津波による海岸被害の予測方法の改良

Improvement of Prediction Method of Coastal Damage due to Tsunami

山本吉道1・ウィブール ウッチャン2・有川太郎3

Yoshimichi YAMAMOTO, Wibool WUTTHIYAN and Tarou ARIKAWA

The following improvements on tsunami damage predicting are examined in order to decrease the tsunami damage: 1) It is checked that the destructive evaluation of buildings of a wide area due to tsunami can be efficiently performed with the numerical model which can calculate a flood of only land area with good accuracy and the gate type Rahmen model. 2) The limit of inundation height that human-beings can stand up to tsunami is obtained using data of a large-scale model experiment. This limit is determined by a slide and changes in the range of 20cm - 40cm with sex and height. 3) When the overflow of tsunami occurs on the land area of a steep slope, a strong back-flow will occur. Therefore, a calculating method which can be used for the stable examination against it is also proposed.

1. はじめに

巨大津波の発生を現在の科学技術で止めることは無理 であるが、どのような被害が発生するかを正確に予測で きれば、その被害を最小に押さえることが可能になる. 本研究では、(1)広い浸水域の効率良い構造物被害評価 法、(2)津波に対する人体の安定限界の評価法、(3)壁体 の安定検討で見落としがちな津波の戻り流れの評価法を 提案する.

2. 陸域だけの浸水予測計算法

(1) 津波浸水予測モデル

a) 数値モデルの基本構造

津波の伝播計算は、地震情報を基に震源地から行うこ とが自然であり、すでに複数のモデルが発表されている. 本予測モデルの開発では、陸域での津波防災対策のため に、陸域の構造物条件等を各種変えて比較・検討する場 合を想定しており、震源地からの伝播計算より対象海岸 線上での津波高分布の経時変化を予め求めておき、この 津波高分布を式(4)に代入して求まる線流量を海岸線か ら入力させ、陸域だけの浸水計算を行えるようにして、 多数の比較シミュレーションが細かな格子で容易に出来 るように工夫した.

その基本式を次に示す. ここで, 2次元コントロール・ ボリューム内には,構造物などにより,浸水されない部 分が存在すると考えて,浸水面積比Sを考慮している. ただし,連続式の左辺第一項と二項は,本コントロール・ ボリューム内でのxとy方向への流入出量を考えているた め,面積比Sではなく,yとx方向に平行な辺の浸水部分

1フェロー	博(工)東海大学教授大学院理工学研究科
2	修(理)モンクット王工科大学講師土木工学科
3 正 会 員	博(工)(独)港湾空港技術研究所主任研究官

の割合 $f_t \ge f_t$ を用いている.

$$\frac{\partial f_y q_x}{\partial x} + \frac{\partial f_x q_y}{\partial y} + \frac{\partial S \eta}{\partial t} = 0$$
(1)

$$\frac{\partial q_x}{\partial t} + \frac{1}{S} \frac{\partial}{\partial x} \left(\frac{Sq_x^2}{d} \right) + \frac{1}{S} \frac{\partial}{\partial y} \left(\frac{Sq_x q_y}{d} \right) + gd \frac{\partial \eta}{\partial x} - \frac{1}{S} \frac{\partial}{\partial x}$$
(2)
$$\left[dv_t S \frac{\partial (q_x/d)}{\partial x} \right] - \frac{1}{S} \frac{\partial}{\partial y} \left[dv_t S \frac{\partial (q_x/d)}{\partial y} \right] + \frac{f_c}{d^2} Qq_x = 0$$

$$\frac{\partial q_y}{\partial t} + \frac{1}{S} \frac{\partial}{\partial x} \left(\frac{Sq_y q_x}{d} \right) + \frac{1}{S} \frac{\partial}{\partial y} \left(\frac{Sq_y^2}{d} \right) + gd \frac{\partial \eta}{\partial y} - \frac{1}{S} \frac{\partial}{\partial x}$$
(3)
$$\left[dv_t S \frac{\partial (q_y/d)}{\partial x} \right] - \frac{1}{S} \frac{\partial}{\partial y} \left[dv_t S \frac{\partial (q_y/d)}{\partial y} \right] + \frac{f_c}{d^2} Qq_y = 0$$

ここで、 $q_x \ge q_y$ は $x \ge y$ 方向の線流量、 η は水位、dは水深、gは重力加速度、 ν ,は浸水の渦動粘性係数、 f_c は構造物・樹木による抵抗係数で、栗城ら(1996)に従って設定する.

基本式はYamamoto (2006)に倣って差分化し, Crank-Nicholson 方法を用いて時間差分を行うため,計算時間 間隔 をC.F.L.安定条件によって決め,計算値が収束す るまで繰返し計算する.

b) 海岸線から流入する線流量の求め方

① 海岸線に位置する海岸堤防や浜崖の上の越流厚d。が 既知の場合,線流量q.は、高梨ら(2005)が本間の越流量 式を基に長波の水理模型実験より決定した式(4)から求 める:

$$q_x = 0.55 d_o \sqrt{g} d_o \tag{4}$$

② 海岸線に位置する壁に残った痕跡高Hと同位置の海岸堤防や浜崖の天端高hcが既知の場合,最大線流量は式 (5)から求められる:

$$q_{x\max} = 0.2 \left(H - hc \right) \sqrt{g \left(H - hc \right)}$$
(5)

式(5)は、次のようにして得られた.壁に遮られる津波 の位置エネルギーが、堤防を越流する場合の位置エネル ギーと運動エネルギーに等しいとおけば、

$$H = (d_o + h_c) + \frac{u^2}{2g}, \qquad u = Fr\sqrt{gd_o}$$
(6)

ここに, uは津波の入射流速で, Frはフルード数(既往 事例による参考値: Fr=1.0~1.6)である.式(6)から求 まるdoの式を式(4)に代入すれば式(5)の原型が得られ, 後述するKhaoLak海岸での検証計算から最適な係数を決 めると式(5)になる.

なお,水深dの河口部がある場合,河口部での平均水 面上の津波高d'は次式から求まる:

$$d' = (2H - d) / 3 \tag{7}$$

本式もエネルギー保存則による次式から求めた.

$$H = d' + \frac{u^2}{2g}, \qquad u = \sqrt{g(d+d')}$$
 (8)

河口部での実際の流速は,式(8)に河川流速を考慮する 必要があるが,ここでは津波エネルギーだけを考えてい る.

(2) 構造物倒壊判定法

浸水深から陸上構造物の被害を予測する方法について は、被災事例に基づく破壊程度と浸水深を経験的に結び つけた松富ら(1994)の研究がある.しかし、複雑な建築 物も、門型ラーメン要素に分解できるならば、ラーメン の柱が壊れば倒壊すること、その柱間隔などの寸法は窓 枠などの規格や人体寸法を基準に決められていることか ら、少数のパターン化された門型ラーメンの強度計算問 題に帰着できる.

2004年12月のインド洋津波による浸水被害を被ったタ イ国 KhaoLak 海岸で,主要な建築物のパターン化を行 うと,次のようになる.柱間隔が5mで,1階の高さが約 3mの2階建てコンクリート製建築物(主にホテルや別荘) が多数あった.柱は複鉄筋コンクリート断面で,1辺の 幅は20cm~40cm程度,断面鉄筋比は0.0365程度と見な せた.壁はブロックを積み上げて,表面をモルタルで被 覆した幅10cm~20cmのものが多かった.これらの情報 を基に,建築物の骨組みと荷重分布を,図-1に示すよう にモデル化した.ここで,津波力は飯塚ら(2000)の流体 力式から求め,流速のフルード数は1.1とする.この門 型ラーメンの海側柱の根元部での応力計算から,浸水深 に対して壊れないために必要な柱幅を求めると,図-2(a) のようになった(具体的な算定式は,Yamamotoら,2006 などを参照).壁体に対しても,無筋コンクリート断面 によるモデル化から、浸水深に対して壊れないために必要な壁厚さを求めると、図-2(b)のようになった.

図-1 KhaoLak海岸における代表的な建築物のモデル化

(3) 再現性検討事例

インド洋津波による KhaoLak 海岸の浸水被害に対し て、本評価法を適用する.まず、海岸線上の津波高の経 時変化は近隣海岸の潮位変化に相似であると仮定し、 KhaoLak 海岸に最も近い Kuraburi 観測所の潮位記録か ら図-3に示す最大津波高 (*Hmax*) に対する津波高 (*H*)の 経時変化を求めた.

図-3 KhaoLak海岸北端での潮位変化

次に、山本ら(2007)の既往調査結果から図-4に示す海 岸線上の津波の痕跡高と浸水域を求めた.そして、本図 の各地点A~Gの津波痕跡高を最大津波高と見なし、各 地点間の最大津波高にはこれらの内挿値を用い,その経 時変化は図-3に従うとして,時々刻々の線流量を式(5) から求めた.この線流量を海岸線上から流入させて, KhaoLak海岸の浸水計算を,浸水域がピークとなる50分 後まで行った.なお,海岸線上の初期の津波高は0mで なく,3m前後の値となるが,海岸線上の地盤高が3m程 度か,それ以上あるので,全海岸線上での初期の線流量 は0m²/sとなっている.

50分後の浸水深分布の計算結果を図-5に示す.地点A ~Gとa~cでの最大浸水深を計算結果から取り出し,図 -2(a),(b)にプロットして柱幅と壁厚の破壊限界値を求 め,対象地点の建築物の破壊程度を推定すると表-1の左 から第4列目と第5列目のようになった.表-1の実際の浸 水深と破壊状況(写真-1を参照)は,山本ら(2007)の既 往調査結果にタイ国Phang Nga県資料で追加・修正した

写真-1 KhaoLak海岸でのインド洋津波による被災状況 (2005) (アルファベットで示される対象位置は図-4の丸十字地点)

図-4 KhaoLak海岸での津波痕跡高(Hmax)と浸水境界

図-5 KhaoLak海岸での津波の浸水再現計算 (計算開始50分後:浸水ピーク時)

調	実際	実際の	計算	推定された	実際と
査	の	破壊状況	による	破壊状況	推定の
地	浸水		浸水		一致度
	深		深		
_A	4.0m	1 階の柱は幅	4.0m	実際とほと	0
<u> </u>	4.0m	20cm以上であった	4.0m	んど同じ破	0
С	5.0m	から、多くが残っ	4.8m	壊状況にな	0
D	4.5m	たが,壁は厚さ	4.8m	る	0
E	4.5m	20cm以下の箇所は	5.0m		0
		破壊された			
				実際と同じ	
F	6.5m	1階の壁は厚さ	6.5m	破壊状況と	0
		20cm以下であった		なる	
		から、簡単に破壊		幅30cm以下	
		された.幅25cm以		の柱は根元	
G	6.5m	下の柱も根元から	7.5m	から折れる	Δ
		折れるため,該当		ため, 実際よ	
		する家屋は全壊と		り,やや多い	
		なった		家屋が全壊	
				となる	
		家屋外壁は厚さ		家屋外壁に	
a	1.5m	20cm程度であった	0.5m	被害無し	0
		から,被害無し			
		幅 10cm のブロッ		実際と同じ	
b	1.Om	ク壁が転倒した	1.Om	破壊状況と	0
				なる	
		小型警備艇が漂		小型警備	
c	0.5m	着していた	0.5m	艇の移動限	0
				界	

表-1 建築構造物の被害状況の実際と計算による場合との比較

ものであり,破壊状況の実際と推定は比較的良く一致し ていると言える.

3. 人体に対する安定限界水深

有川ら(2006)が大規模水理模型実験から,成人男女 の津波に対する安定限界水深の目安を求めている.本研 究では,人体を図-6に示すようにモデル化し,国の統計 資料(AIST人体寸法データベース,1991~1992;文科省 平成17年度学校保健統計調査など)を基に,一人で避難 出来ると考えられる5歳から,成長がほぼ停止する17歳 までについて,男女別に,年齢ごとの平均身長に対する 比で人体の各部位の寸法を設定し,津波に対する男女別・ 身長別の安定限界水深の図-7を作成した.

図-6 人体の安定計算用のモデル

図-6に示す直立姿勢の人体へ,飯塚ら(2000)の流体 力式から求まる津波力が正面から作用した瞬間の安定計 算を行った.スペリの安定計算で必要になる地面と靴底 面との摩擦係数は,港湾空港技術研究所で行われた実物 大実験結果(有川ら,2006)を用いて平均値を求め,男 性の場合は0.350,女性の場合は0.195とした.ただし,被 験者が履いていた靴はゴム長靴であり,安定性の悪い靴 を履いた場合の限界水深は,より小さくなること,個人 間の筋力差は無視されていること,抵抗力は姿勢を低く すれば,より大きくなることに注意する必要がある.

図−7 津波に対する身長と安定限界浸水深の関係

4. 津波の戻り流れに対する護岸の安定検討法

写真-2は、観測部長さ20m,幅0.5m,高さ0.8mの二次 元造波水路に、細砂で1/15勾配の地形を造り、高さ15cm, 幅2cmのコンクリート製護岸を陸側地盤より4cm突出さ せて設置し、護岸から内陸40cm間は円盤型電磁流速計 を埋設するため、ベニヤ板で被覆し、さらに内陸部はア スファルト舗装を想定してアクリル板で被覆し、護岸前 面水深8cm、沖合一定部水深30.8cmで、波高17.5cm、周 期5.0sの長波を入射させたときの状況を示しており、入 射時に壊れなかった護岸が戻り流れ時に転倒した.

写真-2 天端4cm突出護岸での越流・戻り流れ状況

戻り流れ時は、図-8に示すように、護岸自重以外に抵 抗力となるものが無い場合が普通であるため、戻り流れ が少しでも大きくなると不安定になるから、戻り流れ時 の安定計算を本実験ケースに対して行うと、天端突出高 が0cmの場合の安全率は1を越えたが、突出高が4cmの場 合の安全率は1未満となった。

表-2 Patongビーチでの護岸の戻り流れに対する安定計算結果(寸法等の詳細は Yamamoto ら, 2006 を参照)

戻流れの	護岸の	地盤	戻流れ	戻流れ	陸側の	全主動	破壊	護岸	堤防の	抵抗	
浸水深	天端高	高	の流速	流体力	全静水圧	土圧	力	厚	重さ	カ	安全率
(m)	(m)	(m)	(m/s)	(N)	(N)	(N)	(N)	(m)	(N)	(N)	(-)
0.73	5.0	4.0	4.2	13454	112916	5643	132012	1.0	112700	67620	0.5

図-8 戻り流れ時の力の釣合い

すなわち,通常周期の高波ならば減衰して安全な海岸 でも,長周期の津波ならば減衰せずに押し寄せる可能性 は高く,一度越流が生じた場合,陸側地盤が急勾配であ ると,戻り流れが無視できない強さになって,入射時に 壊れなかった護岸が戻り流れ時に転倒する可能性を指摘 できる.インド洋津波のように,2波目の方が大きい場 合には,被害の増大に繋がるので,急勾配斜面での戻り 流れによる流体力の算定法を提案する.

流速の二乗に比例する流体力式を用いるならば,突出壁 が無い場合の戻り流速u,と水流厚さh,を求める必要がある. これらの値を求める算定式は,一様斜面上での水塊自重の 斜面方向成分と斜面上の摩擦抵抗力の釣合,および,斜面 上の打上げ高さと陸側の護岸近傍の対象位置間でのエネル ギー保存則から誘導でき,式(9),(10)のようになる.

$$u_r = \frac{\sqrt{2\sin\theta}}{f} \sqrt{gh_r} \quad (9) \quad h_r = \frac{\frac{1}{2}(R-Z)f}{\sin\theta + f} \quad (10)$$

ここで、 θ は陸側斜面の勾配角、fは地表面の摩擦係数 (ここでは0.05を用いた)、Zは陸側対象位置の地盤高、Rは打ち上げ高でFreeman & LeMehaute (1964)の式など が使える.

写真-2に示す模型セットで,沖側入射波高を15cm~ 19cm間で変化させ(護岸前面入射波高で7.9cm~10cm), コンクリート護岸に埋め込んだ水圧計によって単位幅当 りの戻り流れ力を計測すると, 1.4N/m~3.3N/mであっ た.式(9),(10)と飯塚ら(2000)の流体力式より計算する と,1.4N/m~3.7N/mであった.これより本算定法は有 効であると判断して,タイ国Phuket島Pantongビーチ北 端部のコンクリート・ブロック積上げ式護岸の転倒事例 に適用すると,**表-2**に示すように妥当な結果を得た.な お,地盤の内部摩擦角には28度,護岸底面の摩擦係数に は0.6を用いている.

5. 主要な結論

本研究における主要な結論は、以下の通りである. a)陸域だけの計算によって細かな格子の採用を可能に することと、建物などによる格子間での非浸水面積を考 慮することによって、計算精度の低下を防ぐように工夫 した本浸水計算モデルと、本格的な設計に依らなくても、 主要部材の寸法と強度の違いを簡易的であるが考慮でき る門型ラーメン・モデルを組み合わせれば、津波による 広域の一般構造物の破壊評価予測が、効率良くできるこ とを確認した.

b) 人間が津波に対して安定でいられる限界浸水深は、
図-7に示されるように、スベリで決定され、性別と身長によって異なってくるが、20cm~40cmの範囲にある.
c) 津波による越流が急な勾配の陸側地盤で生じた場合、強い戻り流れの発生が予想されるが、これによる安定検討に使える算定法を提案できた。

以上の評価法は,避難計画や施設防災計画の策定に資 することが期待される.なお,浸水計算結果の流速を用 いて,構造物の破壊評価を行う方が自然に思えるが,主 流となっている破壊関数が浸水深との関係で表されてい ること,目視水深や痕跡高による評価が容易であること から,本論文では浸水深から破壊評価を行った.

参考文献

- 有川太郎・大坪大輔・中野史丈・下迫健一郎・高橋重雄・今村 文彦・松富英夫(2006):遡上津波力に関する大規模実験, 海岸工学論文集,第53巻, pp.796-800.
- 飯塚秀則・松富英夫(2000):津波氾濫流の被害想定,海岸工学 論文集,第47巻, pp.381-385.
- 栗城稔,末次忠司,海野仁,田中義人,小林裕明(1996):氾 濫シミュレーションモデル・マニュアル(案),土木研究所 資料,第3400号,197p.
- 高梨弘晃・山本吉道(2005):高波や津波による海岸堤防・護岸 の破壊機構の解明と破堤限界値の平塚・茅ヶ崎海岸への適 用,東海大学紀要工学部,第45巻, No.2, pp.53-58.
- 松富英夫・首藤伸夫(1994): 津波の浸水深, 流速と家屋被害, 海岸工学論文集, 第41巻, pp.246-250.
- 文部科学省(2005):H17年度学校保健統計調査, 同ホームページ.
- 山本吉道・ウィブール ウッチャン・飯田邦彦・河合恭平(2007): 一般地理情報とインド洋津波被害資料を用いた津波被害の 広域推定法構築の試み,海洋開発論文集,第23巻, pp.81-86.

AIST(1993):人体寸法データベース1991-92, 同ホームページ.

- Freeman, J.C. and Mehaute, B.L. (1964) : Wave breakers on a beach and surges on a dry bed, Proc. ASCE, Vol.90, No. HY2, pp.187-216.
- Yamamoto, Y., H. Takanashi, S. Hettiarachchi and S.Samarawickr ama(2006) : Verification of the destruction mechanism of structures in Sri Lanka and Thailand due to the Indian ocean tsunami, Coastal Engineering Journal, Vol.48, No. 2, pp.117-145.
- Yamamoto, Y.(2006) : Design process of coastal facilities for disaster prevention, Proceedings of the School of Engineering, Tokai University, Series E, Vol.31, pp.11-19.