.04	

地質毎に用いた粒径の代表値

こでは潮汐成分は除去されており、グレーの記号は全デー タを示している.また、黒の記号は2005年台風14号接近 時、破線はその近似直線、黒矢印は水位上昇時、白抜き 矢印は水位低下時を示している.なお、14号接近前後の 2日間降水量は約160mmである.河川水位に対する地下 水位の上昇率はSt.2が最も大きい.St.2と3ではヒステリ シスループが大きく、地下水位のピークが河川水位のピー クから約4時間後に現われている.このことから、浅層 地下水には海面上昇に伴って河岸を通じて直接的に水が 供給されるが、シルト層以下の深層地下水には河岸から の供給は間接的で、中間流出の影響が遅れて現れること が推察される.

(2) 浅層地下水の貯留水量の推定

デルタの地質状況に関しては、広島市内で過去(1957 ~2002年)に井戸掘削された際の深度毎の地質データが

1219

表-2 二	上の空隙率,	保水率と有効空隙率(十木学会,	1999)
-------	--------	-----------------	-------

地 層	空隙率(%)	有効空隙率(%)
沖積礫層	35	25
沖積砂礫層	30	15~20
細礫層	35	15
砂層	35~40	30
泥粘土質層	45~50	15~20
泥層粘土層	50~70	5~10

図-8 太田川デルタの地表面から第1シルト層までの標高分布

図-9 出水(TY0514)による地下浸透・流出時間と流量

国交省水基本調査データにまとめられている. これらの データを用いて空間的に線形補間された地層データを緯 度・経度方向に0.01°間隔のメッシュ上に作成した. こ の際, 表-1のように簡易的に地質と代表的な粒径を対応 させ, 平均粒径が0.04mm以上を浅層地下水が出入りで きる貯留層とみなし, このメッシュデータから貯留層の 容積を算出した.

図-8は太田川デルタにおける地表面から第1シルト層 までの標高分布図を示している. 濃淡は標高,破線は等 高線(2.5mピッチ),実線は太田川河岸線,●はボーリ ングによる地質データの平面位置である.太田川デルタ の地表面から第1シルト層までの帯水層が存在するエリ アの水平面積は約6.4×10[°]m²であり,容積は1.2×10[°]m³ である.この帯水層の地質データから求めた粒径の平均 値は約0.8mmであることから,表-2を参考にして間隙水 の出入りが可能な有効空隙率を30%と仮定するとデルタ 地中には約3.6×10[°]m³の貯留水量がある. 図-9は台風14号に伴う出水による帯水層への浸透・流 出時間と浸透・流出流量の比較を示している. 台風14号 時には出水に伴う約50cm(St.3-2の実測値)の地下水面上 昇が約8時間で生じ約20日かけて出水前の水準に戻った ことから,これをデルタ帯水層での代表値として用いれ ばこのときの貯留水量は約9.6×10⁶m³と推算される.こ れは地下への総貯留水量の約3%に相当し,単位時間当 たりの浸透率(地表からの浸透分も含む)は約3.3×10²m³/ sである.このことから,適切な地下水管理の下で効率 的な貯留・地下浸透を行えばデルタ帯水層の貯留能力を 出水期の都市部の内水排除等に活かせると考えられる.

5. おわりに

本論文で得られた結論を以下に示す.

- 太田川デルタ中央部の浅い帯水層では潮汐は伝播せず、深い被圧帯水層では潮汐変動と海水の浸透が生じている等、深度約10mのシルト・粘土層の上下で異なる地下水特性を有している。
- 2) 大潮干潮期には低塩分水の河床地盤内への浸透が顕 著になり、季節的な河川流量の増大が河床面付近への 浸透水の塩分濃度を低下させている.一方、河床面下 30cmでは河川水の浸透の影響が小さく、地盤内の水 環境を安定的に維持するには河川と浅層地下水の循環 にも配慮することが重要である.
- 3)海面上昇の顕著な台風接近時には浅層への地下浸透 が速やかに行われる.太田川デルタにおける浅層地下 水の貯留水量は約3.6×10⁶m³に相当すると考えられる.

参考文献

- 建設省中国地方建設局太田川工事事務所(1993):太田川史, 283p.
- 駒井克昭・日比野忠史・水野雅光(2007):河川感潮域におけ る淡水流入量の推定,海岸工学論文集,第54巻,pp.976-980.
- 土木学会編(1999):水理公式集, 713p.
- Alley, W., M., R. W. Healy, J. W. LaBaugh, and T. E. Reilly (2002): Flow and Storage in Groundwater Systems, Science, Vol.294, pp.1985-1990.
- Burnett, W. C., H. Bokuniewicz, M. Huettel, W. S. Moore, and M. Taniguchi (2003): Groundwater and pore water inputs to the coastal zone, Biogeochemistry, Vol.66, pp.3-33.
- Freeze, R. A. and J. A. Cherry (1979): Groundwater, Prentice Hall, pp.225-227.
- Moore, W. S. (1996): Large groundwater inputs to coastal waters revealed by 226Ra enrichments, Nature, Vol.380, pp.612-614.
- Simmons, G. M. Jr (1992): Importance of submarine groundwater discharge (SHWD) and seawater cycling to material flux across sediment/water interfaces in marine environments, Marine Ecology Progress Series, Vol.84, pp.173-184.
- Tuinhof, A. and J. P. Heederik (2002): Management of aquifer recharge and subsurface storage—Making better use of our largest reservoir, Netherlands National Committee-International Association of Hydrogeologists.