CHAPTER VI

SUSPENSION BRIDGES

99. SUSPENSION bridges are lacking in rigidity besides
being expensive of construction, and for that reason,
those of moderate spans are but rarely constructed. It
suffices to state that suspension bridges with trussed
links are nothing more than inverted arches, and are to
be treated in almost exactly the same manner as the
latter of corresponding forms, with change in signs of
stresses, and taking into consideration the motion of
supports. This last condition brings the following term -
into the expres-

sion for work of H 28 ' Biﬂi
resistance,
% HA],
in which Al re- e
presents the Fig.

change in span length due to the motion of supports caused
by the change in length of the anchor ties. In the sus-
pension bridge of Fig. 73, we have,

Al = 2A], sec a.

Neglecting the frictional resistance to the motion of
saddles on the towers or of the pin (in case the towers
are hinged at the base), we get,

‘ Hi, seca

T EA,
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in which A4, represents the sectional area of the anchor
tie. Whence

H?, sec® a

B4,

Neglecting the compression of towers, we have, by refer-
ring to Art. 45, the following expression for H due to
one load W:

ay’d g"
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For uniform temperature change ¢, since the actual
horizontal displacements of 4 and B amount to
2 10l sec a,
we have, by referring to Art. 46, the following equation:
__ WE({+ 21 seca)
. 'l'_ﬁfff_i_flms‘i’dx e e v e o (216)
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100.  For a long span, which is the proper field for a
susptension bridge, the latter, as generally constructed
consists of cables and stiffening trusses, forming a comz
posite system of construction.

101. Cable Suspension Bridge with Continuous S’cifféning
Trusses.— No mathematically correct method of calculating
stresses in this kind of suspension bridge has, as yet
l?een r.nade practicable, — most formulas used in pracj
tlce'bemg more or less rough approximations. The fol-
lowing method of calculation is another of the latter kind.

The cable —being given a uniform cross-section —
forms, under its own weight, a catenary curve; since,

3 HAI=

H

(215)
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however, the weight of the floor system and stiffening
trusses, which is generally uniformly distributed along
the horizontal line, is far in excess of that of the cable
itself, the curve actually assumed by the latter is closely
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Fig. 74

allied to a parabola, especially as the suspender rods
are so adjusted as to produce this form as nearly as pos-
sible. The entire weight of the stiffening girder in nor-
mal condition and at mean temperature, when not loaded,
may thus be assumed to be borne by the cable, the ends
of the girder touching the supports but producing no
reaction. If now a load W be placed on the girder, the
elongation of the cable and suspenders will take place,
and in consequence the stiffening girder will bear on the
supports. A part of W will then be borne by the stiffen-
ing girder and be transmitted directly to the supports,
while the remainder goes through suspenders to the
cable. For simplicity of calculation, it will be assumed
in the following that the tension in suspenders due to
any loading will be uniform, as in the case of dead loads.
Such an assumption — although never strictly correct —
is permissible considering the considerable rigidity gen-
erally given to the stiffening trusses.
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Let
$ = the pull in the suspenders per unit length of the span.

H = the horizontal component of tension in the cable due to p-

%, y = cobrdinates with origin at 4.
¢ = length measured along the cable.
[ = the distance between the towers.
? = the total length of the cable between the towers.
J, = the length of the anchor cable.
A, = the cross-section of the cables.
I = the moment of inertia of the stiffening trusses.

Referring, then, to Fig. 74, we get the following works
of resistance:

(1) Work in the cable. Passing a section through
the centre of the span, and taking moment at 4 or B,
we have,

Since p is assumed to be acting vertically, H will be
constant throughout. The stress in the cable at any
point x will then be,

dc
H E’
and the work of resistance due to the same,
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introducing in this, the equation of parabola

h
y =25 % — ),
we get,

2
dc = {1 + Sbe (l—2 x)z}dx, nearly.

Substituting and integrating, we get for the total work
of resistance in the cable the following approximate

expression:
H2(? 4 8 1?)
2 ALEL

or
? 2
2 A El _
(2) Work in anchor cables. If we neglect the resist-

ance offered to the motion of the saddle, the tension in
the anchor cable would be,

H sec a,

and the work of resistance in the same,

. f LW(H seca)®dc 14, sec?a
0

2EA, = G4EAN

(3) Work in suspenders. Denoting with L the mean
length of all the suspenders, and with 4, their total
cross-sectional area, we at once get for the work in the

_suspenders the following expression:

()L
24,E
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This term is generally so small compared with others,
forming the total work

Ri R,  of resistance, that it may
fpiitftTe T ees | be entirely neglected
a__* without appre-mabl'e error.

t (4) Work in stiffening

" Fig. 75 trusses. Let R, and R,

represent the end reac-
tions (Fig. 75) of the stiffening truss. Taking moments
at each support successively, we get,

Wl —a) ]
R1=~‘LT—_%!
_Wa_ﬂ
P
also
Ry + Ry + pl =

At any point distant x from the left end, we have for
moment,

m=R1x+—=—; —-—(l——x) for x < a.
2

x)"for x> a.

Wa(l—%) px(l—

m=R1x+j%cz—-W(x—a)= ;

Neglecting the deformation of web-members, we get
for work of resistance, the following expression:

Wi—a) px(l—x)]
flmde;-fa{ 7 x — ” }a’x
Jy 21E 0 2 IE '
IIWa(Z—x)~?x(l—x)}‘dx
L- 2 .

/4
a 2 IE

+
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Assuming I and E to be uniform throughout, we get
for the integrals,
40 W2a? (i—a)*— 1o Wpla (I* — 2 4% + ¢°) + i
240 [El

If we neglect the deformations produced in the towers
and the anchorages, we have for the total work of resist-
ance in the structure,
PB4+ 8K | pUY, secta

128 W24 E 64 A El?

4o WP (l — a)) — 1oWpla (B — 2a% + o%) + ?zl"
240 IE]

Setting the first derivative of o with respect to p equal
to zero, ‘'we get,

+

a(B— 24 + a®)
(Z2+ 8 nr+ 21[ sec? a)+ -

W - (a1

For a uniform load w per unit length, we have but to
put wda instead of T, and integrate between given limits
of loading. Thus, for the load extending for a, from
the left support, we have,

a? (5B — 584+ 20w

p= - o (218)
15’3[ i P B2 2l secta) 4 2P

102. The followmg stresses may now be written:
The stress in the cable — maximum at the towers,

2
H sec ¢y = % % Sec ¢,.

é, being the inclination of the tangent at towers to the
horizontal. :
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The stress in the anchor cable,

2
3 L sec a, approximately.

The stress in the suspender,
#

n
n denoting the number of panels into which equi-distant
suspenders divide the span.
In the stiffening truss at any point distant x from the
left end,

Shear =R, + px for x <a
=R +px—W for x> @ dug to W
=R +(p—wx for x < g,
=R, + px — wa, for x > q, due to .
Moment = R;x + il for x <a
jcz due to W
=R1x+£~——W(x—a) for x> a |
=R +(P w) for x <a,

due to w.

103. Temperature Stresses. — It hardly requires expla-
pation that a rising temperature tends to strain the
stiffening trusses and at the same time relieve the cables,
while falling temperature strains both cables and trusses.

Since,

v '
dc=1 (1 + g%z) » nearly (see page 143),
0
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a uniform change of ¢ degrees— positive for rise— changes
the length of the main-span cable by

8h
= 5] .
161 = 161 (1 + 3 l:) nearly

Representing by %, the sag of the deformed cable, we

have
’ za+W)1+yg—z L
32) '\ T 5eE)

from which

16 P
h, = h{x + ;(r + g_hz>}’ nearly.

The deformed cable would then deflect upward or down-
ward by about

hitb 3 P 3107
—2—<1 + 3 h’) o’ approximately.

The change in the length of anchor cables due to ¢ being
2 t0l,, will change the main-span length by

— 210], sec a.
Representing by 5, the sag of the cable with changed
span length, we have,
8 h,? 8 h?
(lﬁzeﬂlseca){l+3(l-«—20tllseCa)3 (I+3l")

so that the deflection of the cable due to this cause alone
would he

% % 641, sec o, approximately.

The total deflection of the cable, due to a temperature

change of ¢, were the latter free to deflect, would then

be, =3 wU+ﬁsm@ c e . (210)
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This, however, could not take place owing to the rigidity
of the truss; but as the difference is generally slight, we
shall assume 8 to be the total deflection.

Neglecting the changes in lengths of suspenders, and
further assuming the stress produced in the latter by
the temperature change to be uniform, and calling it
#: per unit length of the span, we get,

384 EI

t_‘_ng

8....,..(220)

This uniform pull on the cable produces tension in the
latter, whose horizontal component is
48 EI
H="Cim
and in the stiffening truss a moment of

48 EI

5
at the centre of the span.
Each suspender sustains a pull due to this cause of
#.

n
104. There is still another factor, not considered in
the preceding discussion, viz.: the change in the amount
of H due to variation of the deflection of the cable from
whatever cause. Thus, if at the normal temperature

3,

U
H= 8h’
a change of ¢ degrees would give
2
H= ? C e (a2D)

|

10 3P
8k{1+’;<1 +§ 2)}

=
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" TRUSSES WITH REDUNDANT MEMBERS

105. The different forms of trusses with redundant
members may  be indefinitely multiplied. They are
generally decomposable into as many simple trusses as
there are systems of such members to form them. The
following few simple cases will sufficiently explain a
mode of procedure for calculating the stresses in this

kind of trusses.
106. Fig. 46 shows an ordinary lattice truss. The .
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truss is evidently decompos- _— ‘
able into two simple trusses 6
I and II, —all the mem- L2
oW

bers excepting diagonals be- Fio 97
ing common to both trusses.

A load W hung at the middle panel point must —
according to the principle of least work — be divided be-
tween trusses J and I7 in such a way that the internal
work performed in the truss will be a minimum.
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Representing by ¢ the ratio of the load borne by truss
I to the whole, we have the following stresses:

Mem-| 4 3 3 4 5 6
Trusses.| 1 7 ? . 1 . Vi
I —E¢W +2—/§¢W —ﬁq&W 0 —-qu) w --7z¢ w
2 _I _2
II o e o +2/z(1 4 2(I—¢)W ;/:(I—qﬁ)W
Mem- 7 8 9 10 11
Trusses, 7 ?
I [+ W+ W o
2k 24
? i 7
11 RN +Z(1—¢)W +(1—9) W_27(I—¢)W_E (a—-¢)Ww

Denoting by 4 with corresponding suffixes the cross-
sectional areas of members, we get for the internal work
in the trusses the following:

8L wr (

B JB BB P N2V

Al A? AT A3
By vap? s iomap? ]
A

Since the value of ¢ must be such as to make the inter-
nal work a minimum, differentiating  with respect to ¢,
and setting the differential coefficient equal to zero, we
- at once obtain,

ﬁs(_z_,>+,s(L+_r_ n (L 1,z

As AlD All ?3 A4 A6+A
I 2 . I I I I I I I I
(A1+A + A3+A1+A10+An +2 A3+A4+Aa+‘4
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107. Fig. 77 shows another case of a truss with re-
dundant members, formed evidently by a combination of
Pratt, Howe and King-post trusses. In order to find the
stresses in different members of the truss, decompose the
latter, as before, into elementary trusses I, II and III,
and denote by ¢,, ¢, and ¢, the ratios of distribution of
W in I, IT and III respectively, so that

b+ b+ Py =1.

The following stresses may now be written:

Members. 1 2 3 4 5
Trusses. 7 7
-2-1;¢1W N P e e +57L¢‘W
o | -t ew +iow |~ g
2% 72 T 27?2 2k
s
111 N Y o W
Members. [ . 7 8 9
Trusses. ? ? *2
I +'27¢1W +57¢1W * /L¢IW
# 2 .
II LRI I s A R X Ak
m | e | +Lew | +Lew

Denoting by A with suffixes the cross-sections of the
members, we get for o,
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SSL - WP i (¢1+¢‘z)2 7°(x —‘/’1 4’2)2 ;‘sd’z +’13¢’2 +’1 ¢

2AE zEH)| A4, 4, 4, 4,
B—¢)  pa—d—d) (2—9) p3<2¢1+¢2)2}=
A L
ki
Making .
a4,
L
do, ’

we obtain at once the following equations:

;8 ; 3

qSl{zl(A A)+A +———+p3< + -+ 9)}+¢2{%+-’2—
+p3(A ;)} {j+ﬂ+ 228 }

el ol e Eerlio )

A iz?f)=

Representing the terms within the brackets by a, 8, v,
8 and e in order, we get

b + PR =1y,
- ¢lﬁ + ¢28 = &
from which
. ¢, = Be= 8
1 B — pry
b

é _BB—=—nt+e@@—P+8(y—a)
L B — ad
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As this chapter is the least important of all, consider-
ing the comparative rarity of the kinds of structures
treated, it is deemed sufficient merely to indicate a mode

of procedure in the calculation of stresses by means of
the method of work.



