ブシネスクモデルを活用した高精度港内静穏度解析法の提案

Harbor Tranquility Analysis Method for using Boussinesq-typ.Nonlinear Wave Transformation Model

平山克也1

Katsuya HIRAYAMA

A Boussinesq-typ.wave transformation model which can calculate shoaling and breaking of nonlinear waves has been applied to the estimation of harbor tranquility. However, in a conventional procedure of harbor tranquility analysis, the nonlinearity of harbor waves is ignored because it is based on linear theory. In this paper, a new procedure of harbor tranquility analysis is proposed in order to consider the nonlinearity of harbor waves calculated by using the Boussinesq-typ.wave transformation model. The applicability of the new analysis method of harbor tranquility is demonstrated in two harbors where some storm waves penetrate to a reef, while the wave heights and spectra in front of wharves on complex bathymetry are calculated with good accuracy.

1. はじめに

近年,港内静穏度解析の実務において,港内波高比を 算定するために,港内外で生じる複雑な波浪変形を一度 に考慮できるブシネスクモデルを適用する事例が多くみ られるようになっている.これにより,港外にエネルギー 平衡方程式,港内に高山法を用いる従来の線形な波浪変 形計算に比べ,波の非線形性による波高変化も考慮した より精緻な港内波高比を算定できるようになった.

港内波高比は、沖波の波浪出現頻度分布を港内各地点 の波浪出現頻度分布に変換する際に用いられる.このと き、線形理論に基づく従来の港内静穏度解析法では、波 浪変形計算を行う各代表波の諸元として、波向き、周期 は数種類設定するが、波高は一通り(例えば波高1m)で 代表することが一般的である(便宜のため、本研究では これを"一般的な方法"と呼ぶことがある).これは、 線形理論では沖波の波高レベルによる港内波高比の変化 を考慮できないためである.しかし、このような近似を 容認してうまく利用することにより、波浪変形計算のケー ス数を少なく抑え、港内波高比に基づく港内波浪出現頻 度分布の推定を容易にしていることもまた事実である.

本研究では、この一般的な方法を改良し、実務上の利 便性を極力損なうことなく、上述のブシネスクモデルの 利点を活用できる新しい高精度港内静穏度解析法を提案 する.またエネルギー平衡方程式や高山法に比べ、短周 期波に対する計算精度が劣化しやすいというブシネスク モデルの欠点についても触れ、港内静穏度解析の実務に 適用する際の留意点やその対処方法についても言及する.

2. ブシネスクモデルによる港内波高分布の計算精度

1正会員博(工)(独法)港湾空港技術研究所海洋・水工部

(1) 対象としたブシネスクモデル

本研究で提案する高精度港内静穏度解析法では,透水 層を用いた任意反射境界処理法に加え,段波によるエネ ルギー損失を適用した乱流モデルに基づく砕波減衰計算 法,ならびに引き波時に海底面が露出することも許容す る遡上計算法を備えたブシネスクモデル(平山・平石, 2005)を用いた.これは,港内外に浅瀬や珊瑚礁が広が り,航路や泊地とともに複雑な海底地形を形成している 港湾への適用を想定したためである.なお,遡上モデル を有さないブシネスクモデルを用いた場合には,計算の 発散を防ぐために設ける最小水深以深で生じる屈折,浅 水,砕波変形を考慮した荷役稼働率が算定される.

(2) 那覇港内波浪観測結果(台風0514号)の再現計算

本研究に適用したブシネスクモデルの計算精度を確認 するために,港内外に浅瀬や珊瑚礁が広がる沖縄県那覇 港で観測された波浪データのうち,観測期間中に来襲し た台風0514号による擾乱時の周波数スペクトル(風波・

図-1 那覇港の海底地形と波浪観測地点

	年月日	時刻	NOWPHAS		St.1		St.2		St.3		St.4		St.5	
No			H _{1/3}	T _{1/3}										
			[m]	[s]										
1	2005.9.5	10:50	-	-	3.68	9.84	2.06	9.65	0.55	9.54	0.59	9.60	0.44	8.44
					(3.98)	(9.20)	(2.35)	(9.10)	(0.75)	(4.50)	(0.66)	(5.40)	(0.79)	(3.40)
2	2 2005.9.5	19:30	-	-	4.52	11.29	1.58	12.27	0.29	9.53	0.34	10.25	0.36	9.54
2					(4.86)	(10.90)	(1.90)	(11.70)	(0.51)	(3.60)	(0.45)	(4.30)	(0.55)	(3.70)
3	2005.9.5	20:10	-	-	5.25	11.87	1.48	11.42	0.30	8.75	0.37	10.21	0.42	10.55
					(5.54)	(11.80)	(1.65)	(9.90)	(0.48)	(3.50)	(0.49)	(4.20)	(0.58)	(4.30)
4	2005.9.5	20:50	1	-	4.68	11.00	1.82	11.55	0.35	9.40	0.38	10.33	0.38	10.96
					(4.79)	(10.70)	(2.05)	(10.30)	(0.53)	(3.50)	(0.50)	(4.10)	(0.56)	(3.90)
5	2005.9.5	16:50	-	-	2.89	11.45	1.12	10.00	0.24	10.76	0.33	10.09	0.28	10.89
					(3.06)	(11.00)	(1.20)	(8.80)	(0.38)	(3.80)	(0.37)	(4.90)	(0.38)	(4.20)
※ - は欠測を表す.また、()は全周波数成分を用いて算出される波浪諸元を表す.														

表−1 那覇港各地点で観測された有義波諸元(T 0514 号)

うねり,長周期波)を対象とした再現計算を行った.

a) 現地観測の概要

現地観測では、平成17年度の夏季1回(9/2 9:30~9/18 11:30)、冬季2回(12/28 9:50~1/12 11:30と1/21 8:30~2/6 11:30)、図-1に示す5地点(St.1~5)においてそれぞれ15 昼夜の連続観測(サンプリング間隔0.5s)が実施され、水 位と水平2成分流速を計測した.また潮位観測は那覇検 潮所で気象庁が実施している.さらに那覇港浦添地区及 び新港地区のそれぞれ陸上部では、10分間平均風向・風 速観測が行われている.

これらのうち、台風0514号の接近により那覇港周辺で 擾乱が生じた9/4 17時頃より9/6 22時頃までの期間で、 波浪の発達期,ピーク期,減衰期に当たる5時刻を選定 し、再現計算の対象とする波浪諸元として設定した。各 地点で観測されたこれらの擾乱による有義波高と有義波 周期を表-1に示す. またこのうち9/5 10:50に観測され た周波数スペクトルを図-2に示す.ここで、この期間に は少なくとも10m/sを超える平均風速が継続して観測さ れていたことから、港内のSt.3~St.5で観測された周波 数スペクトルのうち,0.2Hzより高周波数側でピークを なす成分は港内発生波であった可能性が高い。そこで表 -1では、ローパスフィルターにより周期5s未満を除去し て得た有義値を示した.これらと()内に示した全周波数 成分に対する有義波諸元を比較することにより、港内の 各地点では、むしろ港外(St.1, St.2)から伝播する波エ ネルギーのほうが支配的であったことがわかる.なお, 発達期に当たる9/5 10:50の潮位はD.L.=+1.65m, ピーク 時の20:10の潮位は朔望平均満潮位を上回るD.L.= +2.26mであった.

b) 風波・うねりに対する再現計算

風波・うねりに対する再現計算及び後述する港内静穏 度解析においては、計算容量や計算時間の制約、対象波 の起源、あるいは対象となる係留船舶の動揺特性を考慮 して、港内発生波と思われる短周期成分は無視し、周期 5s以上を対象とした差分条件Δx=5m、Δt=50msを設 定して実施した. このうち, 9/5 10:50(沖波:有義波高 5.6m, 有義波周期9.2s, 波向きNNW, Smax=25)に各地点 で観測された周波数スペクトル及び有義波高に対する再 現計算結果を図-3に示す. 港外のSt.1をはじめとした各 地点で,再現計算で得られた周波数スペクトルは,5s未 満の短周期帯でエネルギーが急激に低下し観測スペクト ルを再現できていない. これは,ブシネスクモデルが港 内発生波を考慮できないことに加えて,差分計算に伴う 数値分散により高周波数帯の波エネルギーが急激に減衰 したことが主な原因である. したがって,短周期波に対

図-3 周波数スペクトルと有義波高の再現計算結果 (9/5 10:50)

2005年9月5日 10:50~11:10

0.01 0.1 1 Frequency[Hz] 1 図-2 観測スペクトル(9/5 10:50)

St.1 St.2

St.3 St.4

発達期

10

0.1

0.001

0.0001

Spectrum [m2*s]

する荷役稼働率を算定する場合などには計算格子を十分 小さくとるなどの工夫が必要である。しかしこれらを除 けば、ブシネスクモデルを用いた波浪変形計算は、複雑 な海底地形を有する港内の波高分布を各地点の周波数ス ペクトルとともに非常に良好に再現できることがわかる. とくに後述する港内静穏度解析の観点からは、浦添ふ頭 地区を囲む内防波堤前面に広がる水深2m程度の浅瀬(図 -1:St.2の北西隣)により生じる、浦添口からの来襲波 (波向NNW)の屈折,浅水,砕波変形を考慮した計算が なされていることが極めて重要である。また、その他の 時刻における再現結果も概ね良好であったが、観測され た方向スペクトルの形状(主波向はすべてNNW)と実際 に入射境界で与える関数スペクトル形の違い(主に方向 関数)や潮位条件により, St.2, St.4において, 浦添口か ら港内に入射する波エネルギーに若干の違いが生じてい た.これらを踏まえ再現計算の観点からは、任意スペク トルによる多方向波の造波手法の開発や波による平均水 位上昇量を初期条件として与える前駆計算の必要性など が伺える。

c) 長周期波に対する再現計算

風波・うねりに対するものと同時刻の周波数スペクト ルから標準スペクトル(直線型,周期20s~300s)を推定し, これらを入射条件として長周期波に対する再現計算を実 施したところ、いずれの地点も観測スペクトル形状の特 徴を比較的よく再現できることを確認した. 少なくとも 自由長周期波を対象とした場合には、差分格子間隔及び 差分時間間隔を大きく設定でき、同じ港湾で風波・うね りを対象とした波浪変形計算を実施する場合に比べ、短 時間,低負荷での演算が可能である。このためブシネス クモデルの現地適用がいち早く進められてきた経緯があ るが、観測長周期波のうち港湾への入射成分をどう見積 もるかなどは未だ議論の分かれるところである.例えば, 図-3で示した周波数スペクトルの再現計算結果では20s 以上(0.05Hz以下)で観測された長周期波成分も比較的よ く再現していると言える、ところが計算で与えた入射ス ペクトルにはこのような長周期波成分は含まれていない. すなわち,風波・うねりに対する再現計算では,高々2 次の非線形干渉によって波群に拘束された長周期波成分 が防波堤での回折や浅瀬上の砕波などによって自由波と なり、港内や沖へ伝播する様子が計算されたものと思わ れた.ただし、図-3で示した観測スペクトルは20分間の 観測データを用いて解析されたものであるため、例えば 周期300sの長周期波は4波程度しか含まれておらず、必 ずしも十分なデータ長ではないことに注意を要する.

3. 高精度港内静穏度解析法の提案

線形理論に基づく従来の港内静穏度解析法では、港内

表-2 高精度港内静穏度解析法の手順(一般的な手法との比較)

手順	線形理論に基づく従来の港内静穏度解析法	高精度港内静穏度解析法								
	港外における波向き別波浪出現頻度表を作成する									
U	(波浪観測あるいは波浪推算データの統計処理)									
	港外波浪出現頻度を代表する入射波を複数設定する									
	(波高1種類:通常1m)	(波高2~3種類)								
۵	(周期3~6種類)									
	(波向5~9種類)									
0	各代表波について港外に対する港内波高比を算定する									
	(高山法(一部、ブシネスク方程式法))	(プシネスク方程式法(Ver5.2))								
	対象岸壁前面の港内波	対象岸壁前面の港内波高出現頻度表を作成する								
4	(波向毎に入射波周期に対する 港内波高比の変化近似曲線を設定)	(波向毎に入射波高・周期に対する 港内波高比の変化近似曲面を設定) ⇒ (波高比の曲面補間法の提案)								
	(沖波波浪出現頻度に対応する港内波高比を乗じ,港内波高出現頻度を算定)									
	港内静穏度(狭義)および荷役稼働率を算定する									
5	(対象岸壁前面の波高が荷役限界波高を下回る比率を算定)									
- F	(従来法および標準解析法を用いて、2通りの荷役稼働率を算定)									

波高比は入射波高に依存しないと仮定し,海底地形の変 化に伴う港内での屈折・浅水・砕波変形を考慮しない算 定法(例えば高山法など)によって港内波高分布を算定す る.この場合には,港内波高比分布はある入射波向・周 期に対してただ一通りに決まる.一方,波の非線形化に 加え,港内外で生じる複雑な波浪変形を同時に算定でき るブシネスクモデルを適用した場合には,例えば,入射 波高1m及び4mに対して算定される港内波高分布の違い を,忠実に表現することが可能である.そこで,このよ うなブシネスクモデルの利点を十分に活用するために, 表-2に示すような高精度港内静穏度解析法を提案する.

すなわち本研究で提案する新たな手法では、ある対象 地点(岸壁)において、波向毎に周期に加え波高に対する 波高比の変化特性を求め、沖波に対する港内波浪出現頻 度分布を算定する.そしてこれを可能とするために、入 射波高-入射波周期平面における波高比分布を推定する 曲面補間法を提案する.以下では、2つの具体的な港湾 を例に、対象岸壁における港内静穏度及び荷役稼働率を 算定し、従来の解析法による結果との違いを考察する.

(1) 沖縄県那覇港への適用例

那覇港浦添地区の港内静穏度解析においては、沖波波 浪出現頻度分布を勘案して港内波高比を算定する代表波 を、4周期(6s, 8s, 10s, 12s), 7波向(N~W~SW)に対 し従来のように波高一定(1m)とすることに加え、各波 向とも周期8s, 12sに対して波高4mを設定する.そして、 それぞれの入射波に対して港内波浪変形計算を実施し、 対象地点における港内波高比を算定する.

ここで一般的な静穏度解析法では、それぞれの代表波 (波高1m)に対して計算された港内波高比を直線で結び、 これに沖波波浪出現頻度分布を掛け合わせて各地点での 港内波浪出現頻度分布を得る。しかし補完直線が折れ線 となる場合には場合分けが必要なほか、ある周期、波向 に対する港内波高比は1通りであり、波高4mの代表波が 那覇港内の複雑な海底地形上で浅水・砕波変形すること による波高比の変化は考慮されない、そこで新たな静穏

(a) 周期による港内波高比の変化

度解析法では、沖波の波高、周期による港内波高比の変 化がそれぞれ2次曲線で近似できると仮定して、図-4に 示すような補完曲面を作成することを提案する.すなわ ち、周期の異なる複数の入射波に2種類の波高を設定し た場合には、それぞれの波高値に対して周期による港内 波高比変化の近似曲線を求め、それら2本の曲線間を内 挿または外挿する直線を引くことにより、波高-周期平 面において平面的に分布する港内波高比を得ることがで きる.なお、代表波諸元に3類以上の波高値を設定した 場合にはそれらを曲線で結ぶことも可能であるが、この 場合には2次曲面あるいは3次曲面で近似するほうが適切 と考えられる.この方法の詳細については次項で改めて 述べる.

さて、那覇港における港内波高比の曲面補間の具体的 な手順はおよそ次のようである.まず、4種類の周期に 対する波高比が得られている入射波高1mのものを対象 として、最小2乗法によりこれらを近似する2次曲線を求 める(図-4(a)の実線).つぎに、2種類の周期に対する波 高比しか得られていない入射波高4mのものに対して、 同様な近似2次曲線を引くことはできないため、ここで は先に求めた2次曲線のうち、放物線の尖鋭度を表す係 数aは入射波高4mの場合にも適用できるとして、2点よ り残りの係数bおよび係数cを決定する(図-4(a)の破線). そして、このようにして得た2つの曲線を最短で結ぶ1次 直線を引くと、波高-周期平面上に連続的に分布する、 港内波高比のコンター図を描くことができる(図-4(b)).

図-5 荷役稼働率の比較

一方,波向に対する補間は、線形理論に基づく一般的 な方法,ブシネスクモデルに対応した新たな方法ともに, 各波向で同一の波高,周期に対応する波高比を線形補間 して行った.このようにして得た沖波の波高,周期,波 向に対する港内波高比に沖波波浪出現頻度分布を乗じる ことにより,各対象地点における2種類の港内波浪出現 分布がそれぞれ算定される.

ここで、荷役稼働率の算定方法について述べる.「港 内長周期波影響評価マニュアル」(2004)において定義さ れる「従来法」では、対象岸壁に対して一定の荷役限界 波高(0.5mなど)を設定し、これに対する波高の未超過 出現率を荷役稼働率とする.このようにして算定した各 岸壁の荷役稼働率を示すと、それぞれ図-5(a)のようで あった.一方、「標準解析法」では、対象岸壁への入射 波向と周期による係留船舶の動揺量を考慮した荷役限界 波高を、船種・船型毎に設定して荷役稼働率を算定する. これを用いて算定した2種類の港内波浪出現頻度分布に 対する各岸壁の荷役稼働率は、それぞれ図-5(b)のよう であった.

いずれの荷役稼動率算定法においても、沖波の波高レ ベルによる港内波高比の違いを考慮した高精度解析法で は、那覇港内の浅瀬や珊瑚礁による高波浪時の砕波減衰 効果により各岸壁ともに荷役稼働率が従来よりも高く算 定され、港内の静穏性確保のために珊瑚礁の果たす役割 が大きいことが示唆されるなど、一般的な方法に比べ、 より精緻な港内静穏度が算定されることが確認できる.

なお長周期波に対する港内静穏度及び荷役稼働率は, 各波向で周期20s~300sの標準スペクトルが港内に伝播 したときの波高比を算定して求められるが,波長が長く 波形勾配が非常に小さな長周期波で,入射波高による浅 水・砕波変形の違いが問題となることは少ないであろう.

(2) 沖縄県S港

沖縄県S港は急勾配斜面を有する外洋に面し、沖に遮 蔽域が見当たらないため沖波は港外のあらゆる方向から 来襲する.また港内は珊瑚礁が広がり、航路はこれらを 一部開削して設けられている.そのため沖波諸元は多様 で、港内では入射波の波向、波形勾配等に応じて複雑な 波浪変形が生じることが予想される.そこで港内波高比 を算定する代表波は、4周期(6s, 8s, 10s, 12s)、9波向 (E~N~W)、3波高(1m:全周期, 2m:6-8s, 3m:8-10s) とし、それぞれの入射波に対して港内波浪変形計算を実 施(ただし極端に来襲頻度が少ないWNW~NNWは一部 省略)して、対象地点における港内波高比を算定した.

ここで,前項で行ったのと同様に,各波向において周 期に対する港内波高比の変化を最小2乗法により2次曲線 で近似するが,今回は異なる3種類の入射波高に対する 波高比の変化も2次曲線で近似する.ただし各波高での 周期による波高比の変化,あるいは各周期での波高によ る波高比の変化がすべて得られているわけではないので, それぞれの2次曲線の先鋭度を他の周期,波高での波高 比変化に当てはめる等により,波高-周期平面に分布す る港内波高比を補完的に求めることとした.

例えば、周期軸及び波高軸上のそれぞれ3本の2次曲線 から格子点上の3×3=9点の港内波高比を得ると、これ らを通る補間2次曲面が次式により与えられる(島田, 2000).ここで、r₀は格子点上の位置ベクトルである.

$$\vec{r} = \sum_{ij} k_{ij} \vec{r}_{ij} \tag{1}$$

$$k_{ij} = f_i(u)f_j(v)$$

$$f_1 = (1-t)(1-2t)$$

$$f_2 = 4t(1-t)$$

$$f_3 = -t(1-2t)$$

(2)

また,周期軸及び波高軸上のそれぞれ4本の2次曲線から格子点上の4×4=16点の港内波高比を得ると,これらを通る補間3次曲面が式(1)に対し次式により与えられる.

$$k_{ij} = f_i(u)f_j(v)$$

$$f_1 = (1/2)(1-t)(1-3t)(2-3t)$$

$$f_2 = (9/2)t(1-t)(2-3t)$$

$$f_3 = -(9/2)t(1-t)(1-3t)$$

$$f_3 = (1/2)t(1-3t)(2-3t)$$

(3)

このようにして得たS港岸壁における港内波高比の補間3次曲面の例を図-6に示す.ただし今回の場合,各格子点上の波高比は2次曲線から補完的に求められているので,実際にはほぼ2次曲面に等しいと考えられる.

波向に対する補間,及び港内波浪出現頻度分布の算定 は前項と同様にして行い,従来法及び標準解析法により

S港岸壁の荷役稼働率を算定したところ,入射波高によ る波高比変化を考慮したことにより,いずれも港内静穏 度が高く算定された.これは港内に広がる珊瑚礁による 砕波減衰効果を考慮したためと考えられるが,低潮位時 には岸壁前面の浅瀬で平常波浪が浅水変形して波高比が 増加する計算結果が別途得られており,この場合には逆 に静穏度が低下することがあるため,注意が必要である.

4. おわりに

本研究では、リーフ上の砕波・遡上計算が可能なブシ ネスクモデルを対象として、その計算精度を現地観測デー タによって検証するとともに、入射波高による波高比変 化を考慮できるよう補間曲面を導入して港内静穏度解析 法を改良し、2つの具体的な港湾を例に、港内静穏度及 び荷役稼働率を高精度に算定する手法を提案した。

謝辞:(株)日本港湾コンサルタントの山賀博氏,田中和 広氏には,代表波の波浪変形計算にかかる演算作業と入 射波向に対する港内波高比の補間作業をご担当いただい た.この場をお借りして,心から謝意を表します.

参考文献

- 財団法人沿岸技術研究センター(2004):港内長周期波影響評 価マニュアル,港内長周期波影響評価マニュアル検討委 員会.
- 島田静雄(2000):CAD・CGのための基礎数学, インターネット時代の数学シリーズ⑦, 共立出版, 232p.
- 平山克也・平石哲也(2005):平面2次元ブシネスクモデルに よる砕波・遡上計算法の開発と現地適用,海工論文集, 第52巻, pp.11-15.