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o NTERPOLATION METHOD FOR 'I‘HE ANALYSIS OF
e THE FUNLTION OF MULTI-VARIABLES,
A’\ID ITS APPLICATIONS

(Trans. of JSCE March 1952)
Bennosuke Tanimoto, C.E. Member

. Synopsié The present report itself ia a brief synopsis of my work concerning the
interpolation during the last several years. It gives general expressions of inter-
polation formulas of various types, and applications to the mechanical cubature,

' biquadrature, etc. and to the difference equation. Seiches of two existing lakes,
© and a few torsion-problems are also given.

1. Vaﬂriou‘s kinds of interpolation formulas of one variable have long since been
proposed, such as Newton’s, Stirling’s, Bessel’s, Gauss’, Everett’s, etc. They have
m;'ved to the  practical numerical analysis, that is, to the interpolation itself, to the
mbchamcal quadrature, to the dxfference equation for ordmary differential equation,

* But little has been worked out, ‘with regard to the interpolation of the function
iiof two or more independent'variables. Though a few interpolation formulas of two
1 v’aﬁ\ables were given by Prof. S. NARUMI, STEFFENSON and othersV»®, the method
. of their derivation, from the practical stand-point, is very tedious and troublesome;
“and almost no farther developments of the work have been made.

_ Interpolation formulas of the function of two or more independent variables can
{é: obtained merely by means of repeated application of known interpolation formulas
of one independent variable, their process being very simple and systematic. The
mﬁon or symbols proposed and exclusively used here would be the most convenient
A »»@mparison with those presented previously.

Interpolétibn formula of Newton type of niany variables is written in the
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Also interpolation formula of Stirling type is written in the form
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We can also obtain interpolation formulas of other types, and further those of
mixed types, i.e., for instance, of Newton type in the »,-direction, and of Stirling type
in the z,-direction, etc.

For instance, interpolation formula of Stirling type for the Hfunctlon Flzyy) is
written down
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3.. From the formula just written we may obtain a general expression for the
a’ /74
mechanical cubature’ of the definite integral /= f f S y)iedy.  The resulting ex-
a b
pression is
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The above result will also be applicable to the integral of the form

"Lﬂ,’

= _];w j;"w SzyX¥zdy, which frequently takes place in theoretical investigation. The
cited integral is sometimes of rapid convergence, and in such a case the work for the
evaluation is not very laborious.
! As the simplest case of the above expression, we take p=1 and retain terms in 4.
We then have I=4rk {2(00)—r2'(10)}, where, for brevity, I(10)=(10)+(10)--(01)+(0L). If in
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addition We retain the term in fs, we then have /=it {1600)+45(10)+ (D} this
bemg frequently referred to the computation of the displacement tonnage of a vessel in
naval engineering. The above two rules may reasonabily be called Simpson’s rules in
two dimensions. More accurate rules can be written down, if required. Also, if we refer
to the general expression derived from modified Bessel’s mterpolatlon formula, then the
first approximation to the mechanical cubature becomes I= =4 £ £(00)+(10)-+(01)+-(11)}.
This is a rule that is sometimes used in civil engineering in computmg the volume of
cut or bank extending over a broad area. ' ,

Similar expressions for the mechanical cubature can be oBtained from interpolation.
formulas of other types. Further, general expressions for the mechanical biquadrature.
can also be obtained from}interpolation formulas for the function f(z,v,2).

- 4. A method of differentiation of the function f(z,y) has been devised by L. COL- -
LATZ® of Berlin University, and developed to a great extent by Prof. K. HIDAKA of
Tokyo University, who has applied it successfully to various technological problems.
The method is in assuming a square-like network in which lattice-point values of the.
function are involved, and in applying to it Taylor’s expansion theorem for the function.

I have shown that the same results of the differentiation are obtained by term-by-
term: differentiation of Stirling’s interpolation formula at the central lattice-point, which:
corresﬁond’s to a special case of the proposed differentiation. Difference equations for
a linear partial differential equation at once follow from the above differentiation. First.
approximation to them affords, for instance, Liebmann’s equation for the plane harmonic
" equation, and Wolf’s equation for the plane biharmonic equation. Other series of differ-
ence equations are also derivable from interpolation formulas of other types. Further,
similar calculation affords difference equations for partial differential equation of three.
variables. -

5. As to the boundary-conditions of the difference equation method, little has been -
progressed. Only one criterion, so far as I am aware, has been given to the condition
%:—:0 for the rectangular boundary, which is known as the principle of image®. In
fact, the chief obstacle against the difference equation method is in the way of expres-
sing given boundary condition. A proposal to surmount this obstacle is given here, the
-method being in combining interpolation formula of Stirling type for the function f(z,y)
with its Taylor’s expansion,and in annulling successive differences separately.For applying
it to practical problems, a considerable amount of work is as yet needed‘ so that my
present stage of the work does not enable me to apply this promising criterion to
practical technological problems.

6. The problem of seiches of a lake or a bay is to find eigenvalues of the differ-

ential equation aJ: +2 f [ +27/=0, with the boundary condition ¥/ —a 3 159" gf »

denoting the normal to the bounding curve of the lake, and «, g dlrectmn—cosmes of the

normal. )
As to the method of treating the problem of seiches, a method has been proposed



| g N .
Interpolation Method for the Analysis of the Function of Multi-variables, and its Applications 39

by the late I. TSUBOI®. The principle of the method is in taking finite terms of par-
tiéular solutions of the differential equation in the form of Bessel function, and in
making these solutions satisfy the boundary-condition at finite points of the smoothed
shore-line. By means of this method, seiches of several lakes in Japan have been
- treated by various investigators. v
An alternative method for the problem is given here. The method is the direct
application of the interpolation formula. Seiches of two existing lakes in Japan, Lake
Tasawa in Akita Pref, and Lake Inawashiro in Fukushima Pref., were treated. As an
approximation to the unknown function Ffzy), 1 adopted by the foregoing interpolation
formula of Stirling type, .
~ ul
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where, for brevity, 4,=4.{(10)+(00)} etc. This expression contains eleven unknown lattice-
points. The differential equation was considered, for convenience’ sake, at four points
within the domain of f(z,y). To take the boundary condition into consideration smooth
out the shore-line of the Iéke, take the remaining seven points on the smoothed curve,

and draw normals at these points to the curve. Then the direct substitution of these
eleven conditions into the fundamental equations, derived from the cited interpolation
formula, affords eleven simultaneous equations concerning the eleven unknowns, which’
do not contain constant terms, so that the determinant constructed by the coefficients
must vanish. The equation so constructed will afford the eigen-values of the problem,

from which the periods of the free oscillation are obtained.

The calculated periods of the seiches showed fair agreements with those due to the
observations made by Prof. K. HONDAP®, That is to say, in the case of Lake Tasawa
the calculated period of the seiches is 3 min. 2Bsec. for uninodal oscillation, while the
corresponding period observed by Prof. HONDA is 3min. 30sec.; and in the case of Lake
Inawashiro the respective periods of the seiches are 19min. 41sec. and 19min. 07 sec.
To obtain these results it was sufficient to work only for two or three days respectively,
provided a hand-driven calculating machine is available. It is added that in the case of
Lake Inawashiro, Prof. HONDA states that there are two distinct oscillations, one being
of uninodal oscillation and the other of binodal one. But the latter oscillation would, in
reality, be of trinodal one. This was seen in the process of my calculation, and was

_confirmed by the technical opinion of Prof. HIDAKA.

¢

7. The problem of torsion of a prism is to solve the differential equation ng + az{: =0,

5
72

which holds at all points within any cross-section of the prism, with the boundary-condition
*g{*=ycos(:v, v)—zcos(y,» ); v denoting the outward-drawn normal to the bounding curve. The
torsional rigidity of the prism, C, say, is given by the integral C=u f f (z2+y2+xg—— of >

Yo
dzdy, where the integration extends over the whole cross-sectional area of the af;/risma; B
being the modulus of rigidity. )
The problem of torsion has been fully discussed since the time of St. Venant®. But
n the case when the bounding curve bscomes a little intricate, the problem remains
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~ unsolved. In such a case the so-called analytical method of sojution would seem almost
inaccessible even for a highly trained analyst. In this regard, several semi-analytical or
semi-numerical methods, such as Ritz’s, Galerkin’s, etc., have bzen proposed, and made a
~ definite congribution to the problem. '
The method here proposed is, as before, the direct application of interpolation
- formulas. The first trial of .the method was done by the torsion problem of a square
prism, that is, a prism whose cross-section is a square, by referring to the interpolation
. formula of Everett type. An approximaﬁion to the torsional rigidity, with a roughlymade
" calculation, resulted to 2.17 ., while the corresponding rigorous value is known to be
2,25 4; the error of my result being —3.7%. Such a degree of error would sometimes
~ be of little significance in practical engineering. '

The second work for the torsion was devoted to the evaluation of the torsional
i r1g1d.1ty of an angleshaped prism (cf. Figl), by referring to the interpolation formula
of Newton type. It gave the value of 5.67 n, while the prevailing formula in practical
- engineering affords in this case 2.33,1. - It is to be noticed that a considerable amount
of discrepancy has resulted, though the value here calculated seems not so accurate that
* the last digit of the result is not reliable. Fig. 1 Fig.2

The reliability of the calculated value will 7 -

" in general be justifiable, from the practi- }
" cal standpoint, by the convergence of the | JT
- contribution of successive differences to the ~ 2
result fL
The third trial of the torsion- -problem 1) 2

was done by a crossshaped prism (cf. 4 b4 ~ S5

Fig 2), by using the interpolation formula
of modified Bessel type. Differences in the formula were taken up to the eighth order
v into ‘account, and higher differences were neglected. The calculated torsional rigidity
amounted to 30.35 #, while the corresponding value referred to the prevailing formula
. affords 26.67 u. - -

8. The work, as is clearly seen, is an entirely practical one, so that anyone ‘may
. obtain, if necessary, his numerical result of a differential equation with which he is
. oonfronted when he is only able to pérform the ordinary calculation of numerals. I
hOpe that the work may serve as a direct means connecting the partial differential
. equation with the practical numerical calculation. I desire also that detailed description
-of the work, with its further developments, may be published some other day.
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ON THE SOLUTION OF DIFFERENTIAL EQUATIONS, REPRESENTING
THE VIBRATION OF INFINITE BEAMS AND PLATES
;o SUPPORTED BY ELASTIC FOUNDATIONS
(Trans. of JSCE March 1952)
Dr. Eng., Bin Kinai, C.E. Member

Synopsis Making use of the same method as Arnold N. Lowan has adopted to the
wave-motion for infinite domains, the author deduced directly from the differen-
tial equations, the formulae of vibrations of an infinite beam and plate supported
by elastic foundation. Namely, the present writer applied the Laplace transfor-
mations to differential equations of vibration, and extended the domains infinitely
with the aid of Fourier integrals; and furthermore, by adopting the corresponding
inverse Laplace transformations, he obtained the results.

We can deduce the same results, by moving to the centre the origin of those
formulae of vibrations which the author has had already deduced for finite
domains, in the previous paper, and then by transforming them with the aid of
Fourier integrals.
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