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ON STRENGTH OF COLUMNS WITH
VARIABLE CROSS SECTIONS

By Yutaka Tanaka, C.E., Member.
Synopsis

The present paper covers the author’s studies and rezults of tests on strength
of columns with variable cross sections, such ns columns with tapered, rhombie,
parabolic flanges ete.
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226 On Strength of Columns with Variable Cross Sections.

PART I. GENERAL CONSIDERATIONS.
1. Preface.

The object of this paper is to submit a method of solution of the elastic
strength of the straight weightless columns with continuously or discontinuously
varying moments of inertia, and to report the results of the theoretical:solu-
tions, numerical caleulations, and also the results of experiments performed by
the author. |

On the similar problem, Bleich™ has made some elaborated approximate
caleulations, while, after the author’s dpinio'n, the _pi-e'sent‘ method of consider-

ations might bring more general and reliable results.

2. Fundamental Equations.

() Column with Continunounsly Varying Moment of Inertia.

Let Yy=AF@)4+BFx) ... (D
where 4 and B are constants,
be the general solution of the well known equation

El(,q;)m‘éifﬁupg,-:o e (®)

e
where y=virtual deflection of the column,
' E=modulus of elasticity,
T(z)=variable moment of inertid,
P=centrally applied load.
Since, in equations (1) and (2), = may be referred to a certain origin, we
may write the general expressions for y and ¥ at z; and a. as follows,

B g ) =AF@) + BF@) oo (D)
—P"' _ P y(g,‘.z):leL(itz)-{—BFg(:cg) e (Y
EE”‘ o (o) = AT ) 4 BEJG) e v e eeeraene oo (5)
’ Xz o= AR )+ BF ) oo oee e (6)

Fig. 1
Then, if we assume two hinges at =y and .,
7 f=3

as shown in Fig. 1,
Ma)=0, M@E)=0 . uieriiirinnniiiaenenna e (D)
where M{z)=rvirtual bending moment at z,

{13 Bleich—Theorie 1, Berechuhg d. eiserne Briicken, 1924, pp. 154-142.
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g

or gy(21) =0, y(q,,,):{)(S) '

Hence, by equations (3) and (4), as the stability condition of a column
between 2; and a2, we shall have '

Flz) Fz(l'l)

Fle)  Flw) |

Consequently, by the roots of this equation we shall be able to determine

0 e ()

the critical loads, which are such loads as they cause mo or any deflection in
the column. And we may assume that the least critical value P ghould: be.
the primary critical load. :

Similarly, the critical loads of a column hmoed ‘at.ay and clamped at
z» might be obtained from the following equation.

F @ .Fz &
1f’h) ’(11) (10)
i (za) (o)
and in a eolumn both ends fixed,
F(x Fi(x ' , .
) W) | o LA
-F1’(-T2) g F_-’(fb‘z) 5 : . o ‘

(b) Column with Discontinuously Varying Moment of Inertia.
When a column is hinged at both ends and

has discontinuously varying moment of inertia

as shown in Fig. 2, the following conditions

should be satisfied.

la)=0

i (22) = yzcﬂ'z) ]

Q|“

b D)
m Uz) = ’_lj-_"(l'Z) ‘
and a{2n) = 0 }
where _
ELz) dﬁf{ + Py =0,
and EL(z) "’- + Py =0
Or writing as
4 = AR(e)+ B F{z)
= L) @o T -
yz O@]_(’I) + D -(’L) » (131 .

and W = AF(2) + BF/(z)
yz' = O@],,(ﬂ;) - D(Pgr(ﬁi)
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we-have, by eq. (12),
i E(i't) Fz(ﬂil) 0 0
| Iz Flzs) —®ilze)  — Do)
‘ E’(-’?-‘z) Fz’(ﬁz) --(I’f(ﬂ‘z) —@g’(:tg)
J 0 0 ®,(xs) D) l
In the present case, however, if the form of the column is gymmetrical

|

| .
{ =0 ..o (14)
i

about z., the virtual deflection of the column should be also gymmetrical dus
toithe primary critical load.

Hence, for sush cases, we may simply put,

(@) =0 } . (15)
o0 e

or
| R Bl | .
F(r)  Fiz) =0 (09

For the columns with more discontinuities of the moment of inertia or
with different end conditions, we may generally extend the present principles
for the case may be.

3. * Examples of Applications.

Before we go further on, it will not be useless to show some examples of
application of the fundamental equations in the preceding article.
(a) Strength of a Triangular Plates.
When a triangular plate is loaded as shown in Fig. 3, the equation foc
the virtual deflection will be written as

a 5 L El, _ dif ‘
0< W dm Y (o
i-'--—-(::w* Z—u—-i . Pl
Tie. & or putiing, E—Iu::\, as
dy* y
e—2 3 Ay=0 ... ... .......... (18
B MY (18
Solution of eq. (18) is, as we know,™ '
y=v"2 ALV D) + BN BE) e (19)

where J and N denote Bessel’s and Neumann’s cylinder functions.

(1) Janke-Emde-Fanktionentafeln, 1923, p. 167.
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Consecuently, a condition of the critical equilibrium of the plate should be

T Vi B = o/ BEY N/ )| =0 oo o (20)
nd knowin a ] LANZTYS B
and RACFTYALI R
¢q. (20) will be rewritten as
Jl(p,/&f_f,)ﬂ(}_ e e e e (1)

Taking the least root of this equation, we have
vV N i =3.83,
where 7&:—&

EL
Hence,
_(3.83 EL__p awowtEL .
P= 12 20,372 T (2
or we may know that the plate shall have about 37 % strength of the rectanguiar
plate with a constant moment of inertia I,.

(b) Strength of the Trunsated Triangular Plate.
For a truncated triangnlar plate as shown in Fig: &, the conditional equa-
tion for the critical stability will be given as follows.

Referring to eq. (19), -

L L) V() — (V an ) NV ) | = 0
1
23
As a numerical example, if we put
- ﬁjlzjn—
Fig. 4 .~ o4
the least root of eq. (23) will be given as
vV dng, =3.20
. . 1 4 P 4P
and s n=-—L, ly=--L d rA=dy=——-FL,
and since m=- =13 an WIS SR
we have .
5 320V EL —oy TEL ,
P:(i .= )mﬂzo. 4.2 (24
R T 24

{(¢) Strength of the Rhombic Plate.

Tn the present case, let ns consider a rhombic plate as shown in Fig §
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Then, as the plate is symmetrical about x=

SR _
Pal | 2 I, axis, we may apply eq. (16), and knowing
i
A Z that for O0=zx=1,

Lo ] y=v"7 ARG B+ BN 0},
Fig. &
where A= i i,
EIL,
and
Y ;%A (VT +17 5 o P}
4l BN DetV Ta N Bl e (25)
2%

we have generally for the symmetrically truncated rhombic plate

L L ) Ny ) | o (26)
LA + v (VB .\n(l/mwrvmm’(vmoll T
And putting z,=0, we have

I\! o o A VLT (4 =0

| or
-3} _
SV s @D
TN S
_ —za}, ‘\\_ /.99 By the graphical representation, as shown in
N : _ Fig. 8, the least root of eq. (27) will be given as
=R
RPN VL =2.40,
é where, A= P 1= P L
: ElL 2EI,
775 24 25 And we have '
g .PI( 2.40 )2 WEE;II) 2058-1 'n‘gEI) . (28)
Fie, 6 o I? L?
where

L=total length of the plate.

(d) Strength of the Plate with Two Differenf Moments of Inertia.

For the plate as shown in Fig. 7, as I, and I are constants, we have

=4 cos \x+ B sin \z

. (29
Ya= CeosraxstD sin .z ( )
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Iz, Je here M= :jf__ and Az= _‘FL
e L A } BI, ]/Efz
I and
— y ' =n{— 4 sin a4+ B cos aw) | (30)
; 2 e |
¢ a2 =N — € sin Ngr + D cos Aaa) )
-
s 7 Therefore, by eq. (14), we have
A 608 Ml sin Aele +Agsin Mlycos Aele=0. ... .. ... .. (BL)T
or —tanklllznh’\":—]t{_‘.—"a‘ ........................(ng
tan 7\.2!2 Az Il
As an example of solution of eq. (82), if we put
h=h=11 and IL=291,
we geb B
e 1
- ta.n(~~ el WY ) )
- v 2 T e (3D)
tall(ikg}:l)
2
Using the graphics as given in Fig. 8, we know that the root of eq. (33)
will be
1 7 —1rc
i// 2 7\.2L— 1. l'v.)

Note on reduction of eq. (31).

Putting z,=—1;, x,=0 and =«x;=41;, we have

F{x }=c08 A1, Fy(x,)=1
Fle)=—-58nA,l, Folx,)=0
P, (x)=1 P {ry)=cos Asla
Palx,)=0 ' Balzws)=58in A0,
F()=0 @, (z,1=0
F'(w)=2, ' F ERESW
Therefore by eq. (14}, :
cog Ayl —sin A0, 0 0 =0
1 0 -1
0 o 0 “As
0 0 COS Al sinAgl,
or
cos Al 0 -1 0 —1 ! —sinAl, O 0 =0
Ar 0 —~As Ay 0 —As
o 0 cos Aals SinA 51, 1 0 cos A L, sin ALl
T

A e0s ALl; sim Ayl +A, sin ALl cos ALl.=0
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where
Rg: h.'ii_
BT,
£ 2% (1.797 =*EIL
175 or P: .
..'7.7 L7G 180 ;5{494 7]_2 Lz
‘ TTZEIﬁ F
:0-649"—LZ——". Cae e he e e (011:)
Now, we may know that the plate shall have about

65% strongth of the rectangular plate with I..

PART II. MISCELLANEOUS APPLI-
CATIONS.

1. Column with Linearly Varying Moment
of Inertia.

Er— Let us consider a column with curved flanges
ig. 8 e
Fig 23 shown in Fig 1, and assume that
1 .
I=2y=2F,7
lo

Io:?FnZoz
or Z=72 z
b

where J=moment of inertia at z,

Fy=one flange area.
Then, the stability condition for the
truncated triangular plate (see, art. 3,
Part I} will be applied to the present
cage, and we mé.y write the following

equations.
For G @ <y,
T/ 8) Ny (AN — J B N (1 Ba) =0 oo (1)
and if ay=0, '
FV DRI =0 cr e i (2)

where 2; and [, denote distances of both ends of the column from the origin.
On the latter case, we have already discussed in art. 3 (@), Part I, so we



g On Strength of Columns with Variable Cross Sections. 233

will now consider the former case only.
Rewritting eq.. (1) as
TN — KD Ny =0.. ..o (3)
where ¢=1"4\y,
K.‘=‘/ ai%:
and let &, be the least root of this equation for a certain x, then we shall be

able to find the primary critical load P as follows.

Since,
:_—E'%ZU’ :clmm:zc%:, m=l—1L,
ane lgz‘T'E-IL, xll“:(fo-ﬁELz’
p— 022:;;})2.”2;;5___5 @

wwhere fc"'=~1L, and 0<m <y,
. 2

L=effective length of the column.

As for the roots &, Janke-Emde-T'unlk-
tionentafeln is to be conveniently referred — B £
_ _ S,
to, or otherwise by graphical represenia- Sl [ A
. N . . . fo— ’ i
tion of the functions they will be obtained, g l e
agl ;
and we have the following results. /c/
o —
! . Bl i
e o 20 4 29 144 L0047 :
O i
. (1 -
el %0 005 025 0.4 0604 100 TP ; :
K k) ad -
Eom — 0967 320 632 1578 - as ;
1) i ]
p= 0372 L4985 0554 0.700 0841 1.00 i
where =#£1@;I-U—. o.:-.a:'” a%.zsa‘f 2edd” aé 4?34 ag el A
L7 5
The curve of # will be traced in- Fig. 2. Fig. 2

(1} Part I, art. 5 {a) i5 to be réferréd to.
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2, Column with Truncated Tapered Flanges.

JA - In the present case, as shown in
- y P FERELICY W
= — I
AR P L=2F
_ 4 and s=-g
% - ‘ b
Fig. 3 © And the differential equatlon of the
virtnal deflection of the column will be given as
EL ”dJ+Py A €]
I do
- Pl
or putting S—-=
putting L
2 4y
4--,,-—+ccy=0 (6)
de”
The solution of this homogeneous equation is known ag
y=1v"% {Adcos(Blge)+Bsin (Blgz}™ ......c.....(7)
where - %4/40,, —1.

Hence, the conditional equation of stability for the truncated column, will be

given as

cos (B 1g 1) sin (Blga)|=0.........co . (8)
cos (B1g lo) sin (8 lg I) '
or
c.ln(BlJ 5") O @
And we may know that the least root of this equation should be
Now, reminding that
| g Via—1 _ P
18— ) and C&—‘E'I—_D"
we get
4 s ao
pe |7 gt (=l o BL
o=y a
Hal

* g denctes Napierian logarithum.
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or P=;[_i1_=+»1—2] A=8F , =L 19
{(zg?)_ w j p 7
where Le= effective length of the column,
- l ‘J(lo—fﬂl)
and E=%— EL——‘—L—
, 3 by
P's for various truncated columns of this kind will be given as follows.
£ 0 0.01 0.02 0.05 0.1 0.15
poooo 0,025 0 0.071 0.088  0.123 0173 0.219
3 0.20 0.40 0.60 0.80 1.00
;A 0.283 0.438 0.617 0.801 1.000
. | where P=p wﬁgf”
. These values of u are plotted in Fig. ,_é@i
%, in which we shall see the considerable = | [l_ /
difference beﬁween Bleich’s g and ours, # jf_[
especially when £ i3 less than about 0.3. Zj i
3. Column with Truncated Rhombic 26 /
Flanges, a5—- ///
In the present case, if we assume that “ [ ﬁ;‘g
the flanges of the column is symmetrically “3—}%%/!‘4’
truncated ag shown in Fig: 5, we may e ;/
apply the condition of equilibrium given Mf !
by eq. (16) in Part I, and by the previous gl ar a3 af "‘; 4g or aF o3 4o
discussions, we know that, Fig 4

for mn=a =,
y=1"z {4 cos(8lyz)+Bsin (8lg )}
and therefore

1 .

v [4 {cos(B lg z)—28sin{B Ig 2)}
+Bisin (Blg v)+28cos(Blg )} ]1..(13)

Consequently, by condition of

y=

y=0 at z=x .
and i =0 at z=10
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we have _
cos {8 1g 2:) sin (B Ig =i) =0
cos (B 1g ly) —28 sin (Blgly) sin (8 1g &) +26 cos (B g L)
‘or simply we may rewrite as e (14
sin(ﬁlg%-{—v):o RN ¢ >
where — y=tan™'28,
1_ b
"g' %1

Therefore, the primary eritical load will be given by solving the next equa-
tion with respect to 8.

ﬁlg_g‘_-{-tan‘l?.,ﬁ:qr R CETETEEE TR .. (16)
#a T /m ' To solve t1?1s quatlon, let us expand
a7 / i * it by well known Lagrange’s theorem,
4 /; then we get : ‘
- L7 — h—atan—b+ —%— tan~b
I i ! A=b—gtan~ b4+ ——tan"b —....
“TT T | 145
“oe — | e )
T oE | vhere
EE : L i .
a_ff : ] {L_i——z_ri_: e, o= 2m ) b:.,,,:)'u,.,
ot ‘4—* -7z : lg—l— lg i
| RN £ E
05, gz 45 af @5 49 &7 Fr T S Pl
A=28=1 de—1, o=,
§ s ’ ET,
Pig. 6

By this series and eq. (16}, we can get
easily the following results for different values of £.

E=0 00l 005 01 02 04 06 035 10
A==0 1.02 145 1.80 244 398 6.73 147  —
4=0.101 0203 0.284 0.348 0.451 0.614 0.750 0.830 1.00
where P=#£%£L’ '
and  p=XEL (LY 2ELGogp
w lo ini

The curve of p will be traced ir_1.F’ig. 6,
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4  Column with Truncated Lenticular Flanges.

Tn the present case, we assume that the flanges trace the parabolic curves

or that a eolumu may have the following relations.

e )i
r\\i__iéj/ I,=2Fef
. - 2\
- I
: £ ! 4 : lo
Fig. 7 The differential equation of the virtua

deflection is now written as

J,.ﬁ)”iﬂf 0. (18
EL]L (_lo PO Py=0. (18)
or putling E:-%"— and a:-ﬁ?—z-, we getb
a i}
(l—g?’)zﬁ@ﬂin}-ay:()........................ 09
dE '

Eqguation (19) is the well known differential equation which has been
completely discussed by Dr. Zimmermann® in his vibration theory, and we
know that so for as a>1

yzbfi—_?iflcos:cw+Bsinfcw} e (20)
where k=1V"g—1
and w=arctanh £.
Consequently, for the column hinged at any two points z and =z, the

condition of the stability will be given as

l(:os.rcrwl sinewe] =0 oo (21)
| cos xun sin Ky
or i abas— W =0 e e e e e (22)
= = @
where wy =ar¢ tanh &, £ ;::Z—l
0
= = o
wez=are tanh &, gzz_l-
i

and we know that the least critical load shall be given by

el — ) =,

(1) Dr. Zimmermann—Schwingungen eines Trigers, 1896,



‘238  On Strength of Columms with Variable Cross Sections. 14

Now, reminding that

k=1"g—1
we have . ‘
cdz-{ ki _}'4,_1................(23)
_ arc tanh 52-—&1'0 tanh &
1 O DT
or P~{ } I ¢ 3!
(arc tanhg,—arcta,nhgr) E:—8)* @4)

This is the general expression of the primary critical load of the truncated
lenticular column with parabolic flanges and hinges at both ends. We will
discuss further in the following different two cases.

{(a) Column with Hinges at %0 and

A H T T ——

o1 L] w—L, as Shown in Fig 8.
45 ‘ In this case, putting

” | - E1=O and §2=£

y | Lo
a5 i E%Gi we get by eq. (24),
& 7 L e £ 1 qEI\ .

1
. Al e
“h | = —4'% (&rc tanh-Ii) WLt
421 L, 4 i ll) .
4,{L .' e 23)
A 1 ql: T I S S | By this equation we get the following
€ ~ numerical values for wvarious columns of
Tig. 8 this kind, o
TL 1 0.95 0.9 0.8 0.6 0.4 0.2 0
E:Jﬁ?ir’-- 0 005 01 02 04 06 08 L0
n
7 0101 0.360 0.436 0.5395 0.78 0.908 0.975 1.00

where P=p L o .
The curve of i will be traced in Figh 8.
(b) Symmetrically Truncated Lenticular Column.

In this case, putting

— b
&=+ s
- A
T
& I,

mﬂ =1
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in eq. (24), we have the following expression for the primary critical load.

P—{el(amtanh §1)+ ‘}(IO) WLg (O‘G)
(V]

By this. equation we get the following numerical values.

_gi 100 095 09 08 08 04 02 0.
)
E:Lz__ll 0o 005 01 02 04 06 08 100
Y
I 0.405 0.855 0.702 0.789 0.896 0.935  0.887 1.00
: T . where . P:M—"%Egi. .
i The carve of willllbe fraced in
@ ! Fign 10- .
Y am i nn | S
e 5 o PART III. EXPERIMENTS.
- L;;L;z 7= .4z | 1 Preface. |
ozt id— [ - The present part of this paper covers
“ T the report of our experiments and their

¢ . ,

;a5 a3 ef a3 ¢ a7 28 @9 i results,” which have been “performed by
- :

Fig. 10 the author in the Research Officé of the

Japanese Governrent Railways, in order

to support our theoretieal results obtained in Parts I and II.

9. Test Pieces and Experiment Devices.

(a) Test Pieces. ‘
We have prepared a number of test pieces, cut from the créhé.niqed sheet
iron about 0.65 mm. thmk, and their shapes and dlmensmns ‘are as shown

in Figs. 1, 2 and 3 on Pl L

 (b) Experiment Devices.

We have built up two different devices, one for testing in vertical position,
and the other for testing in horizontal position, and their gketches are as
shown in Fig: 1 and Fig 2. on Pl I1.
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3. Results of Experiments.

o LY o .
Pioes ¢ Length  t(ovthel load) F=P_c_50°) Theoriimal Egrpiﬁ*n%n-\jfm
(mm.) (7.} P of S CPart  Article
S 1 500 7575 —
8 — 50 491 0.648 0.649 I s
4, 0 500 274 0,362 0.372 L 3(a)®
4, 005 500 330 0436 0.428} I 1
4, 025 500 450 0.594 0.584
B, 0 500 443 0.585 0,584 L 3¢
C. 005 475 109 0.130 0.123
C. 010 450 161 0.172 0178 1 IL 2
T, 015 495 22 0.218 0.219
D, 0025 4875 191 0.240
D, 005 475 229 0.273 0284 b I 3
D, 01 450 330 0.353 0.349
E, 0025 4875 240 0.301 —
B, 005 475 201 0.347 0.360 I 4@
By 010 450 401 0.429 0.456
F, 020 400 713 0.602 0.595 [
G, 005 475 B45%5* 0,600 0.635
@ 010 450 825 4 0.688 N T
G, 015 4% 1024% v 0.763 —
@, 020 400 1219% # 0.805 0.789

PART 1V. CONCLUSIONAL REMARKS.

1. Summaries.

In Part I, we have discussed the fundamental principles on the stability
conditions of the column and shown some examples of their applications to
the plates with variable sections.

In Part II, we have performed the further miscellaneous applications to
the columns with tapered or curved flanges, and also the caleulations of @ by
which we shall be able to know the strength of such columns as ‘

P:#-—WEZL,

Where

" thickness of §, )’

* Correction for difference of thickness of test pieces=( Vhickness of test piece
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'H":E I [\

2

—=TEuler's critical load for the column with a constant moment of

inertia I,.
In Part IIT, referring to the results of our experiments, we have shown

the validity of our theoretical investigations.

2. Notes on Practical Applications.

(2) In the present paper, we have discussed only for the cases in which
the fundamental differential equations are mathematically soluble, while so far
as we believe, they might greatly help to check some of the resulis of the
anxious numerical calculations even when they are solved by a method of
numerical integrations.

(b) When we have to consider the plastic deformation or plastic strength
of a colurnn, the elastic modulus E should be replaced by the Engesser’s
“ Knick modul 7°77.%

(¢) In the structural engineering, the useful applications of the present
theories might be specially expected in the designs of the high viaduaect plers,
as in a cantilever bridge etc, and of towers of the suspension bridges etc. In
our country where the effect of the earthquake is dangerous, the preference of
the steel piers'to the high concrete piers is quite evident, and we feel that the
present theories might have more cases of the applications in the future.

APPENDIX TO PART II.

1. Columns with Concave Flanges.

We shall now consider the columns as shown in Fig 1, where

) 2
IEQ 0y II):*‘-'QFUZH ,
ﬂnd s= —-sz._z_n. E:_:b_
. = ge ! z ?
eh o

(1) Engesser-Uher die Knickfestigkeit gerader Stibe, Z. Axch. Ing. Wes. 1839,
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Igz(sucb length as z=-—— at

[
a;:lu) y

e=base of the Napierian loga-
rithin or 2.718.

In the present case, the

fundamental differential equation, El'(a:)%-{—l-’y:O, will be iritten as
£

ELe %+ Py=0

“da?
or _
EL _sdy 4
Ve R e Py=0 1
4 R W
Now putting P—l"n=c¢, we have
El,
g‘zgdyi-]hmyzo.......................:............(2)
dg*
To find the primitive of this equation, put
V. ¢f=u.
Then, we get from eq. (2),
G L Y 0 (B

du’  w du
and we may know that

= ATV )+ B e ()
Therefore, for the columns with two hinges at z, and 25, the condition of the

critical equilibriura will be given as

RV e YV 0 6%~ BV . e) Yo a.e™)=0........(5)
where g=" and i
q )

And similarly for the columns fixed at x and hinged ab z:, we get
I a0 .t — R e e ) TV a e) =0 ......(6)
Nomerical example,
To find the primary critical load of the column with hinges ab 2=0 and

x=Il, as shown in Fig 2.
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jA Tn the present casge, putting £=0 and &=l
L._.—-—-—-"'"M_.f_ in eq. (5), we have

R — F o) B we) = I 5 F =0 - (D)
Fig. 2 Now if we put «==3.25, we have 1% =1.80,

V o e=4.80 and
SV @) Y1 o.e)=—0.168,
o ) Yot e )= —0.167,

whence we know that the least root of eq. (7) will be

and that the primary critical load will be given as follows.
Pi¢ . o5
— 0. 4D
El
or
P=0.329"’—‘*%1~€£
0’ .

2. On Higher Critical Loads of the Columns with Variable Cross

Sections.

In the previous articles, we have made various cousiderations on the
primary ecritical strength of the columns with variable cross sections, while
the higher critical loads of such columns will be similarly obtained by taking
the greater roois of the conditional equations of the critical equilibrium, as

shown in the following examples.

1. Column with Linearly ¥arying Moment of Inertia.

By eq. {4) on page 9.

—1)‘ B
P= Eol® {
du'm® r’
| whare = A,
‘ Ao { T
Fig. 3 L=effective length and = root of

the following equation.
JUE) N1 — (6 §) N1(£) =0,
whers E=1V"dm
P

and A=-—1p

FoaM
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and when 2,=0, by eq. (21) on page 5, we know that & shall be root of '

When z=0.

The roots of L1 dnL)=0 will be given as follows.
Li=vIn[=3.83, 7.02, 10.17, 13.34,........* and we have

é-ﬁz WZEIn
p=—t_.T 2%
Aor* I?
or P= piﬁﬂ
where
_ b
H= 47
and

w=0.372, 1.248, 2.619, 4.508,............
When >0
The roots of Ji(IN)&E) —L(.l)N{)=0 will be given as follows.

For «=2,
$o=3.20, 6.831, 944, 1258....... . ........F
and for «=1.2
£0==15.73, 31.43, 4713 6283,..................%
Therefore, by
iz _ WZEL\
0 _ oo P=poa
30 T -~ s
) | - : where
T & ol 1) )
60 ! ‘ l : M=W, we have
Mo Aiér‘s ] for k=2,
40 ! 42 a4 ¢ = A=
20 | 7 ,,..«755"/ ; w=0.584, 2.269, 5.079,........
9 il ”‘FH/T and for «=1.2,
{ﬁ NN . p=0.841, 3.3, T.547,........
i e ' - The values of p for the higher
o ol -'Z’g 23 a4 o5 af 4%24 28 a9 .vf_t?

critical loads will be ftraced in the

accompanying diagram.

* GBee Janke-Emde-Funktionen tafeln.
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2. Columu with Tapered Flanges.
By eq. (9) on page 10, the higher critical loads will be given by

Blg- —nr
. ‘ &1
or after the similar reduction, we have

_{ 4n® 1) (h—w) wEL
_{ * } 4 L

(1 u.‘l“_)z o
T

o

where n=1, 2, 3, ...

Now, writing P= p,ﬂ%‘—
where ‘

|u,.:{ 4??" - .{_%} —(Ifn-'-:-:-'l)ﬂ’ we h&\'e

(lg-ﬁ)‘ ol 419‘
pal
,,,lﬂiﬂ_ =£=0 0.1 0.2 0.4 0.6 0.8 1.0
)

for n=1

w==0.025 0.173 0.263  0.438 0.617 0.801 1.00
and for n=2 ‘
p4=0025 0.631 1.005 1717 2457 8.203  4.00
The values of u will be traced in the following diagram. '
3. Column with Symmetrically

40 g' ! ] | ; / 0 Truncated Lenticular Flanges,
N O / By eq. (22) on page 13, we may
i ; ‘ ‘ i put for the higher critical Ioads as
. Lo Zor follows.
A 2o : T ; :
! L i w(ws— ) =nw
i@ ' _1,, andin the present case, after the similar
7 L . _
: S - reduction to page 15, we have
dm-a a7/ a2 ({’.iﬁ' o,:t a} a; .a.i? a8 a3 /o P:{ n’ J!_L}(_L_)EWEEL:
2z 2 7 2
g 4(&1'0 t-a,nh—ii) e L
or P=p ETI_‘?,I" ’
: I?

where
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LMY
#=1 AR
4 arc tanhw) °
Iy
ﬁﬁﬁng:o 0.1 0.2 0.4 0.6 0.8 1.0
o ’
for n=1

@w=0.405 0.702 0.759 0.596 0.955 0.987 1.00
for n=2 '

p=0.405 1.825 2.379 3.144 3.624 3.900 4.00
The values of w will be shown in the next diagram.-

35
|

R Lo i Conclusional Remarks.

% I N B i o By these three typieal examples, we
. __Z ] shall’ know that the higher critical loads
s el - P, of such columns as shown above

shall have the following relation.

|
| Po<ntp, 2D -
: I
or P.<n'Py
2 | T : ‘Where R:primarj* critical load,
o e a7 g3 af ai e ar 48 a5 10 ywhile P, tends to #'P, as £ approaches

d to unity.
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