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AN EXACT METHOD OF SOLVING THE LINEAR
SIMULTANEOUS EQUATIONS WITH THE PRINCIPAL

DIAGONAL COEFFICIENTS AND THOSE 5
ADJACENT TO THEM ONLY ;{:F%[D

(Trans. of JSCE, April 1954) . m
Dr. Eng., Takaichi SHINGO, C.E. Member* e !Ui

Synopsis By utilizing the preestimated multipliers, the ordinary determinantal
solutions of the linear simultaneous equatlons gotten by applying the theory of three
moments to analyse structures, such as Rohse girders'”, Vierendeel girders®”, etc.,”
are expanded into the very rapidly convergent series and simultaneously the recurrent
retroactions of corrections are nulified.

Introduction

Up to the present, though the methods of rationally solving the linear simultaneous
equations with the principal diagonal coefficients and those adjacent to them only have
been publicated in some special cases by the other authorities®* "'V they can not be
used generally, One of the effective methods, found by the author since 1940, is made
public in this paper, in which the ordinary determinantal solutions are expanded into
the most rapidly convergent series by applying the matrix-premultipliers to from the
first and last columns of the determinants in succession, quite similar to the cases,
given in Bibliography 15). It needs no more correction, because the recurrent retro-
actions of the corrections can completely be eliminated by multiplying all the
coefficients by the preestimated multipliers, from whose ground it is called Method of
Multipliers.

Theory of Method of Multipliers

If the linear simultaneous equations:

Ay, Xy T @y a X, =h1 3

Ay Xy, Xm0, 5 Xy =h2
a; , X,-0;,X,+a, X, =h3 |

.................. o cereerrenineeeie (1)
|
|
Ay n—1 Xp—1+8Gnm xn—-hn ;
or in the matrix

12 T /2 (2)

where

* The Faculty of Engineering, Kumamoto University.

D, 2), - , 16) Refer to Bibliography given at the end of this paper.
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A = | e , x={x}, h={hY, (3)
An,n—1y a'n,'n/!‘r
are given, then we get
%,=D,/D, D=lal, D,=la], r=1,2, SR eeeeeeeensieeseenes (4)

Taking the principal diagonal elements, the matrices, and their determinant such
that

@ i=1; e e s (5)
for s<r, §=1,2,+-- 7,
1.
s : -
1= 1 . ’ bg;%,s:—asm,s m's; - (6)
$-1 : .
s+1,8
1
for t >, t=1,2, ,H—7,
‘1.
l Byt
Ept = i "1 . o thn-lt.n-t+1=_a'n_t,'n,.;t+1 Mp_t31;
: - L e (7
i, iy
r-1 s n-7r -1
D=|1 Is-1( i En-t+la>l; ......................................................... (8)
Sl t-1 .
then we obtain
D=1/m'l, m’z’ ...... , m”,_” 2y Mgy Mpggy =oooer G M)  ereeseeeerreseiiieien 9
D,=|D| , i=1,2, e LB eereeeeeeseseeeeei s 10y
a;, +—h;

referring to Eq. (4),

Xp=z. M7, W=z, , i=1,2, oo JM s - (1D)
a; »—h;
hﬁ—lzhr—ar,r_x h-r_l ‘I'ar,r—l 57‘-1,7‘-2 hr-‘z_ar,r_x ar_hr-z a_r--z,r—a hr-a e
~@r yyy Brgs +8r a1 Brin,ris Brys— @ r3y Brag rae ET-}—'Z,T-H L ;
.............................. 12

and

x=ZRh, Z=2; 0, 1, S k= Kronecker’s SIGM;  seeeeerereeeieninen (13)
where
for i>r, i=r-+1,7+2, ----Q-, n,

Totpy = @i 13, Migy,  wecerteieeeteessseeiecsienienini e 14)

1/mt=1—at,t+n al-}-x,imtq—::l;ai.t%—xal-H.l .................................... (15)
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n-i = n-i-1
h_z =hr—au+1 hisy

=hi— @1 05, B+ @i 03 Figr va Rigo =i, 09, gy tge Bigs, o Pigy - ooveee ;o (16)
for <7, i=1,2 ... , 1,
at,l—1:at‘t-1 ;n’l_1 s trereeeerirerciieiieieeeieaae RCTIT RIS TP P PP PSPPI an
Um'i=1—a;:  a;_, m'_ =13, ai_,,, e (18)
B'=h—a, Kt
=h—@ o P B By e~ By, Bz oflicg+eeeeee 3 (19)
V2r=1=Gr r_y @y r— By pgs Grgyp]  eeeersreeemessieeieineeeeeniieseseae e 20

and ZR is given by Eq. (28).

Numerical Calculations

The numerical calculations must be perfornfed in order such as follows:
1. Divide with @;; both the sides of the given equations (1) respectively, and
according to Eq. (5), let a; ;=1.
2. From Egs. from (14) to (20), we obtain
for i >, t=n,n—1,-- »2,1,
My=1/ (L =@ 13y @iy 1 Miy)),  orrerrmrneeeeriiiite it st tnae e @D

from which reads

mn=1, mn—lzl,ﬁ’(l—an_x,u an,n—x), \1
e =1 (A= s O s M), I/ ....................................... (22)
Mmu_s=1/(1— Az nz @z ns Mu_s), ‘l
........................................ ; /
for i <7, 1=1,2,--- , 1,
My=1/ (Mm@ iy @iy s M), wreeerseesreemieie e (23)

from which reads

m', =1, m',=1/1-a,,a,,), m',=1/(1-a,.a,,m'),

m"=1/(1—a4,a as, ., mra), mlszl/’<1—as.4 a,,s m’l), """ (24)
and ‘

2= 1/(1 T S m,T—l — @y iy m7’+1)' .......................... ’- N (25)

3. Prepare the auxiliary matrix:

21y _‘51.2, : W
—52.1; 2 _Ez.an
— Q3,2 Z3- Q3,4
........................ , e (26)
_an—x,n-—zy z'n—-ly an—l,n
_En.n_u 2n,n
where, referring to Egs. (14) and (17),
Ei,i+1=a£.t+1 My, ai,t_lzai.t—l mlt_l- ....................................... (27)

4. By utilizing the matrix (26), construct the matrix:
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+zu — 2 51.2; +2, ‘71,2 Zl—z,a, ~ 2 51,252,3 33.4; +21a1,2a:,353,454 3
—Z2, 52,1; +22, —2Z, 32,3, +22 az,sas‘n —2252,353.454,5:
ZR = | +z,a,,4a, , —2, 45,5, +2;, —2,85, 4, L2,8,,8, 5,
—Z, ‘_14,353.2 ‘72.1, -2, a4,3‘73,2, —2, EA,zy 2y, "34‘74,5;
TR TR R R R R R e TR R R PR PTR R RERRIRRCLRLS |
....................................... (28)

By minutely comparing the right side of Eq. (12) and the matrix (26), we can
readily see the preparing proeess of the matrix (28) from the latter. For examples,
the third-row elements of (28) : —2,@, ,, +2.@; ,8,,,, —2:85,4, ~2:85 &, 5, — R385, By 585 s,
----- are respectively gotten by multiplying 2z, by (-—2Z,.) and —z.@,, by (—&.,) in
the left direction from the principal diagonal, and z, by (—@&, ,), —z.a,,, by (—a&.,),
+2,8;,, 8,5 bY (—&s, ), -+ in the right.

5. Post multiplying (28) by the column matrix %, given by Eq. (3), that is to
say, multiplying respectively each column element by %, k., i, -+ , and 4, in order
and summing up all the elements in the same rows, we lastly obtain the solutions (13).

The Solutions of the Special Case: a,,=a,,»_,=c, and a; .+, =aq, i5=1,n.

Referring to Egs. from (21) to (25), we get

for i >7,
1/m,=1—cam,,
1m,=1/m,= - =1m,_,=1—a*/(1—a*/{1—a’/(1-ca)}),
Ymy_,=1-a*/{1-a’/(1—ca)}, Umy ,=1—a*/(A—ca), { 7 (29)
1/my_,=1-ca, 1/m,=1;

for :<r,
i/m' =1, 1/m',=1-—ca, 1/m',=1-a*/(1—ca)
1/m' ,=1—a*/{1—a*/(1—ca)}
Um' =1/m'g= «oooee =1 =1—a*(1—a*/{1-a*/1—ca)}3 | " C
1/m',=1—cam’,._,

and A
1/z,=1/z,=1—cam,, Vz,=1/zp_,=1/m,+1/m',—1,
1z,=1/2p_,=1/m,+1/m',—1, } ------------ (3
1/z,=1/z,= < =1/24_,=1/2p_y=1/m +1/m ,— 1,

Now, from Egs. (13) and (28), gives the solutions.

s

Examples.

Now, we will practically solve the problems, found in Bibliography, -taking the
absolute terms as &; besides a; ;=1. All the calculations are so systematically arranged
in order just as the matrices that the items, mentioned in Numerical Calculations,
can regularly be realized. The integers in the first column show the numbers of the
ﬁatrices, their decimal fractions those of the rows, and the numbers of the first row
at the top those of the columns. The probable errors, which may exist, are due to
the calculations, performed by the 20-in. slide rule.

In Ex. 1%, the table of Row No. from (1.1) to (1.17) gives the given équations;
that of Row No. from (2.1) to (2.13) m;, m';, and z,; that of Row No. from (3.1) to
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(3.17) the matrix (26); that of Row No. from (4.1) to (4.9) the reciprocation, that
is, the solutions of the given equations; that of Row No. (5.1) and (5.'9) the two
solutions 581.392 M and 901.929 M3, calculated from (4.1) and (4.9), respectively;
and lastly that of Row No.(6.1) and (6.9) the two solutions, taken out from Bibliography
6), which satisfactorily establish the exactness of (5.1) and (5.9) respectively.

Ex. 1.9 *
Column No. ! 2 3 4 5 6 7 8 -] i0
Row e M L ; L] LA LH 'H '8 I'H I3
1.1 Ay 1 0.5
.2 4, 0.2531 1 0.2469
.3 Ay 0.2528° 0.2472
.4 ha ¢.2527 0.2473
.5 Ay . 0.2522 0.2478
.6 Ay 0.2517 1 0.2483
R Ay 0.2507 0.2493
.8 by 0.2506 0.2494
9% Ay 0.2500 0.2500
2.1 >
.2 @iisr Girse | 0-1266  0.0624  0.0625 0.0624 0.0624 0.0623 0.0625 0.0624 0.0624 0.0625
.3 Biiei dive | 0.1356  0.0669 0.0670 0.0669 0.0669 0.0668 0-0670  0.066% 0.0669 0.0670
.4 1/m; 0.8644 0.9331 0.9330 0.9331 0.9331 0.9332 0.9330 0.9331 0.9331 0.9330
.5 n; 1.156% 1.0717, 1.0T18 1.0T17 1.07T17T 1.0Tle [.0718 1.0TM7T 1.0T17 q.0mi8
€ c<r -
R Cii-18ie | O 0.1266 0.0624 0.0625 0.0624 0.0624 0.0622 0.0625 0.0624 0.0624
-8 @ii-Qii| O 0.1266 0.0714 0.0673 0.0669 0.0663 0.0668 0.0670 (.0669 0.0669
9 /o t 0.8734  0.9286 0.9327 0.9331 0.9331 0.9332 0.9330 0.9331 (.9331
.10 o ' 1.1449  1.0769 1.0722 1.0TIT .07 1.067i6 1.0718 §.0TIT 1.0TIF
.1 i =-r .
12 /z, 0.8644 0.8065 0.8616 ©0.8658 0.8662 0.8663 0.8662 0.8661 0.8662 0.866!
13 z, 1.1569  1.2400 1.1606 1.1550 1.1544 1.1543 1.1544 1.1545 1.1544 1.1545
A Ay by Ao Ay e #y 4y n* 4
3.1 * +1.1569 —0.5359
2 ~0.2531 +1.2400 —0.2646 .
.3 ~0.2084 +1.1606 —0.2649
.4 ~0.2T27 +1.1550 —0.2650
.5 —0.2704 +1.1544 —0.2655
.6 —0.2697 +1.1543 —0.2661
T —0.2687 +1-1544 -0.2672 .
8 —0.2685 +1.1545 —0.2673
M —0.2680 +1.1544 -0.2680
4.1 HES o1 1568 -0.6200 +0.1640 —0.0435 +0.0(15 —0.003t +0.0008 ~0.0002
- 2 41 = [-0.2138 +1.2400 -0.3281 +0.0869 —0.0230 +0.006! - 0.0016 +0.0004 -0.0001
3 M{ = 1+0.0B50 —0.3359 +1.1606 ~0.3074 +0.C815 —0.0216 +0.0058 -0.0015 +0.0004 -0.0001
4 M = 1-0.0230 +0.0909 —0.3143 +.1550 ~0.3061 +0.0813 ~0.0216 +0.0658 ~0.0015 +0.0004
5 # = ]+0.0062 -0.0246 +0.0850 —0.3122 +1.1544 _(.3065 +0.0816 -06.0216 +0.0058 -0 0016
6 M} = [-GC.001T +0.0066 -0.0229 +0.0842 -0.3113 +1.1543 - 0.3072 +0.08%1 —-0.021% +0.0059
1 M3 = |+0.0005 -0.0018 +0.0062 ~0.0226 +0.0837 —0.3192 +(.1544 -0.3085 +0.0825 ~0.022!
.8 MG - -©.00Ct +0.0005 - 0.0017 40.0061 -0.0225 4+0.0833 —0.3100 +{.1545 -0.3084 +0.0827
.9 ¥ My - —©.0001 +0.0004 -0.0016 +0.0060 ~0.0223 +0.0831 —0.3094 +1.1544 ~0.3094
.10 My - ~0.0001 +0.0004 ~0.0016 +0.0060 ~0.0222 +0.0827 -0.3086 +1.]545
1t #y - -0.0001 —0.0004 -0.0016 +0.0059 —-0.0221 +0.0825 ~0.3085
RYS mh o= ~0.0001 +(.0004 —0.0016 +0.0059 —0.0219 +0.0821
43 Pra ~0.0001 +0.0004 ~0.0016 +0.0058 ~0.0218
i - —0-0001 +0.0004 "~0.0015 +0.0058
.15 AL = ~0.0001 +0.0004 -0.0015
e oy = ~0.0001 +0.0004
*
a. a, a, Q, Qs Qe a, ag a, a,
s.1 £81.392#5 = | +1.1565 -0.3138 +0.0850 -0.0230 +0.0662 ~0.0Q)7 +0.0004 -0.0001
5.9 | SO0, 929m3 = ~6.0001 +0.0003 —0.0013 +0.0050 —0.0190 +0.0715 —0.2675 +1 ~0.2675
6.1 581.392m5 2| +1.15691 0. 31381 +0.08504 —0.02303 +0.00622 — 0. 00{68 +0. 00044 —0.00612 +0.00003 —0. 00001
€.9 | 901.920#¢ = | +0.03005 ~0.00010 +0. 00036 —0.00134 +0.00504 —0.01900+0.67144 —0.26748 + 1 -0.26748
* For simplicity, only the left half of the table is shown from it

center symmetry. .
® Five decimal places ane taken besides H = 0 for the coefficients
in Bibliography 6).

q *

3 Eq. (1). ® (267, Eqs. (13) or (28) h.

From Ex. 2 and 3, we can readily get the respective solutions, when the proper
values of » are inserted into them. If #>12 exists, the solutions are practically
exact’”'”, and if 4 <n <11, they are approximate, whose accuracies are dependent
on the magnitude of n. Furthermore, if the coefficients of the given equations are
very close to those of Ex. 2 and 3, their approximate solutions can also de obtained
from them, when 7 is properly taken. Thus, we can simply get the approximate

solutions of Ex. 1, if #=17 is inserted into Ex. 2. The process of getting the solutions
is as follows.

Generally, if a set of # linear simultaneous equations are given, take out the
elements, situated in the first #/2 rows and the first # columns, from the table, and
rotate them around the center of the elements of the first » rows and the first »

columns by 180 degrees, then lastly we get the solutions of x,, x.,
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Ex. 2. Given g;, = 1. a;;,,= 0.25 except 8, ~@,, ,= 0.5, and 10 {n, find the sotutions

4, Ay Ay Ay As Ae & Ay Ay A Au A A A His

X=1+1.155 ~0.619 +0.166 -0.044 +0.012 -0.003 +0.001

x=1-0.309 +1.239 -0.332 +0.089 ~0.024 +0.006 —0.002

Xy 11+0.089 ~0.332 +1.161 ~0.311 +0.083 ~0.022 +0.006 ~0.002

Xym 1-0.022 +0.089 —0.31¢ +1.155 ~0.310 +0.083 -0.022 +0.006 —0.002

Xg= [+0-006 ~0.024 +0.083 ~0.310 +1.155 —0.310 +0.083 ~0.022 +0.006 -0.002

XK=
Xg=

Xo=

-0.002 +0.006 -0.022 +0.083 =0.310 +1.155 -0.310 +0.083 -0.022 +0.006 -0.002
-0.002 +0.006 —0.022 +0.083 ~0.310 +1.155 ~0.310 +0.083 -0.022 +0.006 +0.002
—0.002+0.006 -0.022 +0.093 -0.310 +1.155 -0.310 +9.083 —(.022 -0.006 -0.002

....... (. The same.coefficisnts are.in.succession )

—0.002 +0.006 -0.022 +0.083 —0.310 +1.155 —0.310 +0.083 +0.022 +0.006 -0.002

Ex

For simpiiczity. only the firat half of the equotions arve shown from its center symmstry.

3 Givenay = 1. @,y = 0.25, and 10 { n. find the solutions

Ay Aa Ay Ay Ay A Ay s Ay A A Ay Ay

A=
X=
Xy
Xs=
o=
Xy =
Xg=
Xym

+1.072 —0.287 +0.077 ~3.021 +0.006 ~0.002

~0.287 +1.142 ~0.308 +0.083 -0.022 +0.006 ~0.002

+0.077 -0.308 +.154 ~0.309 +0.083 ~0.022 +0.006 —0.002

-0.021 +0.083 -0.309 +1.154 —=0.309 +0.083 -0.022 +0.006 -0.002
+0.006 -0.022 +0.083 ~0.309 +1.154 ~0.309 +0.083 —(0.022 +0.006 -0.002

-0.002 +0.006 ~0.022 +0.083 -0.309 +1.154 ~0.309 +0.083 —0.022 +0.006 ~0,002
-0.002 +0.006 -0.022 +0.083 —0.309 +/.154 ~0.309 +0.093 -0.022 +0,006 —0.C02

~0.002 +9.008 -0.022 +0.083 -0.309 +1.154 ~0.309 +0.083 —0.022 +0,006 -5.002

-0.002 +0.006 ~0.022 +0.083 —0.309 +(.154 -0.309 #0,083 -0.0

22 +0.006 —-0.0

For simplicity, Only the first half of the equations are shown from its center symmstry.

For examples, if #=4 is inserted into EX. 2 and 3 respectively, we get

%,=+1.1554,—0.619 ,+0.166 4,—0.044 &,  +
%,=—0.309 ,+1.238 },— 0.332 h,+0.089 &,
%y=+0.089 4, —0.332 h,+1.238 4,— 0.309 &,
%,=—0.044 4, +0.166 #,~0.619 4, +1.155 h,

and

x,=+1.072 h,—0.287 h,+0.077 h,—0.021 £, p
x,=—0.287 h,+1.149 h,—0.308 ,+0.083 ,
x,=+0.0834,—-0.308 k,+1.149 »,—0.287 &,
x%,=—0.021 %,+-0.077 h,—0.287 h,+1.072 k, -

respectively,

x,=+1.155k,~0.622 h,4-0.178 h,—0.044 &, ¥
‘ x%,=—0.311%,+1.244 h,—0.356 %, +0.089 &, L

x,=+0.089%,—0.356 h,+1.244 h,—0.311 &,

x,=—0.044 h,+0.178 ,—0.622 h,+1.155 k, /

and

£,=+1.072 h,—0.287 h, +0.077 h,—0.019 &,
%,=—0.287 b, +1.148 h,—0.306 k, +0.077 &,
Xy=+0.077 h,—0.306 h,+1.148 h,— 0.287 k,
%,=—0.019 #,+0.077 h,—0.287 h,+1.072 4, 3

while the true solutions'®!?:

establish the effectiveness of the former, even when n=4 respectively.

Conclusion

1. The exactness, simplicity, and speediness of the new method can satisfactorily

be verified.

2. The effectiveness of the results of Ex.2, Ex. 8, and the special case @, ;=@ p_,=C

and a; ;+,=a, 1= 1,1, can also be proved.
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