富山湾沿岸に災害をもたらした2008年2月冬季風浪の 予測と追算シミュレーション

Wave Forecast and Hindcast for Toyama Coastal Disasters on February 2008

間瀬 肇¹•安田誠宏²•Tracey H. Tom³•辻尾大樹⁴

Hajime MASE, Tomohiro YASUDA, Tracey H. TOM and Daiki TSUJIO

Severe coastal disasters were caused by high waves due to winter depression along the Toyama Coasts on February 2008. Hindcast simulations of wind and wave were carried out for the Hokuriku area by using the GFS-WRF-SWAN Wave Prediction System, and these results were found to be enough accurate compared with observed data. It was also confirmed that a real time wave prediction system using hourly analyzed atmospheric GPV is usable for the prediction of 'Yori-Mawari Wave' along the Toyama Coasts. The wave concentration along the breakwater of Fushiki Toyama Port due to refraction and diffraction due to unique topography called 'Aigame' was simulated, and the concentration location corresponded well to the damaged location estimated from the damage analysis of the breakwater.

1. はじめに

2008 年 2 月 23 日から 24 日にかけて発達した低気圧 の影響により,北陸沿岸において高波や暴風による被害 が相次いで発生した.富山県黒部市,入善町および朝日 町の下新川海岸において防潮堤が被災するとともに,打 上げ・越波による住居の破壊や浸水被害等が発生した. 富山湾沿岸でも漁港・港湾施設に基大な被害が生じた. 富山湾沿岸に被害をもたらした波浪は,通常より長い周 期を持つうねり性波浪であり,地元で「寄り回り波」と 呼ばれているものである.この寄り回り波は,日本海北 部の暴風域で発生し成長したうねりが長い距離を伝播し て富山湾へ到達するものであり,その発生の時間差から 天候が回復した頃に来襲したり,大波が発生する地域差 が顕著となる,警戒が難しい波浪である.

本研究では,富山湾沿岸に災害をもたらした 2008 年 2月下旬の冬季風浪の北陸沿岸および富山湾沿岸におけ る波浪シミュレーションを行うとともに,富山湾内の伏 木富山港で発生した防波堤滑動被災時の来襲波浪の空間 分布を解析する.

2. 寄り回り波の特性

畑田・山口 (1998) による寄り回り波の予測法につい ての研究の中で,以下のような特性が整理されている.

北海道東方海上に停滞した異常低気圧に伴う北〜北東
 方向の強風により、北海道西方海域で発達した高波浪

1 正 会 員 2 正 会 員	工博 博(工)	京都大学教授 防災研究所 京都大学助教 防災研究所
3		(株)サーフレジェンド
4 正 会 員	修(工)	パシフィックコンサルタンツ(株)

が、湾口が北~北東に向いた富山湾内にまでうねりと して伝わる.水深 1000m の等深線が海岸近くまで迫 り、海底洋谷が発達した富山湾特有の海底地形の影響 によって、湾内の一部地域に波高数 m,周期 10 数秒 の大波となって押し寄せる.

- ・寄り回り波の来襲に伴う沿岸部の被災は、大小あわせ て年平均で 2~3 回である.
- ・被害は,氷見,伏木・新湊,水橋・滑川・魚津,入善・ 朝日の4地域に集中している.
- ・冬型気圧配置となる 12 月および1月に被災回数が多く、5月、6月、7月には被災は記録されていない.
 ただし、9月と10月には台風に伴う発生例もある。

3. 波浪予測モデル

(1) GFS-WRF-SWAN 援用波浪推算システム

波浪シミュレーションには GFS-WRF-SWAN 援用波 浪推算システム(間瀬ら,2005; Tom ら,2007)を用いた. 追算期間は2008年2月20日から25日とした。まず、 NCEP (National Centers for Environmental Prediction)の全 球客観解析データ(FNL: Final Analysis)を用いて, SWAN (Simulating WAves Nearshore) により外部領域 (5°N~55°N, 120°E~175°E)の波浪シミュレーション を行い,内部領域に対する境界条件を作成した.次に, NCEPのデータを用いてメソ気象モデル WRF (Weather Research and Forecasting model) により内部領域 (36°N ~39°N, 135°E~140.5°E)の気象計算を計算格子間隔 5km で行い,1時間毎の風速の空間分布を求めた.そし て、その WRF 解析風データを入力条件とし、SWAN に より内部領域(36.5°N~38.5°N, 136.5°E~139°E)の波 浪追算シミュレーションを行った.水深データの格子間 隔は1分である.

(2) 毎時大気解析GPVを用いたリアルタイム波浪予測 システム

Tomら (2008) が開発している毎時大気解析 GPV を用 いたリアルタイム波浪予測システムを用い,波浪シミュ レーションを行った.

外部領域は、5°N~55°N, 120°E~175°Eの領域とし、 10 分間隔の海底地形データと0.5度毎の GFS (Global Forecast System) 風データを用いて SWAN (Simulating WAves Nearshore) により波浪計算を行い、内部領域に 対する境界条件を作成する.内部領域は、24°N~47°N, 126°E~149°Eの領域とし、2 分間隔の海底地形データ と毎時大気解析 GPV 風データを用いて SWAN により波 浪計算を行う.

(3) 回折を考慮した多方向不規則波の波浪変形計算モ デル

間瀬ら(1999)による波浪変形計算モデルを用いて,

防波堤が滑動被災を受けた伏木富山港周辺の波浪変形計 算を行った.計算格子間隔は10mとし,消波ブロック 被覆混成堤の反射率は0.5とした.波向きはNNEとNE の2ケースで計算した.

北陸沿岸における冬季風浪シミュレーション 結果および考察

(1) 気象場シミュレーション結果

図-1 に NCEP の全球客観解析データ (FNL) から抽出 した気圧および風データを、図-2 に気象庁の天気図を 示す.(a)図が 2008/2/23 21:00,(b)図が 2/24 9:00 のもの である.23 日に低気圧が日本海中部を発達しながら東 北東に進み、24 日に三陸沖に抜けた後停滞し、日本海 で南北方向の等圧線が密になって冬型の気圧配置が強まっ た様子が FNL データでもよく再現されており、本デー タを波浪追算シミュレーションに用いることの妥当性を

確認できた.

図-3 に WRF を用いて内部領域についてダウンスケー リングした気象場の解析結果を示す. (a)図の 2/23 9:00 時点では低気圧が日本海にあるために,等圧線は北陸沿岸に沿って東西方向になっており,風向は WSW ~ SW になっている. それが(b)図の 2/24 9:00 の時点では等圧

線が南北方向に変化し,風向は NNW で 20m/s を超える 強風が発生していたことが WRF による解析結果からわ かる.

(2) 被災時の波浪追算シミュレーション結果

図-4に北陸海域における波浪シミュレーション結果 を示す. 2/23 9:00 までは波浪はほとんど発達しておら ず, 有義波高 Hua は 1m 以下で, 波向は能登半島沖では W. 富山湾から新潟沿岸にかけては WSW であった. そ の後、風速の増大に伴って波浪が急激に発達し、2/23 21:00 には波向が全域的に NW になるとともに、沖合い での波高が 5m を超えるようになった. この時, 富山湾 内では波はまだ発達しておらず、2m程度であった.波 向はNに徐々に変化し、2/24 9:00 にはさらに波が発達 し,能登半島と佐渡島の間の沖合いで,波高が 6m 以上 になっている. 佐渡島北東を回折して高波浪が両津湾に 入り込む様子や、高波浪帯が上越地方から西方向へ、能 登半島の遮蔽域である富山湾に徐々に移っていった様子 もわかる. 富山湾における波向は NNE ~ NE で, 波高 は 3~4.5m に増大している. なお, この時間帯の伏木 富山港での観測値は約4mであった. 2/24 21:00 には徐々 に波高が小さくなり始めているが、波が高い状態が継続 している. このような追算結果の平面分布を元に、高波 浪が発生した地域やその時間帯を特定でき,災害解析に 資することができる.

図-5 に冬季風浪の追算結果 (hindcast) および予測結 果 (forecast) を示す. ただし,周期に関しては,計算結 果は1次のスペクトルモーメントから求めた平均周期, 観測値は時間波形から求めた有義波周期であり,一般的 に前者は後者より小さくなる. (a)図が輪島, (b)図が直江 津, (c)図が入善(田中)である.輪島および直江津の2地 点におけるナウファス観測結果 (observation)と比較す る.各点の位置は図-4 (a)に示した.

輪島および直江津について追算結果と観測結果を比較 したところ,有義波高,周期ともに再現性は非常に高く, 追算シミュレーション結果の信頼性は高いことがわかっ た.

入善にある田中海象観測所(北緯: 36度57分21秒, 東経:137度29分41秒,水深:12.77m)においては, 2月24日14時に有義波高の最大値が観測され, H_{is} = 6.62m, T_{is} =13.9sであった. \Box -5(c)に示した入善付近 での出力点は約1.2km沖側であり,田中観測所は沿岸 にある施設である.そのため,観測値には浅水変形や反 射の影響が入ったために、シミュレーション結果よりは やや大きめの値が観測されたと考えられる.輪島および 直江津の再現精度を考慮すると,入善沖での波浪も満足 できる精度で再現できたといえる.

(3) リアルタイム波浪予測結果

図-5 冬季風浪の追算結果,予測結果および観測結果

毎時大気 GPV を用いた予測結果(図中, fore で示した) については、いずれの地点においても、2月23日正午頃 からの波高の増大傾向の追随性がよく、2月24日10時 ~12時頃にピークに達する状況も予測できている.追 算結果および観測結果に比べて,波高と周期の最大値が 若干小さめに予測されているが、あらかじめその誤差を 考慮しておけば、寄り回り波発生のリアルタイム予測に 十分に活用できると考えられる.

5. 伏木富山港における波浪シミュレーション結 果および考察

(1) 伏木富山港周辺の海底地形

図-6に波浪変形計算に用いた伏木富山港周辺の深浅

図-6 伏木富山港周辺の深浅図(単位:m)

図-7 伏木富山港における波浪変形計算結果(波向NE)

図を示す.伏木富山港の東側の小矢部川および庄川河口 は、「あいがめ(藍瓶)」と呼ばれる海底谷が海岸近くま で迫った地形になっており、水深が非常に深い.伏木富 山港の西側および富山新港の沖では等水深線がほぼ平行 で,防波堤付近の水深は10~15m程度である.

(2) 波浪変形計算結果

図-7 に伏木富山港周辺の波浪変形計算結果を示す. あいがめで屈折した波浪が,西側の伏木富山港および東 側の奈呉の浦に収斂している様子が再現できている.滑 動被災した北防波堤前面における波浪については,被災 が著しかった東寄りの B 区間 (滑動量 1~12m)に波浪 が集中し, $H_{1,3}$ = 5.0~5.5m に増大する計算結果が得られ た.高山ら(2008)によると, 5.0~5.5m の波高が 8~12 時間来襲したと仮定した場合,被災防波堤のケーソンが 1~11m 程度滑動するという結果が得られており,被災 解析の観点から波浪計算結果の信頼性を確認できた.また,防波堤西寄りにおいても波高が増大して前面で $H_{\mu s}$ = 5.5m以上になっているが,これらの区間では,既往最大波高を更新した台風 0423 号来襲後に設計条件が見直され,重量の重い消波ブロックが用いられていたこともあって,防波堤は被災しなかった.

6. 結 論

2008年2月に富山湾沿岸に災害をもたらした冬季風浪 を数値解析することにより,北陸沿岸における波浪の時 系列変化および富山湾への高波の伝播状況の再現を行っ た.有義波高,周期ともに再現性は非常に高く,波浪追 算シミュレーション結果の信頼性は高いことがわかった.

波浪追算結果の平面分布の時系列変化を元に、高波浪 が発生した地域やその時間帯を特定でき、災害解析に資 することができた.また、寄り回り波発生のリアルタイ ム予測の可能性も示すことができた.さらに、「あいが め」で屈折した波浪が、西側の伏木富山港に収斂してい る様子を波浪変形シミュレーションで再現し、防波堤の 滑動を引き起こす波浪状況であったことを明らかにした.

波浪変形計算に用いた富山湾の水深データは、(独) 港湾空港技術研究所 海洋・水工部 波浪研究チームから ご提供いただいた.ここに謝意を表します.また本研究 は、第1著者の国土交通省建設技術研究開発助成、(財) 鹿島学術振興財団研究助成,第2著者の科学研究費若手 (B)(課題番号:20710143)による研究の一部であるこ とをここに付記し,感謝いたします.

参考文献

- 高山知司・辻尾大樹・安田誠宏 (2008): 消波ブロック被覆堤の被災事例に基づく滑動要因の検討,海岸工学論文集, 第 55巻 (印刷中).
- 畑田佳男・山口正隆(1998): 富山湾における特異波浪「寄り 回り波」の予測法に関する予備的検討,愛媛大学工学部 紀要,第17巻, pp.261-271.
- 間瀬 肇・木村雄一郎・Tracey H. Tom・小川和幸 (2005): GFS-WRF-SWAN 援用波浪推算システムの構築と検証, 海岸工学論文集,第52巻, pp.181-185.
- 間瀬 肇・高山知司・国富将嗣・三島豊秋 (1999): 波の回折 を考慮した多方向不規則波の変形計算モデルに関する研 究,土木学会論文集, No.628, II-48, pp.177-187.
- GFS: A medium range synoptic forecasting system developed and processed, NCEP, http://www.emc.ncep.noaa.gov/modelinfo
- SWAN: A numerical wave model for obtaining realistic estimates of wave parameters in coastal areas, lakes and estuaries from given wind-, bottom-, and current conditions, Delft University of Technology, http://fluidmechanics.tudelft.nl/swan/default.htm
- Tracey H. Tom・間瀬 肇・勝井 伸悟・安田 誠宏・小川 和 幸(2006): ハリケーン・カトリーナによる高波の解析, 海岸工学論文集, 第53巻, pp.421-425.
- Tracey H. Tom・間瀬 肇・安田誠宏 (2008): 毎時大気解析 GPV を用いたリアルタイム波浪予測システムの開発とそ の検証,海岸工学論文集,第 55 巻 (印刷中).
- WRF: A mesoscale numerical weather prediction model, NCAR (the National Center for Atmospheric Research), http://wrf-model.org/