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Synopsis. Euler-Maclaurin’s formula has widely been used for numerical integration,
but at times successive derivatives involved are labourious to work out. A device will
then be developed that the third derivative term is missing. Simple applications of
the new rule will be given satisfactorily.

1. The well-known Euler-Maclaurin’s formula for numerical evaluation of the
definite integral

takes the form

I:h(%fwfﬁfﬁ ------ +f,,_1+%fn>

h°
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This formula was given as early as in 1730-1740, and has widely been used for evaluat-
ing the integral (1), when analytical method of its evaluation is difficult or impossible®.

The first term in the right side of the formula (2) above, which is included in the
first parentheses, may be taken as a rough approximation by trapezoidal rule to the
integral (1), and the succeeding terms involving derlvatwes may consequently be con-
sidered as the correction to the rough approximation.

An alternative form similar to (2) will be obtained by commencing with the
assumption

(f —fH+— (f M=f" =

:g(fo+4f1+2f2+4fa +2,f4+ """ +2f2n—2+4f2n—1+f2n>+T)

in which the first term in parentheses is an approximation to the integral due to Simp-
son’s rule, which is more accurate than that due to trapezoidal rule, and T denotes
certain correction-terms, the analytical form of which will be found later. With the aid
of this formula, the third derivative term in (2) can be eliminated, and the formula so
formed will in general be preferable to (2), when much labour is needed to work out
higher derivatives of the integrand f(x), which will at times be encountered in engi-
neering and physical problems.

2. The function f(x) is not known, but without loss of generality we may put”

f(x)=e"
¢ being constant independent of the variable x. By a simple analytical process we have
a+2nh et‘d
I= f Sf(x)dx= j ”dxz—c—(eg’””—l); ..................... 3
and on the other hand, repeated application of Simpson’s rule affords
a+2Znh ]l
I= f eFdx = §Eeca_+_4 ec(a+h)+2 ev(av+2h)_|_ ,,,,,, +2 ec(a+2n -2h)

+4 ec(a+%71h) 4 eC(a.+2nh)] T
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T being correction-terms as before. Now we know the sum
eZnGIL . 1
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so that (4) becomes
ca 2h /1 2eh+1
T = (gt — 1) — W)'fT.
Comparing this with (3), we have
2 er+1 )
— __ pfhr p2nch __ - -

T=—e"“(e 1) ( 2ch e“” 1)

The last factor in parentheses may be expanded into an ascending power series of ch,
2¢ch  2(ch)’ 2(ch)3

for 2ech+1 3+ 1‘ + 2' 3‘ ...... R
1 1 1 Bz 4 BG 5
and 1 2k —E+2—!2 ch VTR B! (2ch)’+eeees ,
where B,, B,, B, represent Bernoulian numbers; viz.
1 1 1
BZ-G’ B“___ISF’ B,= o .

Hence T for the time being becomes

3h‘ Shs
— __ pta 2nrch ___
T=—e"(c D( 180 T 1512 T ) :

Since f(x) takes the form f(x)=e°*, we at once have
f e fom ceca(eznch 1)’ onV__fOV:cseCa<22nch#1)’ ......... .
Thus we obtain

@ +2nh

) f(x)dx=£(fo+4fl+2fz+ ------ +2fz,._z+4f2n_l+fg,,)
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If further we eliminate third derivative terms between (5) and (2), in the latter
n being replaced by 2#, then we obtain

1" f !II)
o
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This is the required expression. When the fifth and higher derivative terms can be
neglected as small, the formula last obtained will furnish a prompt and efficient means
for evaluating the integral (1), since in this equation it is sufficient to compute only
first derivative for the evaluation in question in virtue of the absence of the third
derivative term. A slight inferiority in the new formula (6) is however to be noted as
the numerical coefficients in (6) are less convergent than those in (2); but this would
appear in most cases to be superseded by the present device that the third derivative
term has been eliminated. Also, it is of practical importance to note that the rapid con-
vergence of succeeding terms in (6) at times fails, if too rough value of the interval
of divided parts, %, is selected, as is the case in the Euler-Maclaurin’s formula (2).

3. It is sometimes requested to evaluate the integral of the form

I=j;°°f(x)dx, ................................................... (D
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in which f(x) tends to zero for large values of x. In suc,h a case (6) reduces to

I=——‘(7f0+16f1+14f2+16f3+14f4 ..... )

+_1€f0' 6300f° ............ L e @®

It would not be so labourious to compute the integral (7), when the integrand f(x) in
{7) is of rapid convergence,
Duplicate use of (8) to the double definite integral®

1= [ ["f(x, y)dxdy

will afford the result

1= ggtm £(00) +16 £(10) +14 £(20) +------}+16{7 £(O1) +16 F(11)

+14 £(21) + -} + 14{7 £(02) +16 F(12) + 14 F(22) + oo} +00n0)

Z:; {7 £,(00) + 16 £,(10) +14 £,(20) + ------]
225 (01) +14 £,(02) +-+---- J+ 222}352  fy(00) 4 oeeeeees R ©)

where f(00), f(10), f(20),------ £(01), f(02),------ denote values of the integrand f(x,y)
at mesh points (00), (10), (20),------ (01), (02),------ as in Fig. 1, and £,(00), £,(00), etc.
represent derivatives at (00), etc. with respect to x and y in order.

Fig. 1 Arrangement of mesh points. Fig. 2 Rule for Isﬁ)wj;mf(x,y)dxdy.
| Y N N L
i 16hfx 12 256 224 256 —
) (i2) 22) 2) — l |
‘Ii—-(lﬂ (22) B2) /4/lf; 78 224 196 224—
z25
' | l |-
‘—(o/) {11} (21) (/) —
16hfy 112 256 224 256—
{ (oo} {10). (20) l
‘L’ 'y ) ba 7hf 49 12 98 Hz
h—p—h h —‘l #9 hefyy 741, 16%, 14%f, 164,y

Equation (9) may also be expressed as in Fig. 2, which will be convenient for
practical use.

4. As a simple application of (6), let us evaluate the definite integral
1= [sinxdr, =1
= fo sin x dx, =1.

Now we for convenience subdivide the domain of integration into 8 small parts of equal
interval, so that 2=z/16. We then have, with (6) by curtailing the second and higher
correction-terms,

I=— L —(7 sin 0°+-16 sin 11. 25°+ 14 sin 22.5°+ 16 sin 33. 75°+ 14 sin 45

15 16
+16 sin 56.25°+ 14 sin 67. 5°+ 16 sin 78. 75°+ 7 sin 907)
1 z Y R R
~ 15 <—IE* (cos 90°— cos 0°)

=0.013089 97 x (7x0+16x0.195 090 3 + 14 x 0. 382 683 4+ 16 x 0. 555 570 2
+14x0.707 106 8 -+16 x 0. 831 469 6 + 14 <0.923 879 5+ 16 < 0. 980 785 3
+7x1.000 000 0) 4+ 0. 002 570 21 =0. 997 429 75+ 0. 002 570 21 = 1. 000 000 0.
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In this computation only the first derivative is needed; nevertheless the result is
accurate to the last digit. The reason of this accuracy can be found in the evaluation
of the succeeding correction-term in (6), viz.

he v 1

__ " rrv_ I AR > N
s 300 Fen? — 15 6300< 16)(c0590 cos 0%) =0, 000 000 009 1,

which does not affect the seventh digit of decimal.

On the other hand the prevailing Euler-Maclaurin’s formula (2), when curtailing
the second and higher correction-terms, gives

I*—x(‘xOnLO 195090 3 +0.382 683 4 +0.555 570 2+0.707 106 8

+0.831 4696 +0.923 8795 +0.980 785 3 + *;- % 1. 000 000 0)

13 ( > (cos 90°—-cos 0°) =0.996 785 15+0. 003 21276=0.999 997 9;
and only when the third derivative is taken into account, the result will become ac-

curate. In this connection the well-known Simpson’s rule will afford the value 1.000 008 2,
which is much less accurate than the two preceding results.

5. An example of (9) is to evaluate the double definite integral

I= _.izf jo 1;-;)2 sin x sin y e"’zdxdy L, eeerreressesiieenaeiiees (10)

in which 2*=x*+3%. We write

SIN X SIN Y €77 covrerrrerii (11)

1+2
f(x,3) = Xy
and then we have

1+2 1+z+2° .\, z
fi= Ccos X — alnx)smye ,
xy xy

2

1+2z 1+2z+y° . . 2
fy—< P cos ¥ poe ;my)smxe y

ey = 1 £ co ‘x cos A cos X sin
' i
xy S y 1y 0S X sin ¥y

sinxcos y+——— - —sinxsiny

1+z+x° 22+ 2+ 5%yt >
x’y x*y'z

It can be seen here that the last of these derivatives f,, vanishes at the origin where
(x,9)=1(0,0), and in addition that both of f, along x-axis and f, along y-axis also
vanish, so that no contribution to the present evaluation is furmshed from the terms in
fw fy and f,, of equation (9) or Fig. 2.

Now mesh-point values of the integrand f(x,y) become as shown in Fig. 3 by
taking h=k=r/4. Then by multiplying corresponding values in Figs. 2 and 3, and by
summing up these products, we obtain

* 2
I= _—3;5;-5_(%> X 629, 8= — 0. TOO. vvervrereerrenrersnneereenns 12)

It is added however that this numerical example is a rather unsuitable application
of the rule (9), since it is by chance missing terms involving derivatives as was stat-
ed above, and hence merely reduces to a linear combination of trapezoidal rule and
Simpson’s rule in two dimensions.
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Fig. 3.’ Mesh-point values of f(x,y)= 1tz

sin x siny e 2.
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6. The necessity of evaluating the integral (10) above arose in connection with
my analytical solution of a three-dimensional Boussinesq’s problem in which a semi-
infinite elastic solid body is pressed with a uniform load on its surface, and a number
of expressions similar to (10) have been obtained as the solution of the generalized
Boussinesq’s problem that is capable of shearing forces as well as of normal pressure®.
In fact the value obtained in (12) is the magnitude of compressive stress at a point
along the vertical axis and distant from the origin of coordinates by unit length, when
the semi-infinite solid is pressed with a uniform load of unit stress distributed over a
square whose side lengths are both 2.

The value (12) above could be confirmed to be accurate by a further computation
in which a finer mesh where A=Fk==/8 was adopted, and it gave the same value as
(12). It is also in accordance with that computed otherwise by the late J. Kimura®, its

analytical solution being due to A.E.H. Love® by means of integrating Boussinesq’s
potentials. ’
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