CHAPTER III

CONTINUOUS GIRDERS

24. Ler Fig. 22 represent two consecutive spans of
a continuous beam, sup-

d to be resti im- {’ .
posed to be resting on im- Y VF b IMs

movable supports of such - 5

1 7

C
heights that the girder f, = fr ;‘Ra
would be unstrained were R
it completely unloaded.

The following designations will be used throughout the

discussion:

Mlv Mz) M8 .

R,, Rz' .
R/, Rs .

a, b
I, I,

Ny Myy Mgy My -

E.

Fig. 22

. moments in the beam at the supports 4, B, C

respectively.

. reactions at 4 and B respectively, due to mo-

ments and loads in span /.

. reactions at B and C respectively, due to mo-

ments and loads in span /,.

. distances of loads from 4 and C respectively.
. moments of inertia of the beam at 4B and BC

respectively.

. moments at any points between 4 and W,, W,

and B, B and W,, W, and C respectively.

. modulus of elasticity assumed to be constant.

Forces acting upward are positive, and vice versi.
Moments causing compression in the upper fibres are posi-
tive, and vice versi.

43
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Tension is taken as positive, and compression, negative.
Neglecting the effect of shear, we have for the internal
work in the beam,

1 j-a y j'l1 PATE. fb " +fl2 -
0—2EI1 0 e s T 2EI,\J, e p x)

The reason for taking two consecutive spans as an ele-
ment of indefinitely continuous girder and confining the
summation of internal work to them, lies in the fact
that in order to find the value of M, which will make
a minimum, it is unnecessary to go beyond the two spans,
since M, depends, as will be seen immediately in the fol-
lowing, on M, and M, and loadings on /, and I, only.
Calling, as hefore, those moments producing compression
in the upper flange positive, and vice versd, we get the
following equations:

. my = M, + R, origin of x at 4,
m, = M, + Rix — W, (x — a), origin of x at 4,
mg = My -+ Rgx — W, (x — b), origin of x at C,
my = My + Ryx, origin of x at C, '

o WG —a)  M,~M

Rl - ll + Zl 1]
A ) M, — M,

Ry = - A -+ 7 .

Substituting these equations in the expression for work,
and setting the first derivative of the same with respect
to M, equal to zero, we at once obtain the following

equation :
do 1l L Wi.a
d—ﬂlz = Tl(Mt'}‘ 2 M) + ’IZZ (e M, + My) + 7;}? >~ a)
WL
+ 13;2 (122 - bz) = 0 L L (37) '

semmnsas s sae s

st
e
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Whence for any number of loads, we get when I, =1, the
following:

4 &
SWa SWh ”
Mt s My Q)+ Mily= == 02 —0) = == G = 1) (58)

95. For partial uniform load w per unit '1ength (Fig.
23), we have but to replace W, and W, with wda and

ST ey

S S

Fig. 24

Fig. 23

wdb in (38) and integrate between given limits to obtain
the following equation:

Ml +2 M, +1)+ Mly=— ZZ(*’* Ifa —a,*) "4__72(2 12b*—b). (39)

For full uniform load, Eq. (39) becomgsl - .
M 42 M, (0 + L) + Mslz":—-;f‘_"z" . e (49)

96. Tn case both ends of the girder are free and simply
supported (Fig. 24), M, and M, will be equal to zero, so
that we get from (38),

z " 5

SW . Wb,
2 My (it 1) =— ”‘l_g(lxz— az).—T(lzz ») - (40
1 ,

! Wa 1
k2Bt . MY -
%Ma 3 %4

Fig. a5 Fig. a6
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7. If the left end of the girder were firmly fixed and
continuous at the other end (Fig. 25), then it would be
equivalent to making I, = «in Eq. (37), and we get

2 My, + My, = EWZ’

28. Similarly if the right end were fixed and contin-
uous at the other (Fig. 26), we would obtain

M, + 2 M) =— EW“

@—a . . . (43)

29. When a beam with uniform cross-section is con-
tinuous over several supports (Fig. 27), apply Eq. (38)

M=0 M2 Ms M4 Ms
Fig. 27

successively to every two spaces (paying attention to
suffixes), in the following manner:

4 Zy
2 .2 2_
Landl, o+2M,(,+1,)+ M= _3Wa(P—a’) _ IWb(— 7).

A L,
5
1, and By, M, + 2 My(ly+1g) + Mds—= — EW“(%Z —a)_ 3w (lsl: ).
z, ?
lyand Iy, Myls+2 M, (ls+1,) +Myy= — EWG(?Z —%) - §Wb (l;z —%) :
3 4

In this way as many equations as there are unknown
moments could be obtained. The rest is a purely alge-
braic work.

2B ... (42)
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30. In all the foregoing cases of continuous beam, the
supports were supposed to be unyielding. If, however,
the beam were made to rest on a comparatively yielding
support or supports, such
as tall metallic columns  wp—a—7' Ma o
for instance, then the *T___, 8| —
deformation of the latter
would modify the bend-
ing moment in the beam
by so much as the de- o,
flection produced by the
sinking of the support makes the beam to take up a por-
tion of the load. Fig. 28 shows a beam continuous over
three supports, of which the intermediate onme is a
column of the same material as the beam.

Using the same designations as before, we have for
due to W, only

" kRZ
2 2
‘”“zEI%j ""dx+fm’d”+f g

in which 4 represents the cross-sectional area of the col-
umn, and R, the pressure acting in the same.
Since

_ W0 MM

B=— zl

M, —-M, M- m
Rz = ll + 12 '|" l1 ’
R =M My

R1 + R2+ R8 = Wln
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and my = M, + Ryx, origin of x at 4,
=M, + Rx — W, (x — a), origin of x at 4,
my = My + Rgx, origin of x at C,

substituting these in the equation of work, we get for

do
M,

-,
6i gMz 2 M, (0 + 1) +M3lz+-—(l2—— 2)%

hit 1 — M. M, — M, W.a
et i -
4 (11 T Tt

In case M, = o, and M, = o, we get
al\l?—a hf1 1 }
M____zl{ Al 1)
2 Z+Z+h< +5)2
37 AN, 4,
For W, and W,

) Wlagw—az h(x z)g ngzz ® o omft 1
A Y S \ VR Y R ¢ z(zﬁz)g
M=

| 7))

A WY -(45)
3l +Z(21-+lz)
If I, = 1, = ], we get for W,
a (P — 2)_2ah
611 Ar
%=_————E—Wl.,. Ce e e e (46)
317 AP
whence

3aP —ad®

R2 = —}—(W Wl » . . . . . . . . . . . (4‘7)
3\4 s—I)

i
:
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31. If, owing to any cause, the central support were
found, either to yield when loaded or to be so displaced
that the beam has to deflect to bear on the supports, the
force exerted simply to keep the beam on to the latter pro-
duces reactions and moments. That force is no other than
R, which has for its displacement the deflection of the beam.

Represent by A & the deflection of the beam at the cen-
tral support, reckoned in

. . M M M
the direction of the force, . =7 :
. o e i 3
acting through it, i.e., neg- A le ;
. . . . i 1
ative for sinking, and vice
Fig. 29

versi. Let M,, M, etc,
be moments caused by the motion of the support. Then,
according to the first theorem of Castigliano (Art. 6),

dw
E‘R; =t Ah-
Since
R M= M, My M,
2 2 A

and for the internal work we have as before,

[V T 2 2
0 = e (U MM, + D) + 5 O + MM+ M),

making M, the variable,
| dR, = —(i + 5>dM2,
2 LT,
we get

do
do _ ‘ .
dR, 6E1{Z<M+2W)+I(MS+2M)}___I h

LT
from which

M+ 2 M, + b) + M, —~6EIAh( lz) (48)
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In case the central support sinks by s, then Ak = — s,
and if in that case the ends of the girder were free, we
would have

2M2(11+12)=6E155+5) C e (49)
ll l2

If, instead of the central support, the left support, for in-
stance, deflect by A /2, then in this case, since

M2
® = ﬁ (lj + Zz))
_

R, = 7
we get

é.‘f. i —_ lel (11 + zz)

dR, b = ~ 3EI
whence

EIAR i
My =2 . (50)

AR
ExampLE 1. — A continuous girder with a length of zoo
ft, and a uniform section whose depth is 16 ft. and moment
of inertia 552,960 in.% is supported at its centre by a metallic
pier 50 ft. high and 50 sq. in. in section. To calculate the
maximum stresses found in the chords and pier due to a full
uniform load of 3600 lbs. per ft. run.
From Eq. (47),

1
3 al — &%) wda :
R =z'f°( st - Ib
2 14}" Y, —6 VY = 440,000 lbs.
s1(+39) (57 +39)
Since

2R, 4+ R, — 3600 X 200 = o,

440,000

R, = 3600 X 100 — = 140,000 lbs.
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Comparing + and — moments in the girder, the latter
will be found to be greater in this case, being at the central

support
100?
140,000 X 100 — 3600 X —,— = — 4,000,000 ft.-lbs.,

from which we obtain for maximum flange stress in the girder,

4,000,000 X 12* X 8

552,960 = 8333 Ibs. per sq. in,,
H

and for the stress in the pier,
440,000
50
ExampPLE 2. —If in the foregoing example the central
support were of masonry, so that it might be considered
practically indeformable, but owing to yielding foundation,
suppose it to settle by .176 in., what would be the moment
and reaction at the centre, assuming £ = 30,000,000 lbs. per
sqg. in.?
From Egs. (41) and (49),

= 8800 lbs. per sq. in.

I P, , 3EIs __wP  3EIs
J]«[2=——;?j0‘a(l°—a)wda+ = g T 7
3600 X 100 3 X 30,000,000 X 552,900 X .176
- 8 * Ioo? X 12°

= — 3,093,120 ft-lbs.,
from which

3,993,120

— = , 1bs.
R, = 2(3600 X 50 + o0 ) 440,000

32. When the truss forming a continuous girder is of
considerable depth, the influence of deformations of web-
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members which has been neglected in the foregoing dis-
cussions becomes felt to some extent. A method of tak-
ing the same into consideration will be explained when
deducing formulas for swing bridges. Trusses contin-
uous over several supports are, owing to several draw-
backs, so seldom constructed, that it will not be necessary
to go farther into the subject in this place.

SWING BRIDGE, WITH THREE SUPPORTS

83. For a swing bridge with three supports, when it is
of plate girders or trusses of comparatively small depth in
which the effect of defor-
oy R , . 1 mations of web-members is
a—y A T - ;
‘Ei 7 % inconsiderable when com-
| : ‘ ——  pared to that of chords,
Fig. 30 Eq. (41) may be used with
correctness sufficient for all
practical purposes, and from it other necessary equations
may be at once written.,
In (41) making J, = 1, =/,

SWy e — o —
M, = Wyl )4—ll-22W2b(12 B L e

Ry = 7 iMy+ 3W, (¢ — )},

R,

I

I
Z(— 2 M, + 3Wia + SW,b),

Ry= 2 1M, + 3W,(0 — 1)},

R+ R+ Ry = SW, + 3W,.
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34. When both ends of the bridge are simply sup-
ported without being raised, the dead-loads act as on two
overhanging arms, either when the bridge is closed
or open, the live-Joad alone
acting as on a continuous

. Y22 Me %
girder on three supportswhen —&—— = —
both arms are loaded par- ® Re Rs
tially or fully. Fig. a1

When the moving load is
a uniformly distributed one of w per unit length (Fig. 31),

then from Eq. (39),

2 2y L p2 - p2
Mz‘ dl (212 al)Iélfl (le bl) . . (52)
M, w I —a),
R, 22 ay (ZZZ 01)’
M, , w(a’+ 28]
R":—ZT_'—————#ZI 5
M wb, (21— D
R, la 1(21 1))

R, + Ry + Ry = w(a, + by
Tf in this case, one arm only be loaded, then the end of
the other arm would be lifted clear of its support, and the
loaded arm would be a simple girder with span length I.
This mode of loading generally gives maximum positive
moment and shear, which are for the left arm at any
point distant «x from the left end,

m =22 (1 — x) for full load,
2

5= 3:7(1_2—19_6_)_2. for load covering (I - %),
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s denoting shear taken as positive when it tends to move
the left side upward past the right side of the section. A
little consideration will show that the greatest negative
moment and shear at any point of the left arm will be
produced by the greatest negative amount of R, com-

bined with load between the point
yz g, and the left end of the arm. Now
from the expression for R, it will
be seen that all loads on the right
arm make R, negative, while those on the left arm posi-
tive. Consequently the maximum negative moment and
shear at any point x (Fig. 32) will be caused by the
load covering the right arm and the portion of the left
arm between the point and the left end of the arm.
They are,

Fi1g. 32

wx* 2 (2P — & 4 —
m =R x— .__~§ ( 161“)+l _x(lzlx)gwx’
BPEP—s+ 1 | o
= R, — FRUED S Sl AL
$ 1 T WX g 6 F +2l§w.

The absolute maximum negative moment will, for the
same reason, be found at the central support when both
arms are fully loaded.

These considerations are all that will be necessary in
determining maximum stresses in different members of
the truss.

35. In case both ends of the bridge are fully lifted, the
dead-load will be supported on three supports when the
bridge is closed, and the central moment due to the same
is to be calculated with Eq. (51) or (52).
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36. When the girder, instead of being a beam as in the
preceding case, is a truss with considerable depth, the
deformations of web-members may sometimes be so great
that it would be necessary to take them into consideration
in accurate calculations. To do this, however, since the
dimensions of each member of the truss should be known,
it is the general practice to make preliminary calculation
of stresses in all the members with the external forces as
found by the equations already given for the case of uni-
form cross-section, with the effect of web-stresses neg-
lected, and afterward to make such tentative corrections
as are necessary on the dimensions according to the more
accurate computations hased on them. The following is
an accurate method of determining the external forces.

Let

A = the cross-section of any member of the truss,
E = the modulus of elasticity of the material, assumed to be

constant,
S = the stress in the member,
L = the length of the member.

Then for the total internal work in the truss in which
the members are subjected to direct stresses only, we
have,

S*L

2 .‘1E ° (53)

0 =3

In the swing-bridge truss of Fig. 33, since M, must
always be such as to make the total internal work a mini-
mum, if we now express S in each member due to any
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given loading in terms of M, and substitute it in (53),

then from
do

M,
we can at once obtain the required value of M,  For

= 0

simplicity, as-.

M sume two

IL symmetrical
Re

AR loads . W-,W

| W/ ?‘@ %.)i and distin-

1 / guish 4, S

NS and L of each

Fig. 3 member with

E corresponding

suffixes and the arm-lengths of several members as shown

in the figure. Then taking moments at the successive

sections, we get the following values of S

lho
d
Si=Rigr
s W@+ —Rd
s T F
S
__Ww@e+yp -
- d+2p
s _ W@+ p) —Rgd
5 -
Sa
Ss=“‘R2;
5 =Rt
7 %
SB=_(2R1;W)?,
1
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b4
Sy =R, -
9 lh'o
SIO (QRIZW)p
1
Sll (3R1~2 W)P
hy
and since
R1= ﬁ_lf+2_,
3 3
2 M, 2W
2 = 37 + 3
M, 2 W
Ry =224
YRR

R, +R2+R,,—2W

>Subst1tut1ng, we get,

Phy
(404,

Setting the first derivative of » with respect to M, equal
to zero, remembering that,

P
A

2L

—=+2R; 2
7

+2R}2 4. RAE o

w=

2E Rith

dR, dR, 1
R, __ 2
M, 32
we get,
R, =
4(d+p) {sz (d+f;)z_4,'f€;5}+2ﬁ+p’(g:fjs+iﬂ%*ﬁ_;ﬁ)

leﬂ{ o o Ls L4 <L512@f(1=4L8%ﬁ=4ﬁ=92)
%g*A 4 (@214 P4,y (dTapPd, f24s) 4e 224y g70Ag ket Ay MPdse APAn

whence M, and R, may be obtained by substitution in
the foregoing equations.
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In this way R,, R,, and M, are to be calculated for dif-

ferent modes of loading in order to obtain stresses due to,

them.

A comparison of approximate and correct methods of
computation shows that the difference in results obtained
by the two methods is generally inconsiderable, as will
be shown in the case of a swing bridge with four sup-

ports (Art. 37).

SWING BRIDGE, WITH FOUR SUPPORTS AND PARTIALLY
CONTINUOUS
37. A swing bridge fully continuous over four supports
has probably never been constructed, owing to practical
difficulties in con-
__a__fl’L , vl‘i——b_—_) struction arising
' Mz M. : from the great dif-
VAVAV ference in amounts
e § ~ between central
reactions when
the bridge is par-
tially loaded, which may necessitate special provisions
for holding down the central supports on to the ma-
sonry. For this reason, such bridge is made either
partially continuous or entirely discontinuous. Partial
continuity in such case is effected by omitting the web-
members hetween central supports, thus cutting off the
‘means of transmitting shear from one span to the other.
Fig. 34 shows this kind of construction. As there can
be no shear in the panel BC, it is evident that M, will
always be equal to M.

Fig. 34
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Represent by

m, = moment at any point x from 4 between 4 and W,.
m, = moment at any point x from 4 between W, and B.

mg = moment at any point x from D between C and W,
m, = moment at any point x from D between W,and D.

Assuming the truss to have uniform moment of inertia I,
and neglecting the influence of deformations of web-
members, we get for the internal work due to moments:

I (7
w=m§£m1dx+ e, d*c+fM,;2dx+f1nsdx+fm4 g

But
my= R =ll‘ My+ W, (0 — o)} &,
my= Ry — W, (x — @) = M”x+m‘—%—1@,
nzB=R4x—W2(x—b)=—Ml—2x+Mll———i‘f—),

m= Rp = 5 {My+ Wa (1 = D)}

Substituting these values of m in the above expression for

work, we get for
dw

ar, ~ ©
the following equation:

2 {Ms + W, — a)} é + 2 Moy + 2 { My + W, (0 — b)%é

2 a® 2 b
—W1<3 al+31> (3 — bl + Z)Wz—o,
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from which generally for any number of W, and W, we
et
§ Mo — IWe @ — a® _3Wh (R -
I (6, + 4)) 16L+4) (s4)
Knowing M,, all the external forces become at once
known, thus:

R = {M, + 3W,(l — a);}

R2= (_' Mz + 2W1a) -I:Es
Ry= (— M, + SW,b) ;

Re= {My + 30, (U~ D)} 5
R +Ry + Ry + Ry = 3W, + 3w,
These equations give approximate results for most kinds
of trusses; a more accurate result is obtained by taking
the deformations of the web-members into considera.
tion, and forming
0=L,
i 2EA
extended over all the members of the truss, as explained
in the case of three supports, the necessary A and S heing
provisionally obtained by means of the approximate
equations above given. The mode of loading to give
- maximum moment or
shear at any point in
the truss is essentially
the same as in the
case of three supports.

ExampLE, — In the
swing bridge of Fig. 35 to calculate the reactions due to
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uniform moving load of 10 tons per panel, when both arms

are fully loaded. .
For the assumed position of moving load,

R, = 50 — R,
The following stresses and internal works may now be
written :
4 s?
Members. S. L (ft.). (sq. in.). v i
I
(| 43 1.25 R 45 40 1.76 .klz( E)
i 2( &
21| Bc | 1.25(R, —10) 45 | 30 zg.f 8;1 - ;ggzg ) g
< cD 1.25 (] — 20) 48 25 2. A A%
% DE R, — 20 36 25 1.44 (R, — zo)2 ( “ )
EV| 27 | 1as@—30) | a5 | 25 | 281(&—302(«)
2 FG R, — 30 36 30 1.2 (R, — 30)2 ( “)
§ GH | 1.25(R, —40) 45 | 30 2-34 (R, — 4<6>) ( %
' HI | 22 (R, —36.4) 45 | 48 484 (R — 36.4)°("
JIL 1.2 (R, — 25) 45 40 1.62 (&) — 25)z ( . %
(| 82 | 15 (&— 5) 54 | 35 | 347(Ri— 5P(
3 DF | 2.25(R,— 10) 27 40 3.42 (By — IO)Z( )
& IR - 2 ° 6.08 (R, — 15)( )
FH 3 (R, —15) 7 | 4 S0
2| # | -2 28.50 30 | 13.68 (& —25)*(“)
3 8 78 (B, — 25)* —=
P x| 36 (Bi—25) 8 | 30 | 778(R =5
I
(i AC | ons5 R, 54 25 1.21 B2 # 'E)
_"é. .25 (R, — 10 27 40 3.42 (&) — m)z(:
Sl gl AR | 1] Batms
g GI | 3.75(R, — 20) 54 | 30 25.31 (&, e
= U 4Z 3.6 (R, — 25) 18 30 7.78 (B, — 25) E

Summing up the works, and putting the first derivative of
the sum with respect to R, equal to zero, we at once get,

R, = 20.1¢ tons,
R, = 50 — R, = 29.81 tons.

38. Had the moment of inertia been assumesi to be
uniform throughout the girder and at the same time the
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deformation of web-members neglected, we would have
obtained from Eq. (54),

S 100 (26,244 — &)

M == 25 (108 + 649)

Substituting in this, ¢ = 29, 54, 81, 108, and 133, we

obtain
M, = — 1012.5 ft.-tons,

so that
R, = {M, + 310 (162 — a)} 145 = 18.75 tons.

Comparing this with the preceding result, it will be
seen that the assumption of uniform moment of inertia
and the neglect of web-member deformations give R,
smaller by about 7 per cent in this case than given by
the more correct calculation. In practice, however, all
this nicety in calculation becomes almost valueless, owing
to the overwhelming disturbance brought about by
unequal temperature changes, which constantly tend to
throw out of adjustment the end supports on which the
stresses of all the members solely depend.

DOUBLE-SWING BRIDGE

39. Double-swing bridges are latched at the centre
when closed, thus transmitting shear, but no moment
from one span to another.

Fig. 36 shows a double-swing bridge with four sup-
ports. The point C serves for both trusses as a common
yielding support.

To simplify the discussion, all the spans will be made

o T

CONTINUOUS GIRDERS ‘ 63

alike. Then for any load W, we get the following mo-
ments in the several spans:

Rx . . . . .between 4 and W,, distant x from 4.
Ry — W, (x —a) . between W, and B, distant x from 4.

M,+ R)'%. . between B and C, distant x from B.
M, 4+ R% . . between D and C, distant x from D.
Rge . . . . . between E and D, distant x from E.

Assuming the cross-section of the trusses to be uni-
s We
\P—d—"’h H—_)

|
A
4 -Bjt . EI : ;L" 7 oy
fa Ry, iR 14

Fig. 36

o

form throughout, and considering moments only, we get
for the total internal work due to W,:

a 4
@ = ;%f[ﬁ (R ds +£ [Rx — W,(x — a)}*dw
i 7 1
+ fo (M, + R, %)*do + fo (M, + Ry %)* dx+ f,, (Rw)zdx:]‘
Taking moments successively at B, 4, C, E, and D.

we get,
W29 +_Aﬁ

] I
RS = Wll“ — yf
-1
R,= R/ + R/'=~— Z—z%fsz-‘i
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M.
Ry =— —l—z;
Ry,
M.
R, =2,
T

Taking moment at D,
3R —W, (3l —a)+ 2Rl =M,
Substituting the values of R, and R, in this, we get
M,=—— M,
Introducing these equations in the expression for the

internal work, and setting the first derivative of it with
respect to M, equal to zero, we get

M1=—ZA(E'8:P—01)W1 B 1)
and consequently, |
M2=f’-—l;—;‘l—g)wl. N )
Similarly for load W, in the right-end span we get,
Ml=b—%%@.wg. N CT)
MQ=~QE§;—Z’Z)W2. C e (58)

For any load W, in the second span from the left, we have
as before the following moments:

Rx . . . . . . .between 4 and B, origin of x at 4,
M;+R/x. . . . .between B and W, origin of x at B,
M, + Ry's— Wy(x — ¢), between W,and C, origin of x at B,
M,+ R/x . . . . .between D and C, origin of x at D,

Rx . . . . . . .between E and D, origin of x at E,
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from which we get the following internal work:
1 ! ¢
o= | [ ®eras+ [(Gr+ R
] !
+ f {M, + Ry — Wy (x — 0) P + f (M, + Rys) dx
c 0

+ [ @]

Taking moments at B, C, and D successively, we have:

M
.R1 =__ll’
[ AET)
l l
Rg'_—‘—'%’
R4 =‘%

M, =— (M, + W;0).

Substituting these values in the above expression for work,
and putting as before the first differential coefficient of o
with respect to M, equal to zero, we at once obtain:

c(6P —3lc+ Y

VAL VA L) A
M2=J(2P+83lf_cz) W, . . . . (6

Similarly for any load W, in the third span from the left,
we get,
d@P+31d— &)

M, =— 2 W,. ... (61)
Q6P —31d + @
= -4 2 *Dw, . ... (69
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Finally, we get for any number of loads,

My = 5 = SWa(P— &) + IWDE = 1) — IW (68 — 310+ &)

CSWAEE43d—d)} . . . o . . . (63)
M, = _8:_12 (SWa(P—a) — SWh(E— ) — 3We (24 3 lc — )
—SWAGE—3ld+d)} . - - . . . . . (69
T (]
o T,
R2=2V;/'Ia_21;ll+EWg(§——c) (66)
SWh  2M, SW.(—4d
R3=—l;—»2—l—2+—~*—(l———) N (1))
S —_
R = ——~—‘Wz(§ D +-ﬁ—l[~2 : (68)

R, + R, +Ry + R, = SW.

It has been assumed in the foregoing discussions that
the ends 4 and E of the trusses are not lifted off the sup-
ports under all conditions of loading.

40. Fig. 37 shows a double-swing bridge with six sup-

W, g . /2
fe— (1
g} . F=,

Mi My

WAVAVAVAV/

i ——F4
Ry " Rz la L lJ-

Fig. 37

9F

O—1yy
&

ports, made partially continuous by the omission of
diagonals in the central panel of each truss, for reasons
already stated in the case of a common swing bridge.

Then, since by construction there can be no shear in
the central panels, the moments over supports belonging
to them must be equal to each other in both spans.
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Assuming the cross-section of the trusses to be uniform
throughout, and considering moments only, we have for
total internal work due to any one load W, in the left-

end span:
i : A
om o [ ®arar+ [iRe-We—opis+ [ s
2 EI,_ 0 a ]

: " 1 l,
+j (M, —i—R,,oc)“alx+j;(lll2 + Ryx)dx +f M 2dx
0 0

+ j; l(Rex)2 dx]-

Since _— y
R, =~—§—a) + =4
1
-
A

]
M,= M, + 2 R =— M,

Substituting these values in the expression for work,
and setting the first derivative of the latter with respect
to M, equal to zero, we get

a(®—ad) 6
Mi=—ji@EixLpt - (69)

whence, also, ,
M, o — &) o N ()]

TI@I+ I2lI)W! :
Similarly for any load W, on the right-end span, we get,

b=

M1=l_<§_l——:l———1—2—ll—) 2 . . . . . (71)
2 _ B2

M= — b7 — ) I £

I®I+120) °
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For any one load W, in the second span from the left,
the internal work due to moments caused by the same
may be expressed as follows:

T z ll ¢
w=;’gj[jol (Rlx)zdx—l-‘[ Mfdxﬂ-‘/al(Ml—}-Rsx)’dx

z .
-}—jclfM1 + Rsx — Wy (x —¢) }2dx

z 4 7
+./o; (M, + R, x)? dx +fM22dx‘+f (Rs x)? dx].
0 0

Since in this case,

M
R, =4
Ry W, (ll- 6)’"%[‘1'
.R4=—i1[§,
M.
Ry =22
£

My= — (M, + Wye).

Substituting them in the expression for internal work,
and setting the differential coefficient with respect to M
equal to zero, we get,

1

6cd(14+1) — & (31— )

M = —

: T®i+12s) Mo+ -+ (13)
M=_‘2cl(l+3l1)+cz(3l—c)

* L(Bl+121) We . . (19)

Similarly for any load W, in the third span from the
left, we get,
_ _2dlC+3L)+ (31— d)
JWI i (8[ + 1211) W! * T (75)
__SA+) — @ (31— d
M,= 3
TRI+ 131) e o (16)
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Finally, for any number of loads we get,

I
M1=m[-—2Wla(F—~az)+2Wb(l’—b2)
—3Wsc {610 +14) —c(3l—0)} 2W4d§2l(l+311)
+d@EL—d] - . ()
I
Mz=m[EWa(lz~az)—2Wb(F——bz)
—EW,,G§2l(l+3l)+c(3l—6)§—2W4d§61(l+ll)
—d@lI—ail . . . (78)
W, (1 M
RI————(,—-——)+7‘- (r9)
R2=Wl’1“—§l[—l. C e e .. (89)
R8=_—_-—-—~2W3(lz_c)‘——ﬂ—/2rl Coe (81)
R‘=——~—————-2W*(ll—d)—M72. C L. (82)
RB:”?”—MT? .. (83)
Rezwzwz(ll_b)+M72. C L. (9
SR = SW.

41. The foregoing equations for double-swing bridge
give but approximate results for reasons already ex-
plained. To obtain more correct results, resort must be

had to
35,1

2EA

for expressing the internal work, extending the expression
over all the members of the truss, based on the approxi-
mate values of .S and A provisionally found by the fore-
going equations, exactly as explained in the case of com-
mon swing bridges.

W =



