CHAPTER IV

ARCHES, WITH TWO HINGES

42. IN an arch with hinges at both ends, since the
moments cannot exist at

Y ) these points, the reactions

o s ought to pass through the
Ad H H s latter.

X t Fig. 38 shows a sym-

Fig. 3 metrical arch-rib  with

hinges at 4 and B.
The following designations will be used throughout

the discussion:
V,and H . the vertical and horizontal components of the

reaction at A.
V,and H’ . ditto at B.

! . . . . spanlength.

4 . . . length of arch measured along the axis of the rib.

xand y . . cobrdinates with origin at 4.

¢ . . . . distance from 4 measured along the axis of the rib.

¢ . . . . inclination of tangent at x, y to the horizontal.

aand b . . distances of a load from 4 and B respectively.

¢ . . . . the distance measured along the axis of the rib
from 4.

. moment at any point.

. normal stress at a section.

. tangential stress at the section.

. resultant force.

. modulus of elasticity assumed to be constant.
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I . . . . moment of inertia of the normal section of the rib.
A . . . . cross-sectional area of the rib.

Forces acting upward are taken as positive.

Moments producing compression at the extrados are
positive.

Forces acting toward right are positive.

Tensions are positive and all vice versa.

Since equilibrium requires that among external forces
as well as between external and internal forces

S horiz. forces = o, 3 vert. forces = o, and 3 moments = o,

we have, H—H =o
V,+V,— W = o;
and from moments taken with respect to B and 4,

-b
Vo ='3W,

a
V,= W

43. Since at any section of the rib, wherever the re-
sultant of external forces does not
pass through the centre of gravity, a
moment will be caused at the sec-
tion, and further, if the direction of
the resultant does not coincide with
that of the tangent to the axis of the
rib, the latter, beside being axially \
compressed, will be subjected to tan-
gential stress at the section.

At any point x, y of the neutral
axis of the rib, then, referring to Figs. 38 and 39, we
have,

1

-
s
P .

Fig. 39
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m=Ro="V,x— Hyforx <a
= Vo —W (x — a) — Hy, for x > a.

Decomposing R into ¥ and H we get,
N 4+ Vsing 4+ Hcos¢d = o,
T 4 V cos¢p — H sin ¢ = o,
in which
V= %W for x < a,

= (;-1> W for x> a;

and since the loading is vertical, H will be constant
‘throughout the arch.

4. Neglecting the effect of tangential stress for the
reason already stated (Art. 5), we have for the internal
work in the rib due to W: -

_ f Vmidc f Y N*dc
¢ 2IE , 24E’

dx
cos qb’

in which
de =

being the elementary length measured along the axis of
the rib.

Substituting in this expression for work, the values of
m and IV already given, we get:

V% — Hy — W(x — a)}dec

e fa'(le Hyydo

2 IE o 2 JIE
@(V sin ¢ + H cos ¢)’dc n fl’(V sin ¢ + H cos ¢)’dc
+ 2 AE a’ 2 AE
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Since H must make o a minimum, we obtain for
dw
dH

= 0

the following:
¥ Woxy f “Hy f v Woxy f "W (% — a)y
fu T et) Tt ), Tkt 1

ll a -
+f H——jﬁdc-}—f Wb31n¢dx+f“ﬂzos¢dx
0
+le(b-l)sm¢ad +f’Hjos¢d v — o,
a
from which,
H = v
¥ by U (x—a)y b sin ¢ sin sing
‘j; 7I—db'— ” T de— i dx +f
75 Tcos ¢ W (85)
‘fo Tdc +L/0 1 dx

45. This equation could be somewhat
simplified by taking, instead of one one-
sided loading, two symmetrical loads, which
will evidently give H simply double that
for single one. Referring to Fig. 40, and
extending the integral over one-half the arch, we get the
following expression for H due to one W:

f o xydc f ydc fa sin ¢ dx
H=1%
' f ’“’yzdc f cos ¢ dx
a 0 4

Approximate results may be obtained by neglecting
the effect of the normal or axial stress, which is generally

Fig. 4

W . . (86).
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inconsiderable when compared to that of the moment.

For this it is simply necessary to leave out the terms
containing N and 4 in the precedmg equations, so that
we get from Eq. (83),

U by f” (x—a)y
.,/0 ﬁ—dc =) Vi de

H= T WL (8

1

or from Eq. (86), ’

I

o xydc f"’y_@
fo T "), T
l’
[

e 1

46. Temperature Stresses.—A temperature change causes
variation in the length of the rib, and were the arch-
end free to move, a corresponding change would take
place in span length; but as the supports are here
assumed to be immovable, the rib is forced back, as it
were, to its supports.

Let

t = temperature change in number of degrees,
6 = coefficient of expansion and contraction,
H, = horizontal reaction at the left support due to the temper-
ature change.

H=}

W, . . . (88)

Imagine the arch to be free to move at the left end, then
the force H, exerted at the support must be sufficient to
force the arch through a distance of

161,
reckoned in the direction of the force, i.e., positive for the

TS S

B S
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rising temperature. Then, according to the first theorem
of Castigliano,
do

m~t01

Using the same designations as before,
o f Y m2dc f ¥ Ndc
= 2IE T s 24E’

m and N here representlng moment and normal stress
due to H,.

Since
m = — H,y,
N = — H, cos ¢,
v yPde Vcos? ¢ dc
= 2
“’“H‘( | 2IE+./0‘ 2 AE )
whence
do Y y2dc *lcos ¢ dx
i B TR )
from which
10lE
H'=fl'y" +f‘cos¢dx s (B9
0 I ] A .
Neglecting the effect of axial stress, we get,
Ht=tolE..........(90)

3}

I
0 4
Eqgs. (85) to (go) will give the amount of horizontal reac-
tion for vertical loadings and uniform changes of temper-
ature when the form of the arch is known.

47. Displacement of Supports. — If, owing to yield-
ing or settling of supports, a change in span length takes
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place, the effect on the arch would be similar to that due
to temperature changes.
Let

Al = change in span length measured at the left support in the
direction of the force causing the same, i.e., negative for
the increase of span length, and vice versa.

H, = horizontal reaction at the left support due to change in span
length.

I leg
_ . _y_d_c fcosgbdx
“’“HA<D ;BT ), ZaE )’

by the same reasoning as before, we have
L4 !

do =HA(j e °°S¢’dx>=Al,
0

Then, since

dH IE ., AE
from which
EAl]
H“=fl‘2@+flcos¢dx' C e (91)
0 I 0 A
Neglecting the effect of axial stress, we get,
k EA]
HA = Tl,——j_’zzz e e e e e e e e e (92)
o 1 ,

The effect of slight changes in the heights of supporis is
generally so small in this kind of arches, that it is un-
necessary to take them into consideration in the calcula-
tion of stress due to displacement of supports.

PARABOLIC ARCH WITH TWO HINGES

48. Tf we assume the cross-section of the-rib to increase
from the crown toward both ends in such a way that at
any point

it S SR

N ——
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= ] sec ¢,
A = Aysec ,
in which I, and 4, denote the moment w
of inertia and the cross-sectional area v,
of the rib at the crown, the calcula-
tion of stresses in a parabolic arch- AN
rib ‘becomes considerably simplified.
Thus, introducing in Eq. (86) the equa- “
tion of parabola with origin at 4 (Fig. 41), Fig. o

h
y="tra-a)

and remembering that
dx = cos ¢ dc,
sin ¢ dx = cos ¢ dy,

we get,
H = :

4 h a . z T a

— x?(l—x)dx+a x(—x)de¢ —— cos* ¢ dy
I lzlo 0 13 AO 0
; 1 1 W.
: 16 12 zxz(l;x)zdx+_l__f2 cos? ¢ d

Bl, J, Ay,
Since

l

Afaxz(l—x)dx+af_x(l——x)dx=Ia—z(a”—zazl-!—l'),
0 a

fa os? ¢ dy = _ e nearly,*
. ¢ SO Ty % ¥
7

z . 15
2 — = —,
jo‘ x*(l — x)?dx %o

1

T 2
-/(: cos cbdx:ﬁ-%,

* Howe, Treatise on Arches.
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¢ denoting the value of y at a; and ¢,, the inclination of the
tangent at A to the horizontal.

Putting
To_,
4,- "
we get, ,
. ;—% (a® — 20% + P) — Fj—————-—fzfﬁ 7
H=§ 21| PP |2 a (93)
SRR

Neglecting the effect of axial stress, the terms contain-
ing 4 disappear, and we get,
@ —2adl+F)

8P W (94)

49. For umiform temperature change t— positive for
rise — by making similar substitutions as before in Eq.

g el

89), since
( ) fp yde é_h_zl
o 1 15 1,
f" cos!pdc Py
0 A - 4 hAo ’
we get,
I0ET,
Hi=gm—Dar -+« « 95
—+—¢
15  4h'°
Neglecting axial stress, similarly we get from Eq. (go),
15 10,E
H,=—5872°.......(96)

50. For change in span length Al — negative for in-
crease — we get similarly from Eq. (91),
. — _ ELAl -
ey e R
15 4h

b
4
¢

N

ARCHES, WITH TWO HINGES 19

Neglecting axial stress,

15 ELAI
HA=i8h_2;‘L.......(9s)

CIRCULAR ARCH WITH TWO HINGES

51. Fig. 42 shows the axis v
of a symmetrical circular
arch-rib with wuniform cross-
section.

In Eq. (86), making I and
4 constants, and putting

I
=%
we get
[ ’? a
f xydc—l—af ydc-—-i"f sin ¢ dx
H =320 o d w.

7 7
z z
f y*de + 7* f cos ¢ dx
0 0

With designations as given in the figure, we have for
circular arc,
x = 7 (sin ¢, — sin @),
dx = — r cos ¢ do,
y =17 (cos ¢ — cos &),

dx
dc = cosg = rde,

a =r (sin ¢, — sin ¢,).

Substituting these in several terms of the expression
for H, and integrating, '
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f chdc=13[—}sin2 g —sin ¢y sin ¢, + 4 sin? ¢, — (o — ¢,) sin ¢, cos b,
0

— cos? ¢, + cos ¢, cos ¢,],
ll
z
af ydc = 7 (sin ¢, — sin ¢,) (sin ¢, — ¢, cos ¢,),
a"‘ . 7, . .
f sin ¢ dx = 5 (sin® ¢, — sin? ¢,),
0

v

z
f Yde = 17 (h o — B Sin by COS o + By COS? diy),
0

l

f‘ cos ¢ dx = -:(sin ¢, COS Py + ),
0

we get,
2 eos b0 {cos pa—t da sin pa—cos dy—dy sin ) + (: — :—;) (sin? ¢y — sin? da)

I{:; 5 w.
(B0 —3 sin g c0s ¢ +2 $g cos? bo) + 5, (sin By c0s G + o) N
or, since
. 1 r—h,
s ¢0-—2r3 cos ¢°=—T—’
. l— — ‘
sin ¢, = . za’ COS = r___h_+_e;
r
v UV—2d
‘1’0—5—7_’ b= 27 ?
(r—h){2e+ ¢, (—20)— ¢, Z}+(I — f;) (l—a)ea
H= W . (99b)

4 0= {0 =R =1+ (1 + ) (27 dut (=i}

1
7

Neglecting axial compression, we get,

e sin’g, —sin’e, 4 2 Cos ¢o(COS ¢, + b, Sin b, —COS Py — bySin ¢b) W
2 (o — 3 5In ¢ COS by + 2 ¢, COS? )

(1o0q)
or
He C=W{zet $0—20) — 81} +0(—a)
2 {rP+ 2@ —hPy—31(r—h)

W . (zoob)

i
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52. Temperature Stress.— For uniform temperature change
of ¢ degrees, Eq. (89) may be written for constant 7 and 4:

16IET
7

Ht= I *
z z .
zfyzdc-{—zizf cos ¢ dx
0 0

Introducing in this the integrals already given, we
obtain,

e 1BIET (ro10)

‘T (Bo— 3510 $,C05 By 2 $oCOSPy) + 77 (NGO Pot )
or
H=—F . 1OIET - 5 - - - (101b)

7| ¢p {P+2 (r—h)2+i*} — -;(3 — ;—2) (r——h)l]
Neglecting axial stress, we get,
tOIET

= g 5o dooos o+ 2o g (zo20)
or
m, WEI (Fost)

T bt 2 r— R — 310 — h)]

53. Displacement Stress. — For change in span length
by Al — negative for increase of span length — we have

from Eq. (91), sIa

Hay= v 1 :
z z
2f yzdc-l—zi"'f cos ¢.dx
0 (]

Making the same substitutions as before, we get,

3 EIA
"~ (denominators same as for H,)

Ha + (103)
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SEMICIRCULAR ARCH
54. In this, since
o= ;’
we obtain at once from Eq. (g9a),
_ (*— 4% cos?
H = ™ (7 + 2
Neglecting axial compression, we get from Eq. (100a),

¢aW--~"~(IO4)

cos? ¢,

™
55. For umiform temperature change t, we have from
Eq. (1010),

2 t0IET
HFW*-'—?)' C e e oL (106)
and for the same, by neglecting axial stress,
2 10lET
t=,rrs..........(107)

56. For change in span length Al similarly from Eq.
(103) referred to Eq. (1024), we get,
.2 EIA]

A=_——~n-r(r2+i2) . -+ - (108)
and for the same, with axial stress neglected,
2 ETA]
HA="'3"""""‘(I°9)

FLAT ARCH WITH TWO HINGES

57. When the rise of an arch is very small compared
with its span length, we may put without material error,
dc = dx.
Assuming the cross-section of the arch to be umform
throughout, and putting as before

R
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.__.=.-i2

’

Eqgs. (86), (89), and (g1) may be written as follows:

o

a l

z
f xydx—l—af ydx——izfsindzdc ’
IJy ] [ W

H= ; - . (110)
2 5 z
f yzdx-l-z'zf cos ¢ dc
0 0
Hy= - WIEL . o e o (11D)
fyzdx«[-ﬂ[cmqsdc
0 Jo
EIAl ... - (112)

Hy=

fydx-;- fcos ¢ dc

FLAT PARABOLIC ARCH WITH TWO HINGES
(Uniform Cross-Section)

58. For this, we have but to introduce in Eq. (110)
the equation of parabola
y = ﬁl—’ﬁ x(l — x) W

Q

- v
to obtain expression for H due to any A‘ /—i
I

load W (Fig. 43). Integrating the terms  k—o 1 —
of the equation severally, we have, Fig. 4

1
'z 3 h
faxydx+af ydx=a'—z]Z(4l—3a) +—qﬁ(l”—-6azl+4a’),
(] a 3 3

a!
f sin ¢ dc = e,
0
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so that
h
I—%(Z—wa)(ﬁ—kal—az —e
H=238" —W
2 VR coe (1g)
1542 ' 2

Neglecting ¢ as being inconsiderable in comparison with
other terms of the numerator, we obtain,
_sah(l—a)P+a—a

= 2)W.....(114)‘

BB + 157
Further neglecting the effect of axial stress, we get,
_s5a(l—a) P+ a— e
H = ShE w oo . . . . (113)
59. For a uniformly distributed load of w per unit

- length of the span, we obtain,
VI% by substituting wda for W in
A , — 8 the preceding equations, and

Fig. « integrating between given limits
of loading, the equation for
H. Thus, referring to Fig. 44, we have, from Eq. (113),
I—I='/0‘ 154 (l—a)s(}i;:—al——az)wda _a’(s P—féa;;la+2 ‘113’) w (116)
By taking moment at B,
V,= g (21 — ‘7'1)740‘
2]

For full uniform load,

Pw -
H = g% approximately.

60. Temperature Stress. — Introducing in Eq. (z11) the

equation of parabola, and integrating as before, we obtain,
, t0IET 15 t0ET

-2
i + 2%

=_8Lzl =8h2+15i2 < (1)
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Neglecting axial stress, we get,

15 0EL

i e . . (118)

.H-g-—"

61. Displacement Stress. — For a change of Al in span
length — negative for increase of the latter — similarly
we get from Eq. (112),

—_ISEIAL . (i1
A= r@r T 59 (129)
and for the same with axial stress neglected,
g BEIAL L (120)

AT T8

FLAT CIRCULAR ARCH WITH TWO HINGES

62. Since a circular arc with comparatively small
versed sine closely follows parabolic curve, the formulas
deduced for parabolic arches (Egs. 113-120) may be used
for this kind of arches without appreciable error.

SPANDREL-BRACED ARCH WITH TWO HINGES

63. The foregoing formulas are generally inapplicable
to a spandrel-braced arch, owing to the lack in the latter
of definite form in its axis and the irregular variation of the
moment of inertia of its section. As the only statically-
indeterminate force in this case is again H, in order to
find the value of the latter which will make ® a minimum,
it is simply necessary to find stresses in each member in
terms of H and other external forces, and obtain,

S2L
2 AE’

w =
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extending the second member over the whole structure.

]
N\ ) % Sl % 54 e ——-‘_’_’_'_‘_——-—___
R W S hy 18 hadg e
\ 2 b <
0 ]’\3 B, O

Fig. 45 shows the left half of a symmetrical spandrel-
braced arch. The following designations will be used:

o, 51, etc. . . the lengths of vertical members.

d, d,, etc. . . the lengths of diagonal members.

a . . . . . the horizontal panel length.

b, by,etc.. . . the lengths of lower chord-members.

A . . . . . the sectional area of a member, with suffix cor-

responding to the members to which it pertains.

If we assume, in the first place, the arch to be loaded
with two equal loads of W each, distant na from each
end, we obtain the following stresses for the case n=1
by taking moments at successive sections, the arm-lengths
being designated as shown in the figure:

WEB-MEMBERS

AB=—W+2-H. BC = Wa— Hs,
a A

Ch = — Wa—Hs, BE = Wa— Hsy
e, —a f;

FF - Wa—Hs, G- We—Hs,,

&—2a %
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CHORD-MEMBERS

B_.D=—Wa_H(SO—SX)- E=—Iiﬁ-
5 by
ﬁ=_Wa—H(s0—s,)- EE‘=WCL'—H30.
Sa h,
fﬁ__—_Wﬂf—'H(So—Sg)‘ E—ézwa*HSo.
53 . ) hs

Introducing these in the expression for total internal
work, we get,

3L 2 jf Sp— 8 )2 Sp (We, — Hsy)? sy
2AE”E{< WA=—H | ot "= 24,

N Wa—H$0>’ S We,— Hs(,)2 d, +(Wa—Hso>2 d,
e— 2a 2A4f j;_ zAbc _]; ZA,k

Wa — Hs\* dy gs_o)z b, (Wa— Hso) 5
+( 7 >?47+(h 24, T\ m o )74s

1 ('Wa ;8}]5‘,)2 f); . (Wa — H (sy — sl))’ Z
2 fe $. 2
+ (Wa — H (s — sz))2 @ (W;a — H (55 — :))2 a }

So 2 Agr S3 245

Differentiating this with respect to H, and setting the
differential coefficient equal to zero, we at once get,

(5a—55) 5o €55051 aspSq " e5edy | @*(s,—sy)
o= aA gy (e,—aPAs (e,—20a) 4, 24, 52452
B (So— 5150 505y S¢Sy + bisg® + diss’
a*4 o (e,—a)des (65— 20) Ay hlAs S

asqh, ased, a2(5y—S,) asghy asyds a*(Sy — Sg)
Vigd, T A, T Ay T hd, T A, T s
a(so—sy)* | bPsit | Sids  a(so—5,)", B'sg | dgsy® | also—ss) ’
. ThiAL T iy Thids Fod,' stdn
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which is the value of H for 2 W, so that H for 1 W will

be one-half the amount given by this equation. '
In a similar manner we obtain in the arch of this type

with any number of panels, for 1 W the following expres-

sion for H :

2’ — d (5o—51)5
} €s 0 1/°0
$a*(s 5) , pasyh e5¢S 0 %
0 ; 82;1“ h2A1 (6—-;50)2%1,, sz(l aAab
H = l

z 2 2
(5o — sYa | si'b S¢S
Y Rd =y

0

1
< 2 nasyd
na(s,— s) |, nasp n nass %Sy %
i § oA, A e—pord, " A W. (121)
sed (5o — 575
+ﬂAd§+* Pl

in which p represents, in case of chord—members., the dis-
tance — in number of panels — of the panel point oppo-
site the member under consideration, and in case of web-
members the ordinal number — from the nearest support
— of the upper chord opposite the web-member in ques-
tion. Thus, referring to Fig. 45, we find for DF, EG,
EF,and DE, p = 2.
Ay, Apd,,and A, = crosssectional areas of the upper and lower
chords, verticals and diagonals respectively.
e . . . . =distance from the support— nearest to the
member — of the intersection of the lower

chord-member opposite the web under con-
sideration with the upper chord.

Tt is further understood that = is to be extended over the
loaded half of the arch only.
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64. Eq. (121) gives mathematically correct results so
long as the supports are perfectly immovable, and is ap-
plicable when dimensions of all the members of the arch
are given. For designing an arch of this kind, the cal-
culation may be started with following approximations:

Assume each chord to be of uniform cross-section

throughout its length, and let
4.4.1

m = —— -
A,

Further, neglect the effect of web-stresses, which is gen-
erally inconsiderable when compared with that of chord-
stresses. 'Then we get from (121) the following approxi-
mate expression for H, freed of all the ‘cross-sectional
areas of members: z
§ gﬁaz (So—s)+ paseh z + Eg gnaz (;o—s) +nasob 2

H =2 s mh® mh?

W. (122)

L.
) 2 { 502 n (so -—qs)zag

o ( mh? 5?
With H obtained with this equation, the dimensions of
all the members may be calculated, and then corrected,
if desired, by the use of Eq. (121). Generally, Eq. (122)
by itself gives results sufficiently correct for all practical
purposes.

65. Temperature Stress. — The internal work caused
by H, in the arch of Fig. 45, neglecting the effect of web-
stresses, will be,
w=%§ S0’y Sozbz_l_ izbg_i_ (So—s1) a
in which A4 represents the section of upper chord, and m4
that of the lower.

. (so—5,)%a

mh? " mhy? " mhg® 52 s,

+ (so—ss)’{tz

5%
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Since do
pii = 6],
we get
o 8% 10IEA
o 5070y 1 Dz+ 302b3+ (So—s))’a N (so—-sz)za,_l_ (50‘_53)2@%
mh 2T b} mhbg s 52 2

t being as before positive for rising temperature. Gen-
erally, for any number of panels we get in a similar manner,

10IEA

— 5)2 a)
2 {mif J>

66. Displacement Stress. — From the preceding discus-
sions, it will at once be seen that for a change in span
length, of Al, we have but to substitute Al — negative for
increase of span length — for 6l to obtain an expression
for H,, so that we get,

(123)

EAAL
2 sfb — s)’ }
mh2 ,

THE STRESSES IN FLANGES AND WEBS OF A RIB

(124)

67. Knowing V, and H for
a given loading, the stresses
in the flanges and web of a
parallel rib may at once be
obtained statically. Thus, at
a radial section through any
point x, v (Fig. 46) of an
Fig. 46 arch-rib, let
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F’ = the upper flange stress.

the lower flange stress.

web-stress.

d, + d, = distance between centres of gravity
of upper and lower flanges.

I

E”
D
d

Taking moment with respect to the point «, y in the
axis of the rib, we have,

x
Vi —Hy ——ZW (x — a) + F'd, — F"d, = o,
0
from which
x
Fr'dy— F'd,= V& —Hy— 3\ W(x — a).
. 0
But
F" 4+ F' =N =— (Vsin ¢ + H cos ¢) (Art. 43).
Combining these two equations, we get,

I

Fr" = E{le—Hy—ZW(xma)—(V sin ¢+ H cos ¢)d, } (x25)
4]

Fr=— g{le——Hy—-EW(x—a)—}-(V sin ¢+ H cos qb)d,} (z26)

If 4 =d,

i.e., if the section of the rib is symmetrical about the
neutral axis,

Frr — %{le—-Hy——zo;W(x—a)}— S(Vsin ¢+ H cos 4;)} (127)

I

Fre=— 3 {le_Hy—zo;W(x—a)}+ ‘—21 (V'sin ¢4 H cos ¢)}(128)

In case the chord-members are curved between two
panel points, the direct stress thus found must be com-
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bined with the moment equal to the direct stress multi-
plied by the versed sine of the panel arc.

~ Again, since at the section ‘

D cos B =T=— (V cos ¢ — H sin ¢) (Art. 43),

’ =—(Vcos¢p—Hsing)secf . . . (129)

in which 8 represents the inclination of the web-member
to the radius of the arc at

oo o R the section.

8

wl L In case the chords are nof
' parallel, the stress in any
) B . .

. Fig. member is best obtained by

taking moment with respect
to the intersection of the other two belonging to the panel,
as in the case of spandrel-braced arch.

POSITION OF LOADS FOR MAXIMUM STRESS

68. For finding the position of loads to give maximum
stress at any point of the arch, reaction locus may be made

use of with advantage.

Let
R = reaction at 4 due to_any load W.

'Y, = vertical component 0f'R.
H = horizontal component of R.
k = ordinate to the locus of R.

Referring then to Fig. 47, it will be seen that,
v

k=E1a.......(130)

which makes the locus at once determinate.
69. Having the locus drawn, the mode of loading giv-
-ing maximum moment with respect to any given point of
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the rib may be laid off, remembering that R passing above
the point produces 4+ moment, and that below, — mo-
ment. Thus in Fig. 48 it will be seen that the stress in
any member EF '
will be maximum
when the moment
with respect to
point O reaches its
greatest amount.
The curve CKGD
being the reaction locus, a load at G will produce no
stress in EF, for then the reaction passes through O.
For loads to the right of G, by considering the por-
tion of the rib left of O, it will be seen that the mo-

‘ment of R being —, the stress in EF will be tension, while

for loads to the left of G, by considering successively
the left and right portions of the rib, the moment with
respect to O being positive, EF will be in compression.

. For loads beyond K, considering the right portion of the
{

arch, the moment of
right reaction with
respect to O being
negative, EF will
once more be in
tension.

Similarly, for
maximum stress in a lower chord-member, the reaction
line drawn through the panel point opposite the member
will give the mode of loading.

70. For maximum stress in a web-member generally,
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the reaction line is to be passed through the intersection
of chord-members belonging to the panel to determine the
limits of loading. In case the chords are parallel at the
panel, since the web-member will not then be strained
when the direction of the resultant force coincides with
that of the chords, the position of load, for no stress in
the web-member, is given by drawing the reaction line
parallel to the chords, or to the tangent to the curve.
Thus in Fig: 49, point M is the position of load producing

@
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Fig. 50

no stress in IJ. Another position of load for no stress
in IJ is at L directly over the section, —a point which
will be evident by considering alternately the right and
left of the section with its respective reactions. The
signs of shear, and, with them, those of the stress in the
web-member due to loads between the points of no stress,
will at once be known by referring to Art. 43.
ExampLE. — In the circular plate-webbed arch with two
hinges, of which Fig. 50 shows its left half, to calculate the

SR
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maximum stress in the rib at panel point 3, due to following
panel loads:

Dead load = 20 tons per panel,

Live load = 10 tons per panel.

The following dimensions are given :

[ = 250 ft.

y = 200 ft.

b= 38° — 40’ — 56" = .67514.
Panel length = 15.625 ft.

Cross-section uniform and symmetrical throughout,
i2
— = .000I9.

rﬂ
Effective depth (dist. of c. g. of flanges) = 6 ft.

The distances of the points of application of loads, etc.,
are as follows :

't

(i) f(E).  lba(circ. meas).| da (I —22). | a(—a). ( — :—,) a(l—a).

15.63 11,32 .57863 126.58 3662 3661
3L.25 20.54 .48788 91.48 6836 6835
46.88 27.99 40114 62.68 9517 9520
62.50 33.86 .31782 39.73 11719 11716

78.13 38.31 .23658 22.18 13428 © o 13425%

93.75 41.42 .15689 9.81 14648 14646
109.38 43.26 07831 2.45 15381 15378
125.00 43.88 00000 0.00 15625 15622
In Eq. (99%),

(= B)fze + dall — 20) —¢oz;+(x—j—g (i—a)a
W.

. l
4 (r— 1) {do (r~—h)—l§+(: +?:) {27¢y+ (r—h) 1}

Introducing the numerical values in the numerator, the de-
nominator being
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4(r—h){d r—h)—1} + (I + %z) {27% + (r — h) I} = 2766,

we get for W = 1 the following values of /:

Load at I 1 2 ! 3 l 4 6 ' 6 7 8
| .

H = 2189 | .4263 | 6118 | .7737 | .9027 | .9971 | 1.0546 | 1.0739

For the dead load we have then,

V, =43 X 20 = 150 tons,
H =2 X 20(.2189 + .4263 + .6118 4 7737 +.9027 + .9971
+ 1.0546 + .5370) = 220.88 tons.

Drawing the reaction locus, and passing reaction lines
_through Z and F,—the centres of gravity of upper and lower

LQCU )
8
| M+

Fig. st

flanges at 3,— we find (Fig. 51) that all loads lying to the
right of C produce negative moment with respect to £ and
hence compression in the lower flange; while for similar
reason all loads to the left of D produce compression in the
upper flange. '
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By drawing AJ parallel to the tangent to the axis of
the rib at 3, and passing a vertical through Z, we find
that the loads between Z and M/ produce positive shear in
the section EF, and those outside of L}, the negative shear.

The amounts of A for the positions of the live load found
above are :

Fig. 52

For the live load covering A — D,

V, = 1§ (15 + 14 + 13 + 12 -+ 11 + 10) = 46.88 tons.
H = 10 (.2189 + - » - .go27 + 1.0546) = 30.88 tons.

For the live load covering C — B,

V=14 ( + - - - 10) = 34.38 tons.
H = 10{2 (1.0739 + 1.0546 +.9971) +.9027 + - - - .2189}
= 91.85 tons.

For the live load covering 4 — L and M — B,

Vi=31( + -4+ 14+ 15) = 35.62 tons.
H = 10{2(.2189 + .4263) + .6118 + - . - 1.0546} = 56.30 tons.

For the live load covering L — M,

V, =133 (8 + 9 + 10 + 1T + 12 + 13) = 39.38 tons.
H = 10 (.6118 + . - - 1.0739) = 54.14 tons.
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At the neutral axis under the panel point 3, we have

x = 46.88 ft, ¥y = 27.99 ft. ¢ = 22°50/36".
sin ¢ = .3906. cos ¢ = .9336.

Substituting these values in Egs. (127) and (128), we get
for the total stress in flanges at 3 :

7=} {184.38 X 46.88 — 312.73 X 27.99 — 20 (31.25 + 15.63)
— 3(184.38 X .3906 + 312.73 X.9336)} = — 356.38 tons.
£ =—}{196.88 X 46.88 — 260.76 X 27.99 — 30 (31.25 + 15.63)
+ 3 (196.88 X .3906 + 260.76 X .9336)} = — 247.62 tons.

As to shear acting in the normal section at 3, we have
(Art. 43),

Veos¢ — Hsin ¢

= (150 + 39.38 — 2 X 20).9336 — (220.88 + 54.14) .3006
= 32.04 tons for maximum.

= (150 + 35.62 — 2 X 30) .9336 — (220.88 + 56.30) .3906
= .01 tons for minimum.

Had we neglected the effect of axial stress in the preced-
ing calculation, Eq. (1005) would have given for 4,

Load at 1 2 ‘ 3 4 5 6 7 8

H = .2206 .4:95‘.6x64 7794 | 9095 | 1.0046 | 1.0625 | 1.0811

So that we get for dead load,

V= 150 tons,

H=120X 2 X 55630 = 222.52 tons;
and for live load covering 4 -- D,

V= 46.88 tons,
H= 39.60.
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Substituting these values in Eq. (128), we get for maximum
compression in the upper flange at 3,

Fr=— }{196.88 X 46.88 — 262.12 X 27.99 — 30 (31.25 + 15.63)
4+ 3 (196.88 X .3906 + 262.12 X .9336)} = — 241.9T tons.

It will be seen from these calculations, that the effect
of neglecting axial stress, while producing a difference of
less than 0.8 per cent in the amounts of H, is more
strongly felt in chord-stresses, in which the difference, in
the case taken, amounts to more than 2 per cent.

Fig. 53

ExampLE. — In the spandrel-braced arch of Fig. 53 with
dimensions as tabulated below, to calculate the maximum
stress in a member 7/ due to the following panel loads :

Dead load . . 16 tons per panel,
Live load . . 20 tons per panel.

Lengths of members and arms in feet:

s 4. 5 e k. e
1 18. 23.9 17.1 48.8 23.6 38.2
2 1 3.Z 20.0 16.0 66.0 17.6 33.7
3 10.0 18.0 15.3 9I.9 12,9 34.4
4 9.0 17.5 15.0 195.0 10.0 77.1
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Assuming 7 = 2 (Art. 64), we have in Eq. (122):

na 4 1 13 13
Panel. |3 22" (s,— 9) i«, na® (s, — 8 "2“ pash |3 nash § S § (5 — 5)%a

: o £ |na I o 2B o miE | o mE g
= CE 5.34 . . .. 11.19 2.6
I| EG Co. 17.82 1046 | 19.37 16.40
% GI 38.25 1862 | 33.51 43.35
I IK 50.00 30.38 | 54.68 60.00
&
)
:3« b} 5.34 106.07 59.46 | 118.75 122.71

_ 534+ 106.07 4 59.46 6
17 2 (11875 + 122.71) 35
CE 5.34 ..

w| EG 35.64 . e 10.46 .

W GZ IR 76.50 .. .| 3724
X IK 100.00 60,76
G

el = 40.98 176.50 10.46 | 98.00 | 11875 | 122.71
E
= 7, =32595 _ ¢

2 482.92 75
CE 5.34 . .. .

=l EG 35.64 . 10.46 .

1 GL 114.75 . 37.24 |. . .
& 1K PR 150.00 .. 9I.14
N

o ] 155.73 150.00 4770 | 91.14 | 118,75 | 122.71
7
“ — 44457 _

s 482.92 921

~| CE 5.34 . ..

T;’ EG 35.64 10.46 . .

s €L 114.75 37.24 ..

| IK 200.00 91.14 :
X

=
=z z 355-73 138.84 118.75 | 12271
«

A 494.57

H, = =2 =
=g 1.024

i

ARCHES, WITH TWO HINGES 101

For the dead load we then have,
V=16 X 3% = 50 tons,
H= 16 X 2(.356 +.675 + .921 +.512) = 78.85 tons.
Drawing the reaction locus and then the reaction line
through G (Fig. 54) to the locus, we see that all loads to the
right of Z will produce compression in ZZ, while those to
the left, tension.

e ——

Locug of R L
(o] E G/ 1

Fig. 54

For these positions of the live load we have,
Live load covering C — G,
V=22 (7 + 6) = 32.50 tons,
= 20 (356 + .675) = 20.62 tons.

Live load covering 7 — B,

Vi=3 (1 +2+3+4+5) =375 tons,
H= 20(.356 + .675 + .921 + 1.024 + .g21) = 77.94 tons.

Taking moment with respect to G, we obtain the following
extreme stresses in FH :

Max. FH = ﬁg {(56 + 37.5) 30 — (78.85 + 77.94) 27 — 16 X 15}
= — 129.33 tons.

Min. FH = éa {(56 + 32.5) 30 — (78.85 + 20.62) 27 — 16 X 15}
=3— 43.47 tons.
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Suppose now that the following cross-sections (in sq. in.)
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of the members are given:

Panel. Upper Chord, Lower Chord. Diagonals. Verticals.
CE 28 7 6
EG 23 7 10
GI 15 17 7 9
IK 17 17 5 7

Then in Eq. (121),

B

gfwcsm) pasih, _esos_ esud | | (ser)n
v

PAu  BRAL " (e—paP Ay f2Aa) T adw

nasyS _, nasyd, %

VR2AL V(e—pa)2dv ' f2Aa

i
f é{mz;(:;::) | 7nash !

1]
)2, 2
2§{(so Na | 5?6, s’
0

*d (so—51)%0
AL i
'Ad

Fdu BAL (e—paydy ' J 22Aa
we have,
For Denominator
14 1 1 il
Panel | 22 (—9)°| 3% $ gk 354 | (a—s)s,
o 54, 0/2Adr | 0 (e—pa)d, | of%4s 22
CE .49 .80 1.19 1.70
EG 1.82 1.64 .83 1.83
GI 2.89 3.04 .47 1.58
IK 3.53 6.43 43
= 8.73 12.81 2.49 5.54 1.38

Denominator = 2 (8.73 + 12.81 + 2.49 + 5.54 + 1.38) = 61.90.
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For Numerator
T s e e | W W -
R T B IO B I Y SRR Br | A
ElelR |2 | SR IR R R A | T
] 3 N o | meW § \L, l., o | mel £ R
e | wml ¥ to | ~eA E
CE| 8 |... coo 216 | ... 330 ...
EG .. | 1.98 .91 - 46 | .. 1.02
GI 2.55 2.19 26 | .. .88
- | &7 2.94 3.57 R P .24
|
AR E] 89 | 7.47 6.67 | 2.16 72 | 3.10 | 2.14 | 2.49
25.64 -
‘IYI = 61.90 = .414
CE| .39 . el ]2a6 | ... | 310 .
EG| 3.96 .. 91 | ... | 202 .. 48 1. .. .
GI|...]| 510 438 | ... | .52 IR O 012 IR
o | JK 5.88 7-14 . 48 1.
I
Sl 4.85 |10.08 .91 |11.52 | 4.18 52 | 7.58 | 2.24 | 2.49
_45-27 _
7, = 61.90 732
CE| .89 I O -5 () 3.00 | ... .
EG| 3.96 9I { ... | =202 4.48 ... .
GI | 7.65 | ... | 4.38 . 1.61 540 | ... .
| JE ... | 882 | ... jro7r | ... PR B £ .
i
) % Jiz.50 | 8.82 | 5.29 |10.71 | 5.79 12.98 72 | 2.49
__59.30 _
2= 61.90 958
CE| 89 cee e a .| 1.28 3.10
EG| 3.96 o1 | ... .94 4.48
GI | 7.65 4.38 | .. .| -35 5.40
« | ZK |11.76 1070 | ... | .. 3.11
i
s 24.26 16.00 | ... | 2.57 16.09 2.49
61.41
H o=t = 992
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With these values of H, we get for dead load,
H =16 X 2(.414 + 732 + .958 + .496) = 83.20 tons,
= 3} X 16 = 36 tons.
For live load covering 7 — B,
H = 20(.414 + 732 + .958 + .992 + .958) = 81.08 tons,
V= 22 X 15 = 37.5 tons.
Taking moment at G as before, we get for the maximum
stress in FH,

-———9—{(56 + 37.8) 30 —(83.20+81.08) 27— 16 X 15} = —144.96 tons.
12

Comparing the values of H obtained by the use of Egs.
(121) and (122), it will be seen that the neglect of web-
stresses and the assumption of uniform chord sections
have led to no appreciable error, the difference being about
4% per cent; but its effect is more strongly felt by indi-
vidual members, as shown by a comparison of maximum
stresses in EF, the difference of the latter amounting to
more than 1o per cent.

BALANCED ARCH WITH TWO HINGES

71. In a balanced arch, such as shown in Fig. sz, with
independent span at each end, the method of calculating
reactions does not differ in general from that explained
in the case of spandrel-braced arch, the main difference
being that in the present case V, and H will be + or —
according to modes of loading.

ExampLE. — In the symmetrical balanced arch of Fig. 55,
to calculate H, V, and V, due to a uniform load of 1.5 tons per
ft. run covering the whole of the left arm.

Since the left cantilever arm is loaded at its end with

45 + 22.5 = 67.5",
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by taking moments at 4 and B we get,

— 67.5 X 60 —45 X 30—V, X 240=0. V,=—22.5.

— 67.5 X 300 — 45 X 2770 + V| X 240=e0. Vi =+ 135.0%

Neglecting the stresses in web-members, we have — by
taking moments at successive sections—the following stresses,
which, with given lengths and cross-sectional areas of mem-
bers, give the corresponding works of resistance in chord-
members :

Panel. S. A. L. S .
(tons.) (sq. in.) (ft.) 24K
2 9 I I L
74 102.7 +-23H 20 30 102.7 + Py H)24°E
15 15 30
7 119.1 +;;H 23 30 119.1 + I71—{ ZMSOE
k= 9 gy 32
5 7r 130.0 +131{ 28 30 130.0 + 13]{ 25205
o 5 3 0
E<1V,V I12.5 +?H 30 60 112.5+ 3]{ o F
& 80+~I—9H 28 o 780-}-12[{ 2._30_
S|P 75- 13 3 g 13 256E
» 5 15 30
vir 40.0 +—7H 25 30 40.0 4+ 17]{ o Z
virr 14.7 + 2 2 7 20 30 147+ 28 ) 2
\ 4 23 40 E
‘ —( o8.2+ 4;1 5 35 | o8z +Stm )35 .
z 9 5 55 110£
+ H 1125—{-33}[ ’_33
ir — | 112.5 55 33 5T uo,E
31
~ ar — (126.6 + 2H) 52 31 126.6 + 2 & Toa -
3 32 30
5 v (1300+——H) 50 30 130.0 + 3H) ook
Fl 32 32 30
el —(779+ H) 50 30 79+ A  TooZ
b I
A\ pr — (42.2 + 2 H) 52 31 42.24+ 2 H 7(%;2'._‘,
32 V.33
vir (16 ) QRN H) 55 33 16.1 + sz ey
64 (_655, ’_35
LV!II — -S-gﬁ 55 35 55 TI0E
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Summing up all the terms of the fifth column, and differ-
entiating the sum with respect to H, and setting the differen.
tial coefficient equal to zero, we get,

H =—3565"
showing that the horizontal reaction is directed opposite to
that shown by the arrow at 4. .
For loads in the central span, considering the side

s B %
= *l l a” o o
- e o =]l v L f 4
S AN IV VAL
~ w o
3 | 1l 0 8o EPr i B
60 ¥ 955 /
A H ¢y % B/
80 330" 240 ‘
Vl.t X s
Fig. 55

spans to be weightless, the calculation of 2 and V is ex-
actly the same as explained in Art. 63.

H will, therefore, be positive —i.e., acting toward
right — or negative according as the central or side span
is loaded.

TIED ARCH WITH TWO HINGES

72. In the tied arch the horizontal thrust is taken up by
the resistance offered by the tie. It has an advantage of
the absence of stresses due either to changes of temper-
ature or displacement of supports. Figs. 56 and 57 show
arches of this kind. Representing by A4, the cross-sec-
tion of the tie, we have for the work of resistance in the

same due to H,
HY

2A,E.
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This, then, is to be included in the expression for the
work of resistance.

In the case of arch-rib (Fig. 56), referring to Art. 45, we
get, after differentiating » with respect to H, the following
equation of the latter for one load W:

i “’xydc ydc f *sin ¢dx

) 1
H=; . 4 W . (131)
f’y’dc j’ cos¢dx+ I
0 I 0 4 2A,
4
Fig. 56 Fig. 57

And in the case of spandrel-braced arch (Fig. 58), froin

,Art. 66, we obtain similarly,

H =

2{)942(: —s) pasoé, esys , espd ) (Sas1)So zgua’(:o-:) | mash | masys | masyd)
| 24w For (e—pa)tdy rsza\T ada 2Aw L RRAL (e—pay Ay 244\
W

’ (so—sVa | 5% So2s so2d so—%1)%5g
1%"{ °:=.4.. ‘1:2A1+(e-—p¢)2A- j"Ad}—l- (aIA.i +
(132)
The effect of introducing the tie, on the amount of H,
becomes conspicuous with diminished rise of the arch
and increased moment of inertia, as will be seen in the
case of flat parabolic arch, for which we have, from Art.
58, the following approximate equation for H due to
one W:
5a(l — a) (l’-}—al—a’)W.

15
P@h+Aﬁ

H=
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ExaumpLE. — Taking' the circular arch of Fig. 50, given as
an example in Art. 70, and
I=so0omt  adding to the same the hori-
zontal tie with a cross-section
~msam Of 50 square inches (Fig. 58),
to calculate the stress in the
tie, due to a uniform load
of 20 tons per panel.
Transforming Eq. (131) according to Art. 51, we have for
the circular arch, by neglecting axial stress,
oo r—h{zet+ ¢l —20) — b} +al—a),

2¢0{r2+2(r—h)2}——3l(r--h)+%l’

Referring to the data of the previous case, the denominator
in this case equals
2 X 59,000 X 250

8
2748 + 50 X 200 X 144

== 2768

and since we have for the numerator as before,
20 X 30,578 = 611,560,
we get
_ 611,560
T 2768

which is the stress in the tie.

= 220.94 tons,



