CHAPTER V
ARCHES WITHOUT HINGES

73. I~ this class of arches, since ends are fixed, there
will be moments produced at these points whenever the
resultant forces do not pass through them. Here we
have, then, two more statically-indeterminate forces than
in arches with two hinges.

Fig. 59 shows a symmet-
rical arch-rib loaded verti-
cally with W.

Let M, and M, represent
moments at 4 and B re-
spectively. For all other
designations, retaining those of the preceding chapter, we
have, since the loading is vertical:

H — H’= o,
Vi+V,~W=o.
~ For moment at any point distant x from 4, we get,
m= M+ V,x — Hy, for x < a,
m= M+ Vix—Hy—W(x—a), for x> a;
for vertical shear,
V=V, for ¥ < a,
V=V,—Wforx>a;
and for the normal stress in the rib at x (Art. 43),
N = —(V sin ¢ + H cos ¢).
Since the internal work in the arch-rib is generally

(Art. 44)

109
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o f Ymdc f Y N?d¢
“J, 2EI ), 24E
substituting in this, the values of m and IV, we get,

m;fa'(Ml+le—Hy)2dc +fl’{M1+V1x——-Hy— W(x—a)}*dc
0 2E] o 2EI

+f“’(Vlsin¢+Hcos4>)2dc+f"{(V1——W)sin ¢+Hcos¢>}2dc..'
[ @

2Ed 2EA

Since H, M, and V, must successively make » a mini-
mum, we get for
do_ e o
dH
the following equations:

fz'ydc ( f 'xyde f‘sin ¢dx) _ H( Yy'de

T ), 4 o 1
N f‘ cosA¢>dx) W( fa ,"(x —Ia) yde j;l sinAd)dx) 6. (133)
Mf dc+V1fp——-—Hflydc l’(x ——Ia)dc . (134)
[ [ +fo‘$zﬂ>—ﬂ<£ T
[ v [y g

These equations will give all the required values of
M,, H, and V, as soon as the form of the arch and mode
of loading are known.

As to M, and V, we have,

M,=M,+ Vi—W(—a),
V,=W—TV,.

74. For obtaining expressions for H and M, only, it

will be more convenient to assume two symmetrical loads

O

i e

.

i
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(Fig. 60), as done in the case of two-hinged arches. De-
noting the horizontal and
vertical reactions and mo-
ments at 4 due to 2 W by
H’, V', and M’, we get,

H =2H,

M =M, + M,

Vi=V,+V,=W,
in which H, M,, M,, V,,
and V,, denote the reac-
tions and moments due to one W, as before.

Referring to the figure, we have for the total internal

work in the arch,

. 14
a’ ’ — Tan\2 z 7 — 1ary2
o (M'+ Wx — H'y) dc+2f (M’ + Wa — H'y)?de
a

Fig. 6o

2EI ’ 2El
f“'(W sin ¢ + H’ cos ¢)?dc " f"' (H cos ¢)’dc
+e 2EA w  2EA
whence for
do do
am — %™ g = >
we get

2

fza_?g_H,(f"’y;dc j‘é"cos;qbdc)
+W<f xydc+f aydc f 51nq5cosq5dc) o . . (r36)

I
z % xdc Ead
M’dec—-H' "d”+W(f 4 I°> o. . (137)
0

0 0
75. Temperature Stresses. — A unlform temperature
change of ¢ degrees would produce a change of #6} in the
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span length of the arch — 6 denoting the coefficient of

expansion — were the end of

the latter free to slide. Des- \

. . M,( . Hj

ignating by A
H,and M, (Fig. 61)

the horizontal reaction and moment at 4 due to a tem-

perature change — positive for rise — we get,

fl, (M, — Hy)* dc " (H,cos ¢)*dc
@ = e .

Fig. 61

2IE 0 2 AE
Since, according to the theorems of Castigliano (Art. 6),
o _ g B0,
éH, M,
we get
f" —Mydc+ H pyde " f"H, cos? ¢ dc _ ”
A 1E ,  4E '
j‘l’ (M, — Hy) de _
0 I 7
from which
o= 101E G

J.7)
f”yzdc+f’cos¢dx_ o 1
A 0 A jll/.{iﬁ

, T
Jr
o 1

M’=f"dz; H,. . . . . . (139
0

T
76. Stresses Due to Displacements of Supports.— The
supports may sometimes yield to a certain extent, pro-

ducing changes in their relative heights as well as the
central angle and the span length of the arch.

s ————
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Representing by
MA1 VAy and HAJ
the moment and the vertical and horizontal reactions at
the left end of the arch, caused by such displacements,
we get for the internal work in the arch,

_fl’(MA + VAx -_ HAy)Z dc l'(HA cos ¢ + I’ASin ¢)2d6
w = + .
2 BT | 2 EA

77. Let Ay = change in relative heights of supports
— measured at the left support in the direction of the
force, i.e., negative downward. Then, since the force
acting through Ay is ¥, only, according to the theorem of
Castigliano, we have,

dVA = 4%

whence we get,

v Igin?
MAf ey v, < ’%‘—if+f smfd”)
0 0 0

v r, i
. ( f x;}dc _ f cos ¢ sin ¢dc) — EAy. (1400)

0 0 ‘4‘
v Uy v
_ MAf gﬂ:_vh <j‘ xydc f sin ¢ cos qbdc)
o 1 o 1
d

¥ y2dc l'cosqudr
N T (T T

Yde Vxde Vyde
Mf—+V Mo_m [ ao L (o
a) T s), T A 7 (140¢)

]

78. Next, let A¢ = total change of the central angle
of the arch — measured at the left support in the sense
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of the moment, i.e., positive for the decrease of the cen-
tral angle. Then, for similar reasons as before, we have,

dw
=A
TN ¢,
do _
dHa
do o:
ava O’
whence, aVa
v o
MAféf+VAf’i‘—HA yd‘ = EAG
¢ I [ I 0

v v v
_ yde f wyde f squcos ¢ dc
R AT S
%) ¥oos?
yidc f cos? ¢ dc\
+HA<L/; N -+ | i =0
v v Ugin?
MAf xdc+ V. f x2dc +f sin? ¢ d¢
L1 i
_H, (f‘xydc f"sm¢ cos ¢>dc>

(1410)

(141b)

(141¢)

79. Finally, let Al = total change in span length —
measured at the left support in the direction of the force,

i.e., positive for the decrease of the span length.

Here we have,

whence,

— My f ydc -V, ( f l'xydc f Vsin ¢ cosdadc)
y’

Vcos? ¢ d¢
+HA<£ N £ i )=EAl.

(142a)
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Vxdc f Vyldc f Usin? ¢ dc
MA[ T+VA( | T + \ Y )
) Vi d
_HA(f x%ﬁ_fo M_,_O_S_Ls%o . (azb)

Yde xdc lyde
MAJ;7 IT""H“ o o G

PARABOLIC ARCH WITHOUT HINGES

80. Assuming, as in the case of two-hinged arches
(Art. 48), the cross-section of the rib to so vary from the
crown toward each end that at any section

I =1, sec ¢,

A = Aysec ¢,
(I, and 4, denoting the moment of inertia and cross-
section of the rib at the crown), and introducing these
together with the equation of parabola

——x(l-'x)

in Eqgs. (136) a.nd (x37), and integrating
f yda hl
0 T 30

ffyzdc _ 4k
o T 131,
fgcosz ddec Z"cbo

o A T 8h4,
f“’ﬂd_ﬂ ha* (41 —30)

0o 1 321,
f%yﬁ ah(l"——6a2l+4a”)

o I 321,

¥sin ¢ cos ¢ dc Pe
fo st Frema,

#* Howe, Treatise on Arches.
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lr
f’da 1 -~
0 I 21y € h
Yude g
— = 2 4 ¢E—) B
o 1 21, 1
14 Po
Tade _a(l—2 a)
w 1 2[ Fig. 62

and putting, as before,

we get
Iz’l 1% oh(BB—2a%+a?) 232
M — (4 (] _ e
3 15 8h +W{ 3B 12+16h2}=°'
wl_ + w9 _
2 2
Ehrmnatmg M, and remembering that
h
=z (¢ —a),
we obtain,
7 (hzz 1% quo W{a% (—a? 20h(—a)i*|
16k, h 622 P+ 16k

Consequently, for one load W (Fig. 62), we get,
6o h? U —a? 12a(—0a)i
16 1 + 43 l“rd)o{ 2 Py 16122 }W (143)
Similarly, by carrying out the integrations in Egs. (134)
and (135), we get,
M+ Vlf - Hflzz—W—(’_ P _o

MFH,{S z(4hl 124,0)} H

(l—a)2(2l+a) ?Shl— 2 (¢, 0
W[ { {82 a) (¢>+¢)}]

H=3}H~
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Eliminating V, and M, successively, and putting

4hl_l2¢’o__
Y
8h(l —a) — (b + b) _
8h -
M1=H—}#W[H(2h#+8hlm)
— W {(a* — 6n3%) (l — a)® + 6 Pmi }] e e e o (r49)
V m{(l—a)z(l+2a)+12mz’}w e e e s (145)

¢, and ¢, denoting the inclination of tangents at ¢ and

A respectively.
Neglecting the effect of axial stress, — since the terms

containing 4* ought then to disappear, — we get,

_:cstzz(‘l—a)2
_H'-—~~—--—-—4M3 W o. . . . . . (146
1 — a)? 2__
M=~ ")Sl‘j 2Dy ... (1a)
— 2
A G LN I )

8l. Temperature Stress. — For a uniform temperature
change of ¢, introducing in Egs. (138) and (z39) the equa-
tion of parabola and the expressions for 7 and 4 already
given, and integrating the terms severally, we obtain,

10EI,

H,= m (149)
45
Mt"—_ %hHg e e 4 e e e & e (ISO)
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Neglecting the axial stress, these equations become,

_ 4510E]

Ht—— *"Wg e e e e e (151)
_ 158E],

M;——- T o e e e e e (;[52)

82. Displacement Stresses. —For a change of Ay in
relative heights of supports (Art. 77), we get, by carrying
out the integrations in Egs. (140) and combining them,

ErA
V= 4
ST E Gh—TaE) 0
L1z 4k }
l
MA="'VA; e e e e e e . (1'54)
HA=0.

For a change of A in the central angle (Art. 78), sim-
ilarly we get from Eq. (141) the following equations:

_ 2hEL,A¢
H“"zm )
_....,__________
15 4h,
— 2 EI, Ad )
Va P——————-——+ .2(4h—ld>0> . . . (156)
- z D ———
k
MA__VAZ+HA2h+FIA¢- s

i

For a change of A/ in span length (Art. 79), we get
from Eq. (142),

_ EIAl
HA—M . . . . (158)
_+___
45 4h
Ma=Ha2n . . . . .
AT Haz - - (159)

Va=o.
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CIRCULAR ARCH WITHOUT HINGES

(Uniform Cross-Section)

83. Referring to Fig. 63, we have for circular arc
with origin of codrdinates at 4 the following relations:
x = r (sin ¢, — sin ¢),
dx =—17rcos ¢pd o,
y =7 (cos ¢ — COS &), Y
dy=—rsin ¢d ¢, N
dc =—rd ¢, W
a = r (sin ¢, — sin¢.),
¢ denoting the inclination of
the tangent to the horizontal
at any point xy.
Tntroducing these in Eqgs. (133), (134), and (1 35), and
integrating the terms severally,

(a)z
ydc = 27* (sin ¢y — ¢y COS Bo)-

0

‘I
f xydec = 2 7° sin ¢, (sin ¢, — Py COS b0)-
0

?
f sin ¢ dx = o.
0

fl,yzdc =7 {¢, (1 +2cos’ ¢) —3 sin ¢, cos ¢g}-
[}

flcos ¢ dx =7 (b + sin};t:o COS ¢y)-
0

f ’z' (x — a) ydc = * {} (sin &, + sin $.)? — (o + P.) Sin b, COS 4
+ cos ‘¢, (cos ¢, — COS )}
S sin g e = Z (s, — sin® 4.
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®
ldc=2r¢o.

0
14

wdo = 27 o Sin .
j e = 27 (sin dy — gy coS ).
j:p (x — a) dc = r* {($ + ¢.) sin ¢, + cos p, — cos ¢}
(@
fol'xdcz 2 72 by sin by,
f ¥ s = P {dy (1 + 2 Sin? ;) — 05 by sin G}
f:’ sin ¢ dy = 7 (¢ — COS B, Sin ).
fo " e = 2 sin &, (sin By — B COS o).
fo  cos ¢dy = o.
S oy mio=rt {80+ 90 6 + sin dusin )

+ (sin ¢, +sin 4>a) (cos ¢, — cos ¢y) — % (oS ¢, sin by + sin, cos ¢,)} .
f sin ¢dy = ~ {(qb,, + ¢,) — cos ¢, sin ¢y — cos ¢, sin ¢,}.

And eliminating M,, V,, and H successively from the
three equations, we obtain,
{Sin 4’0 (COS ‘bu -~ COS ¢0) + Sin ¢a. (¢u Sin ¢0 - 4’0 Sin ¢u) }

b, 2\, .
4+ 2 (1 4 =) (sin? ¢, — sin® ¢,)
2 ( r;) W.(160a)

HE= i
b, (1 + ;) (¢, + cOs Py sin ) — 2 sin? ¢,
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or, since
R ) r—h
sm950=2—-r, CoS ¢, = et
. I—2 —
sin ¢, = a', cos¢_=r h—{-e’

2r r

e le+ (l_ —a) {(#al.—‘#o(l—'z a)} — o, (1+ f.z) (—d)a
4‘0(1 + ){ZMOM(r_;L)} P

W.(160b)

M, = ‘S‘E‘ (sin ¢y — ¢ cOs $o) H + 4 X
0

12 .
2(1 + ;) (o — cOs P, sin ¢,)

[sin . (n 6, COS by — Sin b, €O b, + ) — . Sin
— ‘%0(1 -+ g) (cos ¢, sin qbo — ¢,) (P, sin ¢, — ¢, sin ¢,
+ cos ¢, — cos ¢,) + Lz {sm &, (cos ¢, sin ¢,

— €OS ¢, sin ¢, + ¢,) — ¢, sin qSo}] wW. . . . . . (i610)

or
I

l
M1=(g° _r+h)H+4¢o(x + 5)Grd—10— ) "

(€= 20) (27— 10) b0 — 2 bt 7
—(1 + ;—;’){zr’%—l(r— {2 ¢.a +1(Py— b)) — 26}
+§¢o{(l—2a) (2r"¢n+le)-—zr’¢,l}]W . < . (161b)

(1+§)(¢..—sin $.COS )+ 25in (0 i—COS dy)
W.(1624)

Vi=13+ n
1 2 (x5) (80— cos g sin 9
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or
<I +£Z){2 ¢, P> —(—2a)(r—h+e)} +2¢(l—2a)
V= 3+ = W. (162b)
2 (I +F){2r2¢o—l(r-—h)}
Neglecting the effect of axial stress, we get,
sin ¢, (COS b, — COS ;) -+ Sin b, (b, SN by — by Sin b)
{ + P sine g, —sint )
H= by (o + COS ¢y SIn ) — 2 sin® b W-(x630)
" e+l - )b = w0 =20} hol-0)
H = 2 W. (163b)

b {27'24’0 +l(7'—h)} -

M1=£;(Sin ¢y — P, cos ) H + 4

2 (o — €OS P, Sin ) X
[sin &, (sin ¢, cos p,—sin ¢, cos ¢, + ¢,) — ¢, sin ¢,

X (c08:hy5in o) (u5in o5 -co5 h —cos %)J W. (1640)
0
or
l

T
PN T Ty
[(z — 2 0)(2 7 by Le)ho— 2 bubur

—{272¢y —1(r—h)} {2¢.0+1(dy — b.) — 2e}]W .« (164b)

_ (¢, —sin ¢, cos ¢,) + 25in ¢,(cos ¢, —cos ¢p,)
op;l B {% + 2 (B — 005 B, Sin &) 0 }W‘(ms“)

_ {2¢, 72~ (1 —2a)(r—h+e)}+2e(l—2a)
Vl_[{’—l_ 2{2r> ¢, — I (r — )}

84. Temperature Stresses. —For a uniform tempera-
ture change of ¢ — positive for rise — we get, by carrying
out the integrations as before in Egs. (138) and (139),

]W. (165Db)
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Ht = ta[EI(I’O - . (166{1)
7’3[‘1’0 (9o + sin ¢, cos ;) (1 + ;z) — 2 sin? %]
IET
= 2 4’0 1.2 .. (1666)
7[430{2 S+ 1(r— h)} (I +p) - [2]
wonssgenr DL
0
L—2¢y(r—h
=H _—2—;0;%‘“’") ......... (1675)
Neglecting axial stress, we get,
- 1BIEI ,
H,= 7 [y (P, + sin b, Cos ) — 2 sin? ¢y] (I@a)
- 2 0lEI ¢,
FPolebe FIGr—R} —F] ~ ° (1685)

85. Displacement Stresses. — For a change of Ay (Art.
77), we get, by carrying out the integrations in Eq. (140),
EI Ay

Va= = - (x690)
P(I + ;) (¢y — cos ¢, sin ¢;)
EI A
o - (698)
, (1 +F>{2r2q$o—-—l(r—-h)}
Ma = — Varsin ¢, = —VAé < .« . (x70)
HA=0-

For a change of A¢ in the central angle (Art. 78), we
get from Eq. (141), ’

Ve z EI sin ¢, A, . (e11)
r’(I + ;) (¢ — cos P, sin @)
EllAd < .. (11d)

- —7’<I +-;—:){2r2¢0-—l(r—lz)}
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EI <sm G — bo COS &) Ad

{‘I’o (950 + sin ¢, cos ¢, — 2 sin? ¢0)}
EI{l—2¢o(r—~h)}A¢ )
[qbo (207 +10r — h)}(x +5)- 12]

. ETA
My = H'A_t-(sin 950“'4’09054’0) —Varsing, + ﬁ . (1730)

l-—2¢o(r k) EI A
2.y Vay + 27

(1720)

(172b)

= Ha (173b)

For a change of Al in span length (Art. 79), we obtain

from Eq. (142),

Hye , EI $,Al (5740)
7| ¢, (1 + —§> (¢, + sin ¢, cos ¢,) — 2 sin? qbo]
| r
= — 2ET Al = R ¢ 121D
r ¢o{2rz¢o+l(r—h)}<x+—)~—lz]
MA=HA7(Sin4’o;¢oCOS¢0)'=H l_2¢o¢(f h) . (rs)
VA = O. °

FLAT ARCH WITHOUT HINGES

86. In arches with comparatively small versed-sines,
we may put, as before, without material error,
dc = dx,

. !
so that f sin ¢ dos = o,
0

1
fc05¢dx=l,
0
fsinqbdy:o,
7
fcosquy-——o.
0

|
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Introducing these in Egs. (133), (134), and (135), and
assuming the cross-section of the rib to be uniform
throughout, with

we get,
! I 2
leydx+V1fxydx—H< y’dx-f—liz)
0 0 0
I
—Wf(x—a)ydx:o e e e e ey (37%a)
) 1 —_— )2
Mll+V,;—nydx—W(z e
B 0

2 B i — )
M+ Vs~ foydx—-W—————-—(zl‘_'— "25(’ Do (60)
[}

Combining these equations, we get,
@+ 2a) (l-—-a)2

f(x—a)ydx— a)f dx
(f ydx) lf ydx — Pi? -

fydx a(l oy

It is to be noted that j; ydx is the area above the hori-

V= (177)

H =

(179)

zontal line joining the ends of the arch and bounded by
the axis of the latter.

87. Temperature Stresses, — For a uniform tempera-
ture change of # (Art. 75), similarly we get from Eqgs. (138)

and (139),
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tOPEI

Hg'—: 2y T 2 .
zj y’dx+l2i2—<fydx) '
0

1
fydx
Mt=HtoT - .

(180)

(181)

88. Displacement Stresses. — Similarly from Egs. (140),
(141), and (142), we get, for Ay (Art. 77),

_12ElAy

Va= 7 (182)
MA=—VA§- R ¢ £:7))
for A¢ (Art. 78),
7
EIA¢/‘ydx
HA= 7 : ‘l) 3 e . (184)
lfyzdx—(fydx) + B2
0 0
6 EI A
VA= — —-Zz— e e e e e e . (ISS)
l .
. f ydx
My=— VAgl + Ha g I (186)
and for Al (Art. 79),
IETA]
HA=lfl ; fl . 3 - e e e (I87)
Oyzx—( 0yx>+lzz
!
ydx .
MA=HA 041 Se e e e e e (188)

PR

T
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FLAT PARABOLIC ARCH WITHOUT HINGES
(Uniform Cross-Section.)

89. Introducing in Eqs. (177), (178), and (179) the
equation of parabola

h
y=f‘lTx(l~x),

we get for one load W (Fig. 64) the following equations:
15a8*( — a)?

H=——"—"x (89)
45
4hl3<1+ 4./’L2)
— 2
Ml-_—,__alﬂad) (zl_ 5:51.2)W . . (190)
1+
4h?
—_ 2
V1=(l—iﬁ‘lgTa—“—)W C e ... (x91)
Neglecting the effect of axial compression,
207 _ 4\2
H=WW........<IQZ>
l—a)? (2] — ‘
i, L EI =50y (199
l I — a)?
V,=%L)W C e e e (109
!
( Y MH — 7]
- 1 z__j
2 2 . ¢
Fig. 64 Fig. 65

90. For a uniform load w per unit length of the span
(Fig. 65), substituting wda for W, and integrating between
the given limits of loading, we get,
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_ (ol =154l + 64, a’w

5P ©oeoe . (199)
Shla(l’f'n;)
ol* — I+ 6a2 2
M =— {612—8a,1+3a12«—"‘(1 ISZ;; "1)}]‘[’—;%’:- (196)
I+ —
(+%%)
(2B—2a%+a®aw
v, = L

H

Neglecting axial stress, we get,
_ (P —150l + 68 a’w

H 3 P N € 191
(= a)ew
Ml-———“‘-—#‘-——l— e s s e e e (199)
2B —2a2+a?
y,= ¢ ralaw L ()

91. Temperature Stresses. — Similarly from Eqs. (280)
and (181) we get,

_ 45t0EI

t-——m e e e e e e e (201)

_ __ _30MEIR
Mt—H¢§ﬁ—-4————-hz+45iz N 15

Neglecting axial stress,

_ 4516ET

H,= v e e e e e s s e (203)
_1580ET

M, = A S e e e e L (208)

92. Displacement Stresses. — From Egs. (182) to (288)
we obtain in a similar manner,
for Ay (Art. 77),

Vo= 12 EIAy

———15._..........(205)

I
MA=""VA'2_ R =)

S
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for A ¢ (Art. 78),

= 30 EIhA (207)
TGt ad e e (207
6 EIA

Vam — P¢....... (208)

Ma=—Va3l+Ha3h - o . . . . . (209)
and for Al (Art. 79),
45 EIA]

AT TG F a5 (210)
Ma=Hx%kr . . . . . . . . . . (eo11)

93. For flat circular arches without hinges, the fore-
going formulas deduced for parabolic arches may be used
withqut sensible error, for the reason already stated in the
case of arches with two hinges (Art. 62).

REACTION LOCUS AND ENVELOPE

94. For showing reactions in an arch without hinges
in amount and
direction, reac-
tion locus and
envelope are re-
quired.

Since end mo-
ments are due to
the deviation of
reactions from
the axis, if we
represent by e the vertical distance taken as positive above
and negative below the horizontal line connecting the
ends of the arch, we have in Fig. 66 at the left end,

Fig. 66
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€ = %’
and at the right end,
.M
T H
Since
Vi, _b—g¢ _ Vie M+ Ve,
B bmat = |
Vz_b—ez _ _Y_z . _Mz""Vz(Z“a).
E—l__a,) b—ez H(l G)M""—-H‘—-——,

which are the equations of the locus.

Next, let x,9, be codrdinates — with origin at 4 — of
the point in the line of reaction R, assumed to be one of
contact with the envelope. Then we have,

b—e

V.
J— 1 —
y‘_el+H~x1—el+ %y

In order to find the relation between «x, and ¥, for vari-
able a, differentiate this equation with respect to @ and
eliminate @ from the same. The equation thus obtained
will be that of the envelope. _

It is evident that locus and envelope could be drawn
by simple plotting of reaction lines for different positions
of loads, instead of by deducing their equations.

95. Taking the case of a flat parabolic arch, since we
have by neglecting the effect of axial stress (Art. 89),

2
v, = I+ 2 al)s(l a) W,
_15a*(] —a)?
H= 4P w,

—a) (2] —
M1=_al a)z(;l SG)W,

~ envelope where
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|
2h(2]—35a)
we get, 6 = — _157_’
Vi _6h
b =e+ ‘Ea = P ’
showing that the reaction locus is a horizontal line.
5 ,
Since n=e-+ —Tel-xl,

substituting the values of ¢, and b,,
_2h(2l—50) " 4h(za+ D) )

1T 150 15a*
Differentiating this with respect to a, we get,
_ 2h(l—2x%)
C s5Gh—37)

Substituting this value of a in the preceding equation,
and at the same time transferring the origin of codrdinates
to the centre of the span and in level of the crown of the

2 l
= Jhandx=_,

we get, 8 ha* 4 15%y 4 30lxy = o,
which is the equation of hyperbola.

POSITION OF LOADS FOR MAXIMUM STRESS

96. For finding the mode of loading to produce maxi-
mum stress in any part of the arch, reaction locus and
envelope may be made use of in a similar manner as ex-
plained in the case of two-hinged arches (Art. 68).

In Fig. 67, let the outside lines of the rib represent the
positions of centres of gravity of the flanges or chord's.
Since at any normal section CD of the rib the stress in
the upper flange C is equal to the moment with respect
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to D divided by d, the reaction line passed through D
and produced to the locus will
—+ - - indicate the position of load pro-
| —"1 ducing no stress in C, and that
C L\ all loads to the left of O produce
% E‘; compression in C, while those to
the right, tension. For the same
reason the reaction line drawn
through C determines the position
for load to produce no stress in D, so that all loads to
the left of O produce tension in D, and those to the right,
compression. :

Fig. 67

Fig. 69

For similar reasons, the position of load producing no
shear at the normal section is given by drawing the re-
action line parallel to the tangent to the axis of the
arch at the section (Fig. 68) and by erecting a vertical
over the section. The loads within these limits evidently
produce (Art. 68) positive shear, while those outside the
same, the negative.

In case the chords or flanges are not parallel, the re-
action line should be passed through the intersection of
chord-members of the panel —in which the shear is to
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be determined — instead of drawing parallel to the tan-
gent, to find the position of load producing no shear.

THE STRESSES IN INDIVIDUAL MEMBERS

97. Referring to Art. 67, it will at once be seen that,
in the arch-rib of Fig. 69, we have but to add M, to the
moment of external forces.

Using the same designations as in Art. 70, we then have,

x
F"=§{M1+ V, % —Hy— EW(x—a)
i}

—(Vsin¢+Hcos¢)d1}. N €3 2))

Ff=—§{M1+ Vix— Hy— 3 W (x—a)
1]

+ (V' sin ¢ + H cos ¢) dz} e e v o v (213)
=—(Vcos¢ —Hsing)secf. . . . (214)
in which V7, 2“: -

For anon-parallel rib, the stress in each member is best
obtained by taking moment at
the intersection of the other two
members cut by a section.

<—-4us—4

ExampPLE.— In a full-webbed
circular arch with the same gen-
eral dimensions as given in the case of two-hinged arch on
page 94, to find the maximum stress in the lower flange at 3

(Fig. 70).

Fig. 70
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Loads and dimensions :

= 20 tons per panel.

= 10 tons per panel.

Dead load

Live load
! = 250ft.
r = 200.

¢, = 38° — 40’ — 56/ = .67514.
Panel length = 15.625 ft.

Cross-section uniform with :3 = .000IQ.
Effective depth = 6 ft.

Panel. a (ft.). e (ft.). da. @a (circ. meas.).
1 15.63 11.32 33° 09" 10” +57863
2 31.25 20.54 27 57 11 .48788
3 46.88 27.99 22 59 36 .40114
4 62.50 33.86 18 12 36 .31782
5 78.13 38.31 13 33 17 .23658
6 93.75 41.42 8 59 =21 .15689
7 109.38 43.26 4 29 12 .07831
8 125,00 43.88 o o

The horizontal reaction is given by Eq. (1604).

H =

le+(l;—a){¢¢l—¢o(l——2a)} —¢D(I+é>a(l—a)

950(1 + ){m‘”%-{-l(r—-h)} -

Tabulating the terms of the numerator severally, we have,

w.

Y . 4 ;2

E2) 4 |we—2a| g |(T-e){boC-zm—gar)| (x4 5) boat—a)| Yamer
1| 2829.46| 147.69 {144.66 331.21 2472.88 25.37
2| 5135.20 | 126.50 [121.97 432.98 4616.0 86.28
8| 6996.25! 105.49 |100.28 406.66 6429.4% 160.11
4| 8464.64{ 84.39 | 79.46) 308.46 7918.20 237.98
5 g9576.05| 63.29 | 59.14 194.51 9067.20 314.34
6 | 10354.62 | 42.20 | 39.22 92.89 9891.50 370.23
7 |10815.54 | 21.10 | 19.58 23.76 10386.07 405.70
8 | 10968.75 o o o 10550.03 417.82

ARCHES WITHOUT HINGES I35

and for the denominator,
bo1+5) (2t 10— WY =P = 52115

whence we get the following value of H for W =

Load at. 1 2 3 4 5 6 7 8

H= .0775 | .2637 | .4893 | .7275 | .9605 | 1.1314 | 1.2397 | 1.2768

For M, we have Eq. (1615).

. I
M, = (24’0 r+h)H+ X

4¢n(r+ AR )
[¢o(z~za) (720 —10) = 2 duborl = (5 + ){zrquo
—1r— 1)} (bes H (B —b) — 28 + Sy

{I—2a) (27 $p+ le) — 21° &, Z}:IW
Tabulating the terms severally,

First Term
P‘I‘,‘éel‘ (Em—r—f-}z) Nu ;efr rtor Second Term.| Third Term. Fif’e‘;‘;h Numerator,
1 2.25 7,558,673 |—7.812,985 |— 278,225| 11 |— 332,526
2 7.65 6,186,976 | — 6,587,596 |— 542,713 17 |— 043,316
3 14.20 4,950,501 |— 5,416,301 |— 751,134 | 19 |—1,208,005
4 20.97 3,843,680 | —4,291,456 {— 918,971 19 |—1,366,728
5 27.88 2,811,769 | — 3,194,392 | — 1,048,682 16 |—1,431,288
6 32.84 1,842,092 | —2,118,465 | — 1,140,741 11 |—1,417,102
7 35-98 911,322 | —1,057,323 |— 1,195,747 | 6 |—1,341,743
8 37.06 o] [o) — 1,214,044 o |-—1,214,044

The denominator being
4 (I + ){2 7 ¢y —1 (7 - h)} = 407459-6;

we get the following values of M, in ft.-tons; and from
M,=M,+ Vi—W (I — o) the values of M,:
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Load at 1 2 3 4 6 6 T 8

M, = |—10.91 |—15.66 [—15.65 |—12.81 [~ 7.50 [— 2.19 |4+ 2.82 |+7.05
M,= |+ 1.02 [+ 4.09 |+ 6.98 |+10.05 [+11.38 [+11.31 |+ 9.95 |+7.08

The values of V, are obtained from Eq. (1625).
<1+ §>{2 ¢t —(—2a)(r—h+te)}+2e(l—24a)
2(1 + g) {22 ¢y— 1 (r — I)}

Substituting the numerical values in all the terms, we get
the following values of V,:

I

v,=|:+ .

Load at 1 2 8 4 5 [] 7 8

" 985 | .954 | .903 | .839 | .763 | .679 | .5091 | .500

Drawing the reaction locus and envelope (Fig. 71), and
passing reaction line through C in the upper flange at 3, we

T —e—— —

Fig. 71

at once see that all loads to the right of o produce com-
pression in the lower flange at D. '

/;
.
4
A
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For this position of loads, we have the following end-
moment and reactions :
Due to dead load, —
H =2 (0775 + 2637 + 4803 + .7275 + 9605 + 1.1314 + 1.2397
=+ .6384) 20 = 221.12 tons.
M, = (— 10.9T —15.66 — 15.65 — 12.8T — 7.50— 2.19 -+ 2.82-F 7.0§
' + 1.02.+ 4.09 + 6.98 -+ 10.05 + 11.38 + 11.31 4 9.95) 20
= —2.80 ft.-tons.
= 7% X 20 = 150 tons.

Due to live load covering the right of o, —
H ={2(.9605+1.1314 + 1.2397 + .6384) + .0775 + .2637 + -4893
+ 7295} 10 = 94.93 tons.
M, = (— 750—219+282+705+102+409+698 +Ioo5‘
-+ 11.38 4+ 11.31 4 9.95) 10 = + 549.60 ft.-tons.
V, = 3} X 10 + (015 + .046 + .097 + .161) 10 = 38.19 tons.
From Eq. (212) we then get for flange stress at D, |
F = }{(549.60 — 2.80) + (150 + 38.19) 46.88 — (221.12 + 94.93)

27.99 —20 (15.63+31.25) — {(188.19 — 40) .3906+316.05
X .g205}3] = — 243.50 tons.

CONCLUDING REMARKS ON ARCHES

98. It must be borne in mind that all the formulas
that have so far been deduced for arch-ribs apply with
correctness only to ribs whose radii of curvature are
considerably greater than the depths of the ribs them-
selves. Were this not the case, the fibre length would
differ sensibly with its distance from the centre of curva-
ture, and as a consequence the change in its length will
not be proportional merely to the ‘stress acting in the:
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same, but will also depend on its _——
distance from. the. centre of curva- e
ture. Thus in Fig. 72, let

r = radius of curvature of the rib,
dc = elementary fibre length at a dis-
tance of y from the neutral
axis,
d¢ = elementary central angle, Fig. 7

so that
= (r +y) d¢.
Further, let
1 J = fibre stress at ¥,
A dc = deformation of d¢ due to £
A d¢ = change of d¢,
so that

Then we have,

Ade = yAd¢.

_phd_p_yAdd
/=E e T+ y)do
Since
w= a4,

substituting the value of f,
Adé [ ydA
M=E—=- ,
d$ Jr+y
or e My .
VA
r+9 )T 5
From the last equation it will be seen that
My My

‘/ ydA I

only When ¥ may be neglected.




