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. '|MATHEMATICAL STUDY OF THE MOTION
Tt J|OF INTUMESCENCES IN OPEN CHANNELS
Lol OF UNIFORM SLOPE

By Taizo Hayashi, C.E. Member*

SYNOPSIS This paper is the first of a series dealing with the
motion of translation waves in open channels. The case treated is
that of an arbitrary intumescence with a small height in a uniform
channel with a rectangular cross section containing water originally
moving with a uniform velocity. Approximate formulas are derived
which give the deformation and motion of the intumescence. The
case of the intumescence of the form of a rectangular type is also dealt
with and for that the form of the rigorous solution is shown. Special
emphasis is laid on the dispersive property of intumescences. A method
of illustration of the dispersion is presented and both the propagation
speed and the dispersion of intumescences of any arbitrary shape are
illustrated. The resuits are all derived with the method of operational
calculus on the plane of the complex variables.

1. INTRODUCTION

The growing importance of long waves and flood waves for many practical pur-
poses has in recent years led to a marked increase in the literature on these subjects.
As pointed out by Messrs. Keuvlegan and Patterson(1)**, perhaps a simple classifica-
tion of translation waves is obtained by considering the effect of friction. Then the
long waves and the flood waves may be consideted Lwo exireme cases. In long waves
the weight and inertia are the faclors controlling the motion and the effect of friction
is less important.  On the other hand, in flood waves friction is allimportant factor,
the effects of weight and inertia being negligible. In the former case the propagation
speed of waves ¢, is approximately given by the Lagrange velocity law ¢o=1/¢H, where
g and H being the acceleration of gravity and the channel depth, respectively. In

‘the latter case, the propagation speed of waves ¢, is given, according to the Kleitz-

Seddon law (2), by ¢,=dg/dH, where q being the discharge per unit width. In a wide
rectangular channel e¢,=3U/2, if the Chezy resistance law is used and ¢,=5U/3, if the
Manning resistance law is applied.

However, as suggested in the literature (1), it should be understood that in reality
there exists a cont'nmuous transition between the two extreme types of waves described
above. The wave problems in such a transition region between the two extreme types
were dealt with mathematically by Mr. Massé and later by Messrs., Keulegan and
Patterson. Mr. Massé applied the Chezy resistance law and assumed wave amplitude
infinitesimally small (33. He worked out an approximate solution of the wave prob-
lems with the method of saddle-point integration. Messrs. Keulegan and Patterson
analysed the effect of channel slope on the motion of translation waves [4). In their
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** Figures in square brackets indicate the literature references at the end of this paper,
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study no assumption was made for the amplitudes of waves, the theory being useful
particularly for the study of waves of finite amplitude.  As for the propagation speed
of waves, however, they assumed as Boussinesq had done that the velocity of wave-
volume elements differs little from the theoretical velocity of waves without friction.
The last assumption might be necessary to overcome the mathematical difficulty of
dealing with waves of finite amplitude. However, as far as waves of infinitesimally
small amplitude are concerned, the asumption seems unnecessary for solving the wave
problems. The main purpose of this paper is concerned to treat mathematically with
intumescences of infinitesimally small amplitude in the transition zone which Mr. Massé
dealt with. In considering Mr. Massé’s solution the author explains the dispersive
property of intumescences in the transition region with a new method of illustration
and derives rigorous expressions of solutions which correspond to Mr. Massé’s approx-
imate solutions.

In giving Mr. Massé’s equations in Section II, slight changes have been made,
since it was desired to adopt Manning's law of friction in open channel (5) and to
introduce the factor of the channel width. In giving Mr. Massé’s method of approxi-
mation in Section IIL. alterations here, too, have been given, a straight line being used
in place of a parabola as the line of the steepest descent. However, although the
formulas presented in Section II. and IIl. are considerably different in form from those
of Mr. Massé, they are dve essentially to him.

A new method of illustration of dispersive Fig. 1 System of coordinates
property of waves is presented and the dispersion of for rectangular channels.
intumescences is explained in Section IV. The rigorous
solution of the movement of the intumescence of a

H

rectangular type is shown in Section V.
A brief presentation of the theory of the wave .
height is given in Section VII, the theory being com-
pared with that of the wave discharge described in the previous sections.
II. FORMULATION OF THE WAVE PROBLEM
Consider a uniform open channel of rectangular crosssection and take the s-axis
along the bottom of the channel and the H-axis vertically upwards ( see Fig 1 ). H
represents the depth of liquid in the channel and I, is the channel slope. Let U
and @ respectively denote the velocity of the particles in, and the discharge per

unit width through, a cross section at s. We consider phenomena in the channel as
one-dimensional. The equation of continuity is

oH _ 9@ ...

T T py I e 2.1
For the equation of motion, we use as the resistance formula Manning’s law

U=(1/n)RBIV? (m, sec), =(1 49/n)REBIZ (ft, SEC), -reveeerreerrvvnesseons 2.2)
where E is the hydraulic radius, » Kutter's roughness. Then the equation of motion is

aU oH

A= 9'5;“" g( I,— Ral“ ), ......................................................... (2.3)
where g is the intensity of gravity, r== in metric system or r=n/1.49 in ft-1b system.
The inertia term of the above equation is written —; dt = B—+ U QQ ------------ (2.4)

where a and § are velocity coefficients and their values are about 1.096 and 1.040
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respectively in wide rectangular channels. Substituting (2.4) in (2.3), we have -

oU oU o r2U?
BW—E—“U ag:——g s +g (Io_ﬁRd/s') .......................................... (2.5)

Let vs consider an intumescence of small height is produced in a liquid which is initially
in uniform motion in a rectangular channel. Let us put

Q=Qo+q, H=Hy+h, UsUstt,reeeecemereemerireniinieoniii i, (2.6)
where Q,, H, and U, are the quantities for the uniform flow and ¢,4 and « for the
intumescence.  As assumed above, (Qu o, Uo) ¥ ( qhyu Yo wovevrmmmnennnnniene. 2.7
Substituting (2.6) in (2.1) and(2.5) and linearizing (2.5) by the use of (2.7), we obtain
DR B0 ettt bbbt e ;
ot os 2.1
_aQF\oh  atB, o9 . B o9 _ 2L, L o Y3 R
and (1- 0 ) 0y a8, 20 4 B 20 2ol g+ Loiisern), 2.5)
where & is the undisturbed depth of the liquid in the channel divided by the wetted
perimeter, i. e. g:}L,/(ZH;)-‘—B) ........................................................................ (2. 8)
and B the width of the channel. Eliminating % between (2. 1’) and (2. 5’)
_ gy —aly® ?A‘L a+f .. 9%q T q 21.q( oq
. T RO +BU{ 5 (5 45) 7} =0,
.................. (2.9
The above equation is hyperbolic, if A:( aQ_EB U0> quI;an-7>0 --------------- (2.10)
(6). (2.10) is written E_{,%L (az_zﬁ ) }Uo +~gﬁﬂ’>0.
U e
cr gH,™ ﬁ{ o _(EH.@_)?} . (2.10.2)
B 28

As a=:p, for practical purposes the relation (2.10.a) always holds. Therefore- we may
justifiably think that (2.9) is always hyperbolic.
Next, in order to reduce the number of parameters in the equation, we non-dimen-

. . . . . I ’ B
sionalize it by the following linear transformations: -7 "—\/ seeeeennn(2,11
it by ing sUN gH,~ aUE (2.1D)
TL0 b ettt r et
and U=t (2.12)

Substituting (2.11) and (2.12) in (2.9) and dropping the primes on s and ¢t for the
simplicity's sake, we obtain

o g a+f oq GT 0 eiiiinenn,
— s+ asat 140 o +2{ + g 5- 45) f =0, (2.13)
where a=U, JQME“UO‘ e eeet et reiateeeerie e ee e e e bt s e et ae e et e arsaentes (2.14)
The a of (2.14) corresponds to the average velocity U, and is considered the non-
dimensionalized form of the average velocity. If we write —ZB a=2b,osrerereres (2.15)
S 9% 4 of aq 2Ly =0
(2.18) is written ZL+ Lo Jl+ § (5-46) } 0 (2.16)
which is the basic equ.atlon of this paper. Wrxtmg (2. 16) in the operational form,
dxg _ 2 \ dg 0 eerereeerererr et ate e rans
P {2bp+—37(5~—46)a;~d3—— o p+2)7=0 (2.17)

Since (2.17) is an ordinary differential equation of the second order, the solution of it
in its operational form is easily obtained as following:

g =Aexp[bp+%(5—45) _x/ {bp+ 5 (5—46)}2+p(p+:‘2)] 5

+Bexp[bp+—g—(5—4é)+\/- S ]8 ................................. (2.18)
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where 4, B are integration constants to be determined by boundary conditions. If weé
assume that the channel is semi-infinitely long (s=>0) and a boundary condition is
given by (9)s=o=g¢i(p), the values of 4 and B are determined as

B=0 and A=g(p). eeerememiii (2.18.2)
Let p; and p: denote the two roots of the polinominal of the second order under the
root of (2.18), then g ‘} ——(1+a'b) 31: i%}i%f’é:?ﬁ, .................................... (2.19)
where @ =(5—AE)a[S.  wrrerrerereerre e (2.20)
Insertion of (2.18.a), (2.19) and(2.20) into (2.18) yields

g=gi(pdexplbp+ad — /145 1//(p— POCP— P2 wrevvreemrvrernnaviine e, (2.21)
Writing (2.21) in the form of Bromwich-integral, we obtain

q :_Z%Sé@(pple“'s”’“*“) SV (-2 <1’-‘7"9de .................................... (2.22)
which is the expre:;ion for ¢ in Bromwich-inte- Fig2. Two examples of the types of
gral form. As the examples for the forms of ¢(p) mtumesc;nces'
the following two formulas are given for the bound- / T
ary conditions shown in Fig. 2: i % i
For the d-function type: gl p)=qop--++-- (2.23) Mh/.mh %,
and for the rectangular type: g(p)=qu(l—e*7) o "0 t4 } Loy

"""""" (2.29) Cads-function type Cbdrectangular type

III. APPROXIMATE SOLUTION OF DISCHARGE WITH THE METHOD OF
SADDLE POINT INTEGRATION

We will work out the integration (2.22). For abbreviation we write the power of

e in (2.22) as f(p), ie. A p)=ds+p(t+bs)—s1/ 148V (p—pO( p—pr) weeeseesenes (3.1)
For the same purpose we put G(p)=g.(p)/p crerernrrieneeee e (3,1,2)
Then (2.22) is written q:—z—g'rjf(}(p)exp[f(p)]dz) .......................................... (3.2)

For the integration of the type of the above expression, the method of saddle-point
integration is considered as one of the most useful methods of approximation L[7].

Hence let us use the method here.

At saddle Poifits  FI(PY=0 «errerrremrmemmiitiat et (3.3)
Therefore at the saddle points (3.1) yields
, p—C o
t4+bs)— s/ 1+b>— =, cereereieiiriii e () .4
b= sy L X =) -4
where C=(Prd P22 crevrrreremrrermiei it (8.5)
Solving (3.4) with respect to p, we obtain as the co-ordinate of the saddle-point
Sk PPy LB s 3
p=0H 0™ ik kY (3.6)
where K= S/t. .......................................................................................... (3. 7)
Expansion of f(p)into Taylor’s series around the saddle-point gives
17 .
AP =fpd+ ,fvg,‘l?:l( PP e e (5.8)

In the above equation the term f(p,) vanishes due to (3.3). Insertion of (3.8) and
(8.6) in (8.2) and integration of (3.2) along the line of the steepest descent give an
approximate solution. For that let us find the line of the steepest descent.

On the line the imaginary part of f(p) or If(p) is constant (7). Therefore on
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the line LACP) =LY =0 coverenesminmeetieiiii et s 3.9
Furthermore, the insertion of (3.6) into (8.1) is readily seen to yield

LACP) =0 cvevnereiimenite ittt (3.10)
Hence, (3.9) and (3.10) give T (P)=0 srrervereirnmininniniiinniiiiiitiinin, (3.11)
on the line of the steepest descent. Substituting (3.8) in (3.11), we obtain

I[f"(21’§)(p_ps)-:]=0 .................................................................. (3.12)
on the line. Since f’(p;), too, is readily seen to be a real quantity, we find on the
line the relation p—pi= | p—ps | exp A7T/2). wreeeeerneeniine e (3.13

(3.13) offers the equation of the line of the steepest descent which is parallel to the
imaginary axis. Substituting (3.8) in (3.2) and integrating (3.2) along the line of
the steepest descent, we obtain »

+ oo
J(ps) +'f~” (p"')(p - PsIZH seeee
= I'S G(p)-e T
27t .
Pp-ps=-io
1‘ 1.95) Hie 17 Pp- pi32
or g O G(pe S € Gpereeresnstenninniiniisonean st osaes (3.14)

p-ps=-low
In order to transform the above complex integral into a real integral, we put

pP—ps=ty.

Then (3.14) becomes  q'= Ggfi")eﬂm.s exp[ _f ”'(fzpi)y:]dy’ ........................... (3.15)

which essentially is the Gauss’ integral. Therefore, as the desired integral we obtain

o 1= . G(p:) ; a
fr 3.1¢ - L T A . A T R P PN € 3. 16
om (5.15) T 2nf(pd 16)

Substitution of (3.6) in (3.16) yields the desired solution
1/ A+ (pi— p2)- K02
2v/ ns{1+20 K — K2} 3

7=G(p, exp| - {C+(a +COE+ ! o P/ 126K~ K |

G( p;) is determined by a boundary condition, and for the two types shown in Fig. 2 it
is as following:

For the a_fu_nction type’ G( ps):qﬂy ............................................................ (3_ 18)
and for the rectangular type,

I T T T O po—p, 140K
GPI= . pi—p 14K [1-exo{~<(0+" 1/1+2bK—K~'>}1
9 Y1+2K— K
NG )
IV. DISPERSION OF INTUMESCENCES

We now consider on the dispersive property of intumescences at our case.
Puttlng f(p): pt .—g-(p)s ........................................................................ (4. ]_)

in (g 16), (3.16) is written q= ; Gﬁg’Qf _egpst- v(ﬂs)s’ .................................... (4.2)
Rk .‘Zmr (p\)

with which we consider the dispersive property of an arbitrary intumescence.
If the values of ¢ and s are considerably large, the wave velocity of the intumes-
cence ¢ is approximately given by =P fa(Ps)e wrerreererinerii (4.3)
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Substitution of (3.6) in the above equation yields

/142K~ K> + p—‘f;fii“ (1+6K)
................................. (.4_ 4)

¢ = - - . -
~(a+b0) /142K~ K + P PR p)
Since the wave velocity is expressed as a function of K(=s/t), we can find by (4.4)
the wave velocity of the intumescence at any section and at any instant.
On the other hand, at the saddle-point (3.3)and (4.1) give

L 3 T = | (4.5)
by which p, has bzen defined Hence, a given wave-length and period occur when s/t
has a particular value; they seem to travel Fig. 3 Wave-velocity and group-velocity

out with velocity o'(p.), which is called of intumescences when the value of
. time is sufficiently large.

group-velocity.

A suggestive figure is obtained by plotting
the wave-velocity and the group-velocity a- b+
gainst s/t, the tendency of the figure bacomes
like Fig. 3. By the figure wave-velocity is
compared with group-velocity. The tendency
of the interrelation in magnitude bstween a
the two velocities shown in Fig. 3 is inde-
pendent to all parameters (b and &) in our
case. In fact, after a laborious curve-tracing

of the formula (4.4), the following results 0 :
are obtained:

In the range 0<s/t-ld’; wave-velocity >group-velocity,

at the point s/t=ad’; wave-velocity = group-velocity,

in the range o'<ls/t<lb+1/b*+1; wave-velocity<group-velocity,
and at the point s/t=b+7/b+1; wave-velocity = group-velocity.
Fig. 3 shows the tendency described just above.

If the quantity b+/bp" L1 is retransformed to that in the original units, it is
{(a+BOU2BY +1/(gHo/BYF UL —B)283: (=Us+1/gH,) and is easily seen to be the
propagation speed of a long wave produced in a liquid which is initially in uniform
flow of depth H, and velocity U, Similarly, if &’ is retransformed to that in the
original units, it is easily seen to be the propagation speed given by the Kleitz-Seddon
law of the flood wave in the flow.

It is obviously seen that in Fig. 3 wave-velocity is not identically equal to group-
velocity. When ¢ becomes infinitely large, no trace of the intumescence will remain at
any section of finite distance from the origin. Therefore wave-velocity should equal to
zero for s/t=0. In Fig. 3, wave-velocity is not zero for s/t=0. That is because the
accuracy of the approximate integration with the method of saddle-point integration
has not been sufficient near s/t=0. Hence, we should modify the wave-velocity as the
broken-line shown in the figure.

As for group-velocity it is given by s/t as described bafore. Hence, if we fix time,
i.e. at any instant, the group-velocity is proportional to the distance s from the origin
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Fig. 4 The shapes which an

and the velocity corresponds to the speed of a lincar
intumescence OPF would suc-

elongation. Therefore, if wave-velocity were iden- cessively deform to, if wave—

tically equal to group-velocity, an intumescence OPF velocity were identically equal
. to group-velocity s/t.

would deform to OPF; OPF; - (see Fig. 4),

which would essentially bz the linearly elongated
figures of the original intumescence OPF. However,
wave-velocity, in fact, is not identically equal to
group-velocity, and the intumescence travels with
wave-velocity different from group-velocity. As we

have secn by Fig. 3

at s/t=0 wave-velocity = group-velocity,
in the range 0<(s/t-"d’; wave-velocity >group-velocity,
at sft=d’ wave-velocity = group-velocity,

in the range ¢'<[s/t<b++/9*+1; wave-velocity< group-velocity,
and at s/t=b+,/b241;
As describad before, s/t=0 and s/t=b+,/p7+1 represent the rear and the front of the

wave-velocity = group-velocity.

intumescence, respectively.
where the equation s/t=4’ is satisfied. Then, in fact, every point on the parts OP, OP,,

Let us suppose that P, P, Py, ------ in Fig. 4 are the points
ele

N
oP,, «eet of Fig. 4 travels W1th faster velomty than the group-velocity for the parts and
every point on the parts PF PAFI, P;.F_», ------ travels with slower velocity than the

group-velocity for the parts. In consequence, the
shape of the initial intumescence is distorted to the
direction as indicated with the arrows in Fig. 5 and
the shapes will successively bs as shown in the
figure by full lines. If, however, wave-velocity were
identically equal to group-velocity s/t, the intumes-
cence would successively deform to the shapes shown
in the same figure by broken lines.

Therefore we find that an intumescence does not
uniformly disperse, but it d'sperses concentrat'ng
around the section of s(=¢'t) at an instant ¢=t.
Therefore, what shape of an intumescence may
originally have bzen produced, it d’sperses concen-
trating around the point s/i=a’, and will have the
maximum at ¢t of nearly equal to s/a’ at a section
s=s, if s is sufficiently large. That is to say, intu:
mescences do ‘“concentrative dispersion” around the
point s/t=d&/, if s or ¢ is sufficiently large. It is to ba
noted here that wave fronts always do not bzcome
steeper as they move downstream in a flowing water
due to th2 dispersive pcoperty, as far as intumes-
cences of infinitesimally small amplitude are con-
cerned. The last deduction is somewhat d:fferent from
a description given in the previous literature (4,p.500),

Fig. 5 The shapes which an
intumescence OPF will succes-
sively deform to (shown by full
lines) and those which it would
successively deform to were

wave-velocity identically equal
to group-velocity (shown by
broken lines).

Fig. § The shapes which an
intumescence originally with
two peaks will successively de-
form to (shown by full lines)
and those which it would suc-
cessively take were wave-velocity
identically equal to group-velo-
city (shown by broken lines).
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We can similarly find the deformation of an intumescence whose shape is more com-
plicated than that in Fig. 5; see Fig. 6. By the figure two peaks of an intumescence
are seen to have the tendency to combine into one as they move downstream.

V. RIGOROUS SOLUTION OF THE DISCHARGE OF INTUMESCENCES

As we have seen, the solutions obtained in Section Fig. 7 The disturbance of
discharge of the unit step

function type.
not accurate for small values of ¢ Hence, the rigor- 9

III. are sufficiently accurate for large values of ¢, but

ous solution is desired, and we will work out it in this

sectiofl. 2
m
First, let us consider the d'sturbance of the type of a
unit step function shown in Fig. 7. The rigorous expres-

t.
sion for ¢ of the type is given by (2.22) as following: 0
= gn (1 st -GN G ey
q 2:“‘_5 » e dp ........................... (56.1)
Br
Puttlng l:(px—pz)/-)y (p——pl)(p—-pl)z(p—-o)?-—l?_ ....................................... (5_2)
Substitution of (5.2) in (5.1) yields
O W I G e e OO 3
q s S » e dp ....................... (5.3)

Br
Let us change the variable p to a new variable x4 by the transformation
POty vevveeeente i e e e e (5.4)
then (5.3) reduces to
d‘u. .............................. (5. 5)

. AITEOEHU) 1 777'1”‘. w(t+bs)-s Virn2v pe e
7=qme zm‘S p+C
Br
The integration in the above equation is performed following Jeffreys’ calculation (8).

Finally (5.5), after integration, becomes

g=querlooran.[1,(PLOP 5 /1 ob ke K

K
/ ‘ 5
© 4 1+(b—1/1+8)K» { pi— p.

+5 - ) _ . n K Lplk¥piz 8 - .
n=1{pl—pz*/1+(b+1/1+bﬂ)1(} G w0 Fg ™ e 1/ 1425K K}]

............... (5.6)

VL L mC VOl e, "

where gy ST s s 4.7

(5.6) gives the desired rigorous solution of the discharge for the boundary condition of
the unit step function type.

The solution (5.6) may ba generalized with regard to the boundary condition. We
may construct the effect of any arbitrary boundary condiﬁion given at the origin, say
(@m0 = (L), weeereerersrenuenneennecninte sttt e (5.8)
by the use of Duhamel’s theorem [9). Let the solution (5.6) be denoted by ¢un-q, (3, s).
Then the solution for the generalized boundary condition is expressed by

q=F(0)Q1+f T = T)At, eoveeerrinsriissinsssss st sttt (5.9)

which is the desired form of solution. However, in the actval calculation it usually
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depends on numerical or graphical integration.
If the form of F(t) is either of the forms shown
in Fig. 8 the actual calculation is simpler than
for other forms of F(¢). For the case of the rec-
tangular type of Fig. 8 (a) the expression of T
the rigorous solution (5.9) becomes

9=quf{q.(t, 8)—qt—1, 8)}.++++(5.10)

Fig. 8§ Disturbances of a rectan-
gular type and a triangular type.

s -9

VI. NUMERICAL EXAMPLES

(a) (b)

In order to illustrate the rigorous solution for the boundary condition of the rectan-
gular type shown in' Fig. 8 (a) the discharge-time curves given by (5.10), (5.6) and

(5.7) are plotted in Fig. 9
for the system defined by
b=0.5 and &£=1/4. For a
definite value of s the con-
vergency of the infinite
series in (5.6) becomes
worse as K decreases and
for a definite value of
K it becomes worse as s
increases.

Another numerical ex-
ample is given in Fig. 10
to illustrate the approxi-
for the
boundary condition of the

mate solution
unit impulse type by the
use of eqs (3.17) and(3.18).
The numerical values of
the two parameters b and
& are the same used in
The
accuracy of the solution is

the above example.

poor near the front of
the intumescence, where
method of Goldschmidt's
approximation should have
been used.

Fig. 9 Discharge-time curves for the boundary condition
of the rectangular type shown in Fig.8 (a). =0.5, £=1/4,
(Rigorous solution).

id
(S
S=0
=0.1
10 =0 s =0}2 s
. Ak
08 | —s-03 cas,
[ |
0.6
04
02
0 1 n S t
0.05 010 015 - 020 0.2% 030 035 040 045
Fig. 10 Discharge-time curves for the boundary condition
of the unit impulse type shown in Fig. 2Ca). 5=0.5,
£¢=1/4 CApproximate solution).
#
%
010 +5=8_
0.08 ! &
.06
004f
0021
0 35 40 45 4

VII. EQUATIONS FOR THE HEIGHT OF DISTURBANCES

Up to now we have considered intumescences only through the quantity of discharge.
In this section let us refer briefly to intumscences through the quantity of the height
of the disturbances. The fundamental equation for the height of any arbitrary intu-

mescence ki becomes
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~ gsl‘ +2b :Sé‘t %tg_‘Tz{?fL_,_ ' g{:} 20, e e (7.1)
which is derived in just the same way as in Section II. The equation is just the same
form as (2.16) which has been the fundamental equation for q. Therefore, if an intu-
mescence is given as a boundai’y condition, say
(’l)s=0:F<t) or gl(p)’ ..................................................................... (7_2)
every result obtained hitherto sémely applies to the height of the intumescence. Thus
we can derive just the same equation as (3.17) in terms of & as an approximate
solution and just the same expression as (5.9) in terms of % as the rigorous expression.
We can also deduce the property of “concentrative dispersion” of the height of any
arbitrary intumescence when ¢ is 'suﬁiciently large.
VIII. CONCLUSION
In this paper the author dealt with mathematical study of the motion of intumes-
cences with infinitesimal amplitude in open channels of uniform slope. Main conclu-
sions derived are as following:
(a) The propagation speeds of both the discharge and the water level of any intu-
mescence distribute between 0 and {(a@+B)U/2B}+/ (gHy/R)+{ U —B)I(2R)y=Uo+
v gH, For this reason intumescences disperse as they travel downstream. The former

speed forms the rear of intumescences and the latter speed forms the front of them.
(b) Both the discharge and the water level of any intumescence have the tendency to

do “concentrative dispersion” around the point s/t=(5-48)U,/3 when ¢ is sufficiently

large. .

(c) Wave fronts of intumescences always do not become steeper as they move down-

stream in a flowing water, as far as intumescences of infinitesimally small amplitude

are concerned.
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