ON THE BUCKLING STRENGTH OF AN IMPERFECT
ELASTIC COLUMN

(Trans. of JSCE, No. 15, Dec. 1952)
By Dr. Eng., Tomoyasu Yiki, C.E. Member*

I. Introduction
A centrally-loaded straight short-column has generally a buckling stress ox
greater than the “true elastic limit” oz of the material of the column. In this
paper, the writer calls such a “short-column” “ An Imparfect Elastic Column”, and
he is to make a proposal based upon a new idea something different from the
wellknown “Engesser-Kdarman” formula, and the writer’s numerous expsrimental
results using several different materials show the favorable supports to his proposal.

Acknowledgement. The writer wishes to express his cordial gratitude to Yutaka
TANAKA, Dr. Eng., Honorary Prof. of Tokyd Univ., Member of Japan Academy, for
his kind guidance, and to Foundation SAITO HO-ON KAI and to Education Depart-
ment for his research expense.

II. New Solution
(1) Fundamental Assumption.

When a straight “short-column” is centrally loaded, and the mean stress (o=
load/gross area) in a cross-section of the column becomes greater than the true
elastic limit of the material through the entire length, some elastic constitution of
the cross-section turns partially and gradually into the plastic constitution. To the
writer’s mind, the ratio of the area (4.) of the remaining elastic parts of a cross-
section to its gross area (A4,) may be of a certain value corresponding to the buckling
stress. Now, referring to Fig. 1, and putting o.=any compressive stress, &=total
strain due to o, & =elastic strain due to o, &,=plastic strain due to o., ox=elastic
limit, or=yield point, op=compressive strength, we get the following general
equation,

Fig. 1.
a) ¢~ on Steel b) o ~i/i on Steel Columns ¢) o~& on Steel
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and gf,—_gef.;_gpf ....................................... (1b)
where &7, &,7 and &7 denote compressive total strain, plastic strain and elastic
strain at o, respectively.
For concrete, wood, cast iron etc, we may write it better as the following
equation,

where £°, &% and &° denote compressive total strain, plastic strain and elastic
strain at og, respectively.

In case of ox > o, for example for steel, we may write it as the following
equation (1d) shown in Fig. 1 ¢) for trial.

T (1d)

where & =compressive total strain due to o, above o.
&/ and &,'=strain indicated in Fig. 1 ¢), due to o, above o, respectivery.
Next, putting p as the ratio of &, at any compressive stress intensity o to &7,
we may write generally the formula as
P=E,1E,7  OF EpfEp0, &5 /6B, srrrirariiiieii i (2)

Then, on the other hand, the ratio above mentioned of 4. to 4, is to bs assumed
as a function of p at the buckling stress ox, and the writer proposass the following
Eq. (3) for trial.

Ae/:ig=f(p)=(1—p)‘)"' ................................. (3)
where 2, p=expsrimental exponents.
(2) New Solution

The centrally loaded straight ‘short-column” remains straight before the
buckling, and when the mean stress (o =P/4,) on the cross-section overcomes the
true elastic limit o, the elastic parts and the plastic parts may cozxist, and for the
buckling load, we may mercly put as follows:

Pr=Ageog="Ay0 0k, Apeaup errerermrsreermsrnnecnnnin (4)
where Px=buckling load of a “shortcolumn”, ox.=eclastic stress at buckling,
oxp=plastic stréss at buckling, ox=buckling stress, 4,=gross area of cross-saction
of a column, 4.=sactional arca to elastic stress, 4, =sectional arca to plastic stress.

Value of ox. may be considered to be given from the Euler formula as follows:

' Ore=T2Ef{L[i)} cereerresrrreriinieiiiiiii (5)
where [=length of the column, 7=least radius of gyration of the cross-section of
the column, measured parallel to the plane of bending, E=modulus of elasticity of
the material of the column.

If the value of ok, is here considered to be in proportion to ox. and (&/&)7,
we get the following formula,

Chp =T 20 kes(EfEIP. wervrrssremmintiiiiiiiiiiiiiiiennnn: (6)
Coefficient 71«1 and constant n=1 seem to be adapted in the equation above
mentioned.

Setting the values given by Eaq.s (3), (5) and (6) in Eq. (4), the formula for
Py becomes,
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Pi=Ayef(p)eoret Ao{1—f(0)} (el E)r.
Then, the formula for ox takes the following equation (7).

k= Pr) A= gesW weeererememsrnemmiimnseeininenisenns (7
where, for abbreviation,
oxe=m"E/(I[{)?,
¥=f(p) +{1-f(p)}k; b=re o el

&£ &7
= — pA )k = r_. S —ve. o f -
S»)=A-p"% p &7 K =r &I 46,7

A, 1, y =experimental constants,
.-
Ui > [(1/5),::: L ]
(229 °] .

In case of l/i=(1/{)s, the writer dares, for the convenience’ sake, to place ox on the
border of op. 4

(i) When we use materials such as wood, mortar, concrete, cast iron etc., we may
as well use o instead “of op, and (ii) the strength of the “very short column”
may be given by this o or op; in case of ox=0r, p becomes 1 and so f(p)=0,
hence, ¥ becomes 47, in this case, I/i is given by (l/i); above mentioned. (iii) in
case of a perfect elastic column, however, p becomes 0, and so f(p)=1, consequently
¥ =1, hence we get ox=o0x., it coincides with the Euler formula.

Eq. (7) is a new one, presented by the writer, which gives the buckling stress
ox. Now we wish to make some explanations about the present equation. First, we
make clear the stress-strain diagram (o~&) on the material of the column and
calculate the value of p at the given buckling stress ox, and then calculate the
value of ¥. Then, we get the value of [/{ in response to the given buckling stress
ox, using the value of ¥ to Eq. (7). In short, we may represent the relation ox~{/7
of a “short-column” by means of retouchment of the Euler formula, using the value
of ¥ corresponded to the given ox from the diagram o~& Curve ox~I/i given by
Ea. (7) loses its continuity with the straight line ox =0, at the point of ({/i);, but
in practice we consider that the curve is tangent to the straight line. In special
case =0, the curve becomes as shown by the broken line in Fig. 1 and this curve
seems particularly very useful in practice. And further, if it is desired to find the
ox of a reinforced concrete column, the following equation (8) may be adopted.

0'K=UK°(1—A£')+/1'0‘KeS .................................... (8)
where ox’=0xL+¥ =Dbuckling stress of concrete column,
ot =mrE/(l/1)=Dbuckling strass of stzel column,
©w=A4A.=ratio of steel area to concrete area of ths cross-section of
the column,
E;=modulus of elasticity of steel.

The values of expsrimental constants 4, # and v in the present formula, as the

results of our experimental relations o~& and the strengths of column-test-pieces

tested by the writer, are as shown in the following table. Therefore, it is concluded

that tha vahlie of fin) ic tn he (1 1/ n 2 in raca nf metal raliimne and (1— )2 in
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TABLE—Values of Experimental Constants A, p, v

No Material of Size of Cross-Section 1 Number of A ‘
Column-test-pieces of Test-pieces (mm) ( Test-pieces | # Y

1| Strctaral Steel 4x5 e Pz 2 0.3

- 2 7 Caibon Steel 2><75T - 53 ‘» 1/2 2 7 0.3
*‘:«T'i  Duwalumin | 34 50 12 2 | o3
”4 7 Aluminum ‘—“3 @ 53 71/27 ’2_7

5 | Cast Iron (EK. 500 | 10x60 10 oz 2 0.3

a 6 - Lead (Merck) 3¢ and 5¢ ;'”' 26 anr(; 2(; 777777 [FIIZ— 772_‘ 1 7

7 Japan Cypress 5x7 Vaﬁngéogdrﬁii 96;;1d\34 | 1 2 0.6

8 7 Mortar 8><71;7 - “ - ;13 - 7? 1 2 0.6
9 Rgg;’rrggi’ 1005100 TR E 1 2 | o6

case of columns of wood, mortar and concrete. As to the value of 7, W& may use in
case of metals r=0.3, and in case of wood, mortar and concrete y=0.6. Exception:
In case of lead, y=1.

Having calculated coefficients ¥ with these experimental constants, curves ox~1/¢
may bz drawn as shown in Fig. 2-9. Marks (@) in the figures show the writer’s
expsrimental values tested by the compression testing apparatus spzscially designed
by him as shown in Fig. 10. Curves @ represent Eq. (7), and curves ) show the casss
r=0. Curves ® represent the Engesser-Karman formula.? Curves @, @, & in Fig.
8 represent v=0.6, 0.2, 0 respectively. The proportion of the sand mortar mixture
shown in Fig. 8 is ¢/s=1/2 and W/(c+s)=9% by weight. The age at his tests is
21 months.

Fig. 8. Tests on Cast Iron Columns

Fig. 2. o~c¢ Diagrams on St. 39 and op~I/i
on St. 39 Columns 60
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Fig. 5a. o~¢& on Lead Fig. 5b. Tests en Lead Cclumns
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Fig. 6. Tests on Duralumin Columns
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Fig. 11~13 show tha views of the column-test-pieces after they are tested.

Fig. 9b. Tests on Mortar & Reinforced Fig. 11 Views of Stiuctual Steel Columns
Concrete Columns by O. Baumann (4 x5 mm) after Test.
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Fig. 12. Views of Aluminum Columns
{20 (3mm ¢) after Test.

a

AR
SN

N3
(=176 X<

A AR 533‘%

1 1 1 1 1
T A6 8 7T hd L 1B 20 9,
Y 20 40 60 80 /00 120 140 /60 I80 200

Fig. 10. Compression Testing Appar%xtus o

NER Q

Fig. 13. Views of Mortar Columns
(8x12mm) after Test.
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III. Summary of Tests
A brief summary of the more important results of the tests given below :

(1) Relation o~¢&, is generally measured using a simple compression test piece
which has its height less than 2.5 times its diameter. This relation may be approxi-
mately represented by a hyperbolic equation of 1 or 2 degrass like o or o®=E,/(a+b8,),
wherein «,b=exp. constants. Exception: For steel, the result of o:~¢&, test will be
in practice used as that of o~&, test, and its true elastic limit or seems approximate
to or/3. Its curve o~&, may bz treated as a parabola of the high dsgree with its
origin at the true elastic limit.

(2) Curves ox~I/i given by Eq. (7) using the expsrimental constants shown in
the above Table may appreciate an exactness of Eq. (7) by comparising of the results
of his tests on columns as shown in the figures.
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