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PREFACE TO THE SECOND EDITION

Ix the present edition, corrections are made of errors which
were found in the first issue of the work. The temperature
stress in viaduct bents, which the author neglected to work
out in the previous edition, is made the subject of an appendix.
A proof of the theorems of Castigliano is also appended, form-
ing a supplementary article to the introductory chapter.
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February, 1915.
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PREFACE TO THE FIRST EDITION

TuE present work is the outgrowth of a series of lectures
given to the students of Civil Engineering in the Tokyo Im-
perial University. It contains the solution of those problems
most commonly met in the practice of a bridge engineer, the
aim of the author being to save time and labor of those intent
on a more rational design of the class of the structures
treated, than is generally followed, by furnishing them with
necessary formulas for which rough approximation or even
guess-work frequently forms a substitute.

For different treatment of some of the cases discussed in
this work, readers may do well to compare the works of Pro-
fessors Burr, Greene, Du Bois and Johnson, and also those
of Professors Engesser, Résal, Winkler, Melan, Miiller-
Breslau, Steiner, etc,

The author acknowledges his indebtedness for valuable
assistance in preparing the volume, to his colaborer Assistant-
Professor H. Kimishima.

Toxkyo IMpERIAL UNIVERSITY,
August, 1904.
I, H.
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INTRODUCTORY CHAPTER

GENERAL PRINCIPLES

1. Most of the cases of statically-indeterminate stresses
occurring in the practice of a bridge engineer can be
solved in several different ways; but in this, the author
has made the exclusive use of the method of work as the
simplest and the most direct way for arriving at the results.

It is a well-known principle in mechanics that when
external forces act on an elastic body, the latter under-
goes deformations, which, according to the Hooke’s law,
are proportlonal to the stresses causing them, — the de-
formations assumed to be disappearing the moment the
forces are taken off. The work thus performed in the
body while being acted on by external forces, we call
the work of resistance. This internal work, which we
shall henceforth designate with o, may be expressed in the
following manner, for different kinds of stresses. _

2. Direct Stress. — Suppose a straight bar having a
cross-section A, length L, and modulus of elasticity E, be
subjected to tension or compression increasing from o to S.
Assuming the strain to be proportional to stress, the bar
would undergo, at any moment when the stress is s, a

deformation of
) sL

AE’
Since work equals the force into its displacement the in-
I



2 STATICALLY-INDETERMINATE STRESSES

crement of work perférmed in the bar at the moment
will be

sL
Ed&‘,
so that for the total work of resistance in the bar we get
8sL S2L :
W = . ;ﬁd&‘ = '2—A~‘E . . " . . . (I)

3. Normal Stress.— If the bar be a curved one with a
developed length of L/, then representing by N the nor-
mal stress acting at any section distant ¢ — measured
along the axis of the bar — from one end, we have, by the
same reasoning as before, for the work of resistance in
the elementary length dc,

N2de
2AE’
and for the total internal work in the bar due to IV,
L' N*de
[0} =£ m e e e e e e . (2)
4. Bending Moment. — Let Fig. 1 ¥z

represent the portion of a beam, sub-
jected to bending moment 3/ ; then in f
any elementary length dx, at a dis-
tance of y from the neutral axis
N4, will be found taking place a deformation of

>
PN PN
3
|
mg
<
| S
>

Fig. 1

M

in the elementary length of the fibre; and at the farthest

fibre,
M,
E Wdx.,

GENERAL PRINCIPLES 3

Representing by I the moment of- inertia of the section,
and by b the width of the beam at y, we get for the stress
acting in the elementary section bdy, the expression

M
T by dy )
and consequently, for the work of resistance in the same,
1 M M 1 M? )

so that for the total work in the élementary length dx we
get

T M? It
; j‘z‘E dx _ byZdy H
and as
.4
. _h”byzdy =1,

the total work of resistance due to the moment in length
[ of the beam will be

P M2dx
w—L[OzIE.......Q)

5. Tangential Stress. — The deformation of a beam
due to shear is generally so insignificant when compared
with that due to the bending, that it may be totally neg-
lected without sensible error in the calculation of inter-
nal work. In passing, however, the expression for the
work will be given.

Let

T = tangential stress acting at any point distant & from
one end of the piece.

G = modulus of elasticity for shear.

A = cross-section of the piece.
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Since the action of the tangential stress in the elementary
length dx (Fig. 2) is to produce the angu-

x lar change ", for which, were T' uniformly

T distributed over the cross-section, we
would have,
N-=- . A .
7Y T

e e

: y
rie.a . and for the work performed in dw,

T

Since, however, the intensity of shear at different points
of the cross-section differs with the form of the latter, we
have for the internal work due to shear,

m=f%......(4}
in which .
o= 4 v *dd,
%) —pn
© a quantity always greater than 1.
h
T = 7)2;[ A ydA,

h representing the distance of fibres above the neutral
axis where 7 is to be found, and b, 2/, #” and y the same as
in Art. 4.

6. Theorems of Castigliano. — The fundamental prin-
ciple of the method of work has been enunciated by Cas-
tigliano in following words: *

I. “The displacement of the point of application of an

* ¢« Theorie des Gleichgewichtes elastischer Systeme,” von Castigliano,

- GENERAL PRINCIPLES 5

external force acting on a body — caused by the elastic
deformation of the latter —is equal fo the first derivative
of the work of resistance performed in the body, with re-
spect to the force.”

II. “The partial derivatives of the work of resistance
with respect to statically-indeterminate forces which are so
chosen that the forces themselves perform no work are equal
to zero.”’

In order to make these enunciations clearly understood,
an application of the theorems will be made
to a simplest case of statically-indeterminate
forces. In Fig. 3 let'r and 2 represent two
columns with a length of L, cross-sections of
4,, 4, and moduli of elasticity of E,, E, con-
jointly sustaining a load of W. The latter
produces reactions

Syand §; =W — S,

which are at the same time stresses in the columns. Re-
ferring to Eq. (1) we get for the internal work in the col-
umns the following expression;:
oo S (W—SyL
2A4,E, 2 A,E,

If we represent by & the sinking of the load due to com-
pression of the columns, then, according to the first the-
orem,

do W —S)L

a0 _ s

aw AL E,

and according to the second, since the bases of the col-
umns are assumed to be immovable,

3



6 STATICALLY-INDETERMINATE STRESSES

do  SL , (S=W)L
g, ° = 4g v 4E
from which y
_ £y
S=TE 45

7. The second theorem of Castigliano is a direct con-
sequence of the first one, and concerns a special case in
which the displacement of the external force is zero. In
other words, according to this theorem, a statically-inde-
terminate force makes the work of resistance a minimum
or a maximum. That it is a minimum can be seen by
taking the second differential coefficient of » with respect
to the force having a certain amount of displacement.
Since the latter will increase with every increment of the
force, the second differential will be always positive. For
this reason, this theorem is otherwise known as the prin-
ciple of least work, which enunciates that the work of a
system of forces acting on an elastic system of construc-
tion will be the least possible which is necessary to main-
tain equilibrium, or, in other words, the external forces
so adjust themselves as to develop internal forces in the
structure which will make the total work of resistance in
the latter a minimum. The principle is a fundamental
one in the economy of nature and is applicable to all
cases of statically-indeterminate forces in which the forces
under question undergo no displacements. For this pur-
pose we have but to express o in terms of external forces
and to differentiate it successively with respect to the
forces to be found. The differential coefficients thus
obtained, set equal.to zero, furnish as many equations

GENERAL PRINCIPLES 7

of conditions as there are unknown quantities. The
rest of the operation for reduction is a simple algebraic
work.

8. It is to be borne in mind that in all forms of struc-
tures to be hereafter treated, the joints of every piece,
and the piece itself, are assumed to be free from all initial
restraints. :



