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UNSTEADY RADIAL FLOW OF OIL BEING DISCHARGED
FROM A SOURCE ON THE OCEAN

By Michael B. Abbott* and Taizo Hayashi**

SUMMARY

The problem considered is that of calculating the
uncoupled stratified flow associated with a suddenly
initiated and uniformly sustained source of mass
flux and/or energy flux. A solution is constructed
from critical flow conditions, providing maximum
discharge for given head, using the method of cha-
racteristics, and it is remarked that this solution
tends towards a steady state defined simply by con-
stant energy head. A trial calculation suggests that
this steady state solution can be employed for finite
time, to a good approximation. The approximate
solution then consists of a centred simple wave ext-
ending from the line r=r, where 7r, is the radius
at which the flow becomes critical for given mass
and energy flux, to a line 7/t=,/3 »/g(A=k,,
where 2 is a relative density of the oil and 4, is
the critical depth of the oil layer.

INTRODUCTION

The problem posed is the following : to compute
the plane radial flow caused by a suddenly initiated
and uniformly sustained source of mass flux andjor
energy flux. The application envisaged is that ofan
uncoupled surface layer of oil spreading over water.
This case may be realised immediately after the
holing of a tanker.

The equations employed are those of mass and
momentum {1,3] :
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where « and A are the velocity and depth in the
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surface layer, » is the radial distance from the
source, ¢ is time and 2 is the density of the surface
fluid as a fraction of the density of the lower fluid.
In the event that applications with mixing are env-
isaged, eq. (1) must be modified to the extent of a
mixing term on the right, while shear stresses (due
to wind or {friction) and Coriolis forces may be
added to the right of eq. (2). These terms then
simply modify the quasi-invariants of eqs. (1) and
(2) as outlined later.

By the use of eq. (1), eq. (2) can be written,
like eq. (1), in pseudo-conservation form :
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so that 3 } is the momentum flux

uh+
density (per unit span normal to the radii) as in
rectilinear flows. Equations (1) and (2),(3) are equ-
ivalent to the energy equation.

By the use of eq. (1), eq. (2) can also be written
in the form :
2 {huz . (1—x)h2}
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so that + } is the energy level and

2
;% +g(1—i)h} is the energy flux density per unit
mass or ‘‘energy head’’, again as in rectilinear flows.
All of these equations lead to characteristics defin-

ed by
R O TG Y SIS (5)

and quasi-invariants
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along =+ characteristics.

SOURCE CONDITIONS

We require a source condition whereby no info-
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rmation is fed back from the varying main flow
into the source, while one point information is fed,
from the source into the main flow. This condition
is attained if and only if the flow is critical at the
source, i.e. w,=4/g(1—A)h,» where the suffice 0
stands for a source condition. For any given mass
flux and energy flux this condition determines a
radius from which a computation of the flow can
be initiated, namely that radius r, for which

uy h,ry=constant=say «

U

2
so that r,=g(1—Da(8/2 A%
Inspection of the quasi-invariants in the hodograph

(u~24/g(1=2%) plane shows that the flow thus
initiated will be supercritical for all »>>r,.

+g(1—2h,=constant=say £

FRONT CONDITIONS

As a front condition we take the coincidence of
C, and .C_ characteristics, as corresponds to a zero
fluid depth. Such a front is sometimes called a ““St.
Venant Front”, and is still used in certain compu-
tations. However, as it leads to an infinite Froude
number at the front, we doubt whether it can ever
develop fuyll without the prior intervention of in-
stability. This notwithstanding, the solution may still
be useful as a first approximation to a physically
realistic flow (e.g. [1,2])

CONSTRUCTION OF THE SOLUTION

We first remark that, for points sufficiently close
to r,, the flow behaves initially as a rectilinear
flow. The solution is therefore the usual centred
wave solution of rectilinear flow (e.g. [3] p. 102).
The points of the initial solution are determined in
the hodograph plane by the line

ut+2,/g(I=Dh=1,+24/g(1 =Dk,
and the slopes of the corresponding C.. characteri-
stics. This determination is illustrated by points 4,,
B,,C,, etc. in the example illustrated, for

wy= o/ g(1—Dh,=1m/s

at 7,=2m
in Figs. 1 and 2.

From the points of the initial solution, the subse-
quent solution is constructed by the graphical method
of quasi-invariants as illustrated in Figs. 1 and 2.
It is seen that the unsteady state solution in the
limit, t—»loo,tends‘ towards a steady state solution
defined simply by the condition that the mass flux
and energy flux density should be constant through
successive anulli. The front is then seen to start
with a celerity of #,-+24/3(1—2A)h, and to approach,

R
Gt g(1=Dh, -

Now it is observed from the hodograph character-

asymptotically, a celerity of \/

istics that the system tends ratherrapidly to the lim-
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Fig. 1
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Fig. 3
This observation suggests that,

iting steady case.
although this limiting steady case corresponds pro-
<

perly only to =0, it could be used as a ‘‘quasi-

steady” approximation for fiinte £z, In this case
the solution would again consist of a centred simple

wave with C_ celerities defining the flow values on

u® o
g Dhy ="

~24/gd=D7% plane.
In order to facilitate comparison of the quasi-

the curve +g(A—Dh, in the =

steady radial solution and the rectilinear solution,
they have been plotted non-dimensionally in Fig. 3.
In this figure we have introduced a static head A,
defined by 2\/g(1—1)/zp=uo+2«/g(l-l)ho as corres-
ponds to the still water level upstream from the

critical flow in the rectilinear case. In the case of
radial flow, of course, this head has no correspond-
ing physical significance, although it can be calcu-
lated from the same formula.

We remark that in the event of mixing or energy
diffusion by friction, Coriolis acceleration, etc., the
computation remains identical except for the inclu-
sion of additional terms under the time integrals in
eq. (6). The present solution then forms the limit-

ing case of all such flows.

CONCLUSIONS

A radial flow analagous to the rectilinear St.
Venant flow can be easily constructed using the
method of characteristics. The flow front has celerity
24/m at t=0, tending asymptotically to /3
*Vg(A—=Dh, at t=oo. A trial computation suggests
that the solution rapidly approaches the steady state,
properly corresponding to £=wco, so that the steady
state can be employed approximately for finite £ In
the resulting approximation the solution forms a
centerd simple wave defined by a constant total
head, but at the same time quite close to the centred
simple wave of rectilinear low with constant Riemann
invariant. However instead of a front defined for
all ¢ by 7/t=24g(I—Dh, we now have one defined
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by r/t= /3 /gA—0h, for all ¢
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