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On th_e Thermal Bending of a Plane Wall Heated
on one Surface.

By Noboru Yamaguti, C. E., Member.
Synopsis.

This paper i3 a study of the bending caused by heating uniformly one side
of a wall or a slab. The wall as built'is considered thaf its boundaries are
capeble of moving freely in its original plane. The thermal bending in such case
will be naturally greater in a wall built with materials of low heat conductivity like
concrete, ete.  The differential equation expressing the deflection due to thermal
Lending takes the form of a bi-harmonic equation when the wall is considered as a
“ thin plate.” Formulas for the deflections, moments and shears etc. are dednced
for the cases of infinitely extended strips, as well as rectangnlar and cirenlar
plates with various boundary conditions. Numerical examples are given with
diagrams showing the results of computations.

I.” Preliminary.

The structures with large plane surfaces exposed to the sun such s
retaining walls, dams, bridges and buildings, are generally built with expan-
sion joints at proper distances. This practice easily rejects the direct stresses
due to their temperature change as a whole. Dut the walls, which are built
with materials ofl ow heat conductivity like concrete are not free from another
kind of thermal stresses cven if they are sufficiently provided with expansion
joints. These thermal stresses are due to the non-uniform temperature distribu-
tions along the thickness of the wall. These ‘‘secondary .thermal stressos ”?
might naturally be enormous whewn one side of a wall is heated by fire of
intense heat rising sometimes {o as high femperature as more than one
thousand degreo.

My aim is to compuic the above mentioned siresses occurring in plane
walls or flat slabs to be treated as “‘thin plates™ in Mechanics. -~ To fix ideas we
begin with the thermal flexure of beams. Iere we assume that beams yield
to freely in longitudinal directions” and we also assume that the amount of

(I) When beams sre constrained longittdinally at their supports the divect stresses have
to be taken into considerations.
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deflection ig so little that the bending will not deviate from the usual condi-
tion of bending called by the name of Bernoulli, i. e., a plzuie gection of a
beam remains a plane after the beam being bended.

Take the co-ordinate axes as are shown in
? Fig. 1. and take the positive direction of

go that stress may be in tension,
Neutral axis AB is either elongated or
contracted by the rise and fall of temperature,

but not strained by the bending action.

E Referring to Fig. 1. the relative horizontal
x(§) displaceraent of € to 73 is
Pig. 1. 7= tan (qr L —g tan GE - 4g
dy dy dy

Where £ means vertieal deflection of a beam at B, We know that one part
of relative displacement is atiribuiable to the unequal elongations due to dif-
ference of temperature at B and €, and that the other part of it to the strain
genorated by bending stross.
Therefore we may put, as R. Lorenz did in a cylindrieal tube™,
T eyt (§— )
dy :
hore e, means strain along y axis due to normal stress along y axis generated
by bending.
On, 8:  tomperatures at B and C resp.
e.:  coefficient of linear expansion.
e, follows Hooke'’s law of clasticity. o, being normal stress along y axis
and £ Young’s Modulus, whicl is assumed to be constant independent of
temperature™, we have:—

{1} R. Lorenz: Temperaturspannungen in Hohlzylindern: 7. V. D. I. 1907 or H. Lorenz:
Technische Elastizitstslehre 8. 583. .
(2} By Lord Kervin F for stecl is as follows: 1728000k /em? at 15°C
2129 000 ,, 100°C
by Dadourian, it is expressed in a following equation:
" B=12, (1—.00268 t —.000000 71 £2}
tin °C

[Encyc. Brit.]

[Phil. Mag. 1921.]
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and l | : A _ —2 jﬁ&;
dy dy*
Putting these values in the above equation, we have:—
_;«? o+ (B—B0)= —-m-f% |
Multiplying each term by zdx and integrating it along the total depth a,
we get: —

—1;5 a-z,mdsu-I-mS (0—-8,)edx= _'LE?S 2" da
B Jw (@ dy )

As S ey de=03, DBending moment at section B which must be taken
(a)
to be positive as to give tension on a positive sido of «.

S P de=T Moment of inertia of the section about Neutral Axis.
(@)

oﬂS (@—6n) 2 do=0
)

The equation hecomes:—

L re=—rdE
I daf*
or e M D
dyt LT T
M=—pr 95 —po SETRRRRRRRRINC)
dy” ‘
2

= ""Eﬂ: %?IEE“ —Eofa (9'—9,")

If the temperature distribution is uniformly-varrying
with respect to x as in Fig. 2, Neutral Axis is
sitnated in the middle depth,

LYY

6”‘"91]1: 02—91 .'U=®.’U, ®= B;'_GJ ,

a @
0=6,+0z, @=oOI
The equation (1) becomes:—

_EE_ M e

m|sa

M——]f'I-fl—-g— Ea®F % (D
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Differentiating the first equation of (1) with respect to y, we obtain:—
d’E V., 1 d®
——= — , 7: shear at 2
dy* EIT T dy - sheaba
If © is constant in any part along the beam, as in the case that the top or
bottom face of the beam is heated uniformly, the second term of the right

hand side member vanishes, and we have: —

LE_ T @
d"y T ET :
Here we find temperature term no more. Diiferentiatiug this equation again,
w.rotoy,
. :
—%j ——lﬁ‘}, p: distributed load at B
If there is no distributed load, we will have of course
rl"{." — | .9
o P 2

For an example, we take a cantilever with a concentrated load I’ on its

free end and heated uniformly all over ifs bottom face.
Shear at y: V=-D"

,1 - g Bending moment at y: M= —P({~y)
/’/” e :‘ Putting these values in the equations (1),
@ ey _dE__Pl-y @
g dy® ET I
: ., .
1 By integrating twico with proper boundary
g o 3 conditions, we obtain the following cquation
Flg. Lo
of the elastic line,
@y
—t=—L (g U
8= —gur CW V)

By this equation, we know immediately that the term due to load is cubic
w. r. t. 4 and that the term duse to temperature is quadratic. Ience we cannot
take off the temperature curvaturc by any concentrated load.
If we take off P

g_-z__@_ ()

Cantilover bends into an ordinary parabola or a circular are for small value

of £ as is shown in the dotted line in Fig. 3, and
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a I . ,
Therefore we see by cquation (1) & (1), that M vanishes at any section, but
o, does not vanish excepting for the case of aniformly varrying distribution
of femperature. In the cases of non-linear distributions of temperature the
position of Neutral Axis is obtainable from the statical condition that the
resultant force of stresses oy over all the section be zero i e.,

S oyda= E® g :v(i’:v-—Eoc{ (8—08,) du
()] J{a)

¥ ()

(9—9,,1)@:}:0 e (D)

(@)

| ¢
= Jlotg—— 8—0,) udx—
F oai - S{n.)( B ude S

Here I =S a?de is the moment of inertia of the section about Neutral Axis.
%)

GI'=S z dr 18 geometrical moment of the scetion about Neutral Axis.
®
As all the integrals in the eq. (5) arc referred fo the Neutral Axis, the eq. (5)

will be an implicit funclion deterimining the position of the Neutral Axis.
When the temperature gradient curve has a point symmetry with respect to
a point on middle axis (as in Fig. 4) even if the said
curve may not be linear, the middle axis coincides with

Neutral Axis. We have G about the middle axis=0.

And 8n coincides with the mean temperature of the sec-

tion go the equation (5) is identically satisfied.
FiE % In the more complicatod distributions of temperature,
Neutral Axis is not situated on middle axis and its position shifts by different
amount of bending in general.

By this, we see our calculation is fitted, in n strict sense, only for the
case of linear distribution of temperature or for the cases of distributions as
are shown in Fig. 4, at best. We might, however, apply it as an approximate -
solution of the case concerning temperature distributions not so far deviating
from a straight line. In the case of reinforced councrete beams we have to .
adapt the treatment necded in that line for finding the position of Neutral
Axis (see my paper: Uber die Wirmeleitung und die Berechnung von Wiir-
mespannungen” in Fisenbotonstitzmaunern u. s. w. Beton und Eisen ITeft 21
s. 385, 1926).

Giving one more oxample, o beam -ig supported so as to elongate freely
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and is provided with end moments M, as in Fig. 5.

Its bottom face is heated uniformly.

. : _dE _ My D
: ' dy EI T
", | y | # , Y : _
By this equation we see directly that the
x ‘ curvature is constant at any point of the
"
beam, as the right hand side membor is
Fig. 5. '

constant,
Intewmtnw this equation with boundary conditions £=0 at both ends,

we obtain:—
2

Hence we can make £=0 at any point of the beam, putting M,= —E®.
If we put M,=0,

—E :%(%__% _j) » parabola or circular arc......(6)
and — 55'_5_
d? I

Just the same result as in the case of canfilever follows.

II. Equations of Thermal Flexure of Thin Plates.

We assume that as is discussed in the previous case of beams, plates are
provided sufficiently with expansion joints and can shift freely on their origi-
nal plane without hinderances to their boundaries.® And alse we assume
that neither they are too thick nor too thin and that the deflection caused by
thermal bending is not extraordinary large. In a word, all the conditions arve

appropriate with go-called ‘‘thin plates’’ in Mechanics. And it is assumed
" that Kirchhoft’s condition of plate bonding holds well:— the normal to the
Noural Plane remains normal steaight line to the clastic surface after the plate
being bended. y—z coordinate plane is taken on the original Neutral Plane
of the plate and relative displaceﬁxents along 4 and z of the point ¢ with
respect to the point B arc expressed by » and ¢ resp. (Fig. 6), the normal
straing parallel with y and z are respectively as follows:-—

{1) If supports are rigid, the direct stresdes must be taken into considerations,
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O et (0—6), 2 met 0 (BOn) oeveen ()P
oy (o
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Fig. 6.
And the shearing strain is not affected by the temperature:—
on 4 of
e e P 2 e

According to Hooke's Law of stress and strain,

€= 1 -(a' -—1—0)
ENT o,

Fzzi‘ GZ—MG'T,)
I m
o
Yz G ¥z

here o, o. are normal stresses along y and z resp. and =, is a shearing
stress along y on the plane perpendicular to z (Fig. 6.), m is the Poisson’s
number, E and G are Young’s Modulus and Rigidity Modulus resp. These
are all assumed fo be constants independent of temperature, and

G=-, 2 -
2 (1+——
m
From geometrical relations (Fig. 1.)
S _, Ok
K ¥ oy’ £ v Oz
oy __ OF ot __ O __, OF
or oy v oy ' O Yo T v 2y Oz

Puiting these relations in the above equations (1) & (2), and solving them

(1} H. Lorenz: tech., Elastiz. s. 583, or Féppl: tech. Mech. V. s. 236.
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with_respect to oy, o: and 7y,

o 2 | ] \
oy=— 5 -[fr, 8% I +ot(l+ )(9 Bm)}
. 11 oy m 9 e
amnt : T ‘
- E 8"5 x TE ( ) ]_
= — X 1 _— 0 em- i 3
c 1.1 {q' az"" m oy et ( ) ()
m?
— == %
oy Oz
If we take moments of these strosses about Neutral surface,
M= S oyt da= _JL_{ O _1__.3__.5__} M_JW_S @—0,) v d
@ 11 oyt m 97 11 Jw
m m
- Br FE L, 1 Fo
ﬂ.[g—g s {.'z_“‘“‘“——*—‘l'——d—"’* _— ‘—‘—'—"“__S e_em T d.’t
(a)a CeE 13 tet  m BJ } 11 m)( : : : (4)
mt om
A, =5 Tyz:vdm=—(1—-1-)m EI of
(@ m ‘l——l— oy Oz
. N "
7 . _ /
EL 5 the flexural rigidity of a plato and we express it symbolically b
——— s the flexural rigi ity of a plate and we express it symbolically by
1——
m’

D and ocgt X (0—6m)xdz by ® as in the caso of a beam,

o, 1 % ED
]
My= D{ o T 8»_} .
7
‘ o, 1 TE) ED
M.=-D _— - L,
{Bz” * m oy } -1 . v (d)a
' m
. 1 e
! m Sy oz /

As ® depends only upon the value of z, the shears have no terms about ®:

r_ OMy | Oy
"oy | o
= 2M: | OM,

oz - Oy

..(5_)‘
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Reactiong on the boundaries:—

Iy= [ Vy + —825”3

a.’l:[ =0 ar Iy .”-..-......‘-(6)
Rz= I’Tz-[—'—i'ﬂ' ¢ '
[ oy ]”i‘ri' , -
And the oquation of equilibrinm is,
oVy , 9V:
+ +p=0
. oy Iz P
Or symbolically
AAE=D
d D
where p  is a distributed load on plate.
i =4 o
A means Laplacian operator i.e. maTJu v
.a'x' LAY
‘ AAE( +u-;-)
_ o Noy' o
- Taking the thermal bending only, p=0 :
AAE=0 i (DO

This homogendous equation is the equation of the clastic surface of a plate
without distributed load. We see, therefore, immediately that every p_oint of
tho plate remains in its original plane under one face heating on condition
that all its boundaries are kept in its original plane, (we call this, provisionally,
encasiré condition though it is a little different from the case usually called)
this fact will be later put to experimental test. '

In the case that all the boundaries are enccsiré we have

G'y:O'gz‘—A(g',_gm); Tyzzo \
1
m
Jl[y:ﬂfzz_—lb‘g_: Mpe=0 L .8
| 1
1—
T
= Ve=0
Ry=R.=0

In my paper: Uber die Warmsleitung, ote. (loc. cit.) 1 have assumed that

(1) A more general equation, though the preéent author was not ware of it till he coni-
pleted this computation, was deduced by Dr. Ing. Nidai, Géttingen, which is applied for the
caged of non-nniform distribution of tomperature (Nidai: Elastische Platten 1925, 8. 2068).
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the wall surface remains a plane and have treated the wall ag a beam.” Here
we have found a justification of it, at least, in the above mentioned case.
As to the assumption ag a beam, we have usually high Poisson’s number

for the porous materials like concrete and we might neglect the term —?];“b- (a

lateral effeét) at the sacrifice of rigorousness, which cormits no greater errors
than those to be made in the usual caleulations of stresses in concrete or

reinforced concrete structures.

III. Infinitely extended Strips or Bands.

If we consider temperature effect only, p=0, and the foundamental
equation (7) degenerates into the ordinary equation:

F’Jv/ A g D)
£ dy
Its general solution
()-——-y . E=C’1y3+6'zy”+03'y+04 ‘
If both ends are supported so as to hold the tangents {o
z - | - the Neuiral surjace in their original plane (like the con-
dition of ¢neasir¢ in the usual bending of plates), for:the
A boundary conditions to determine €y, Cs, C; and O, we.have
‘ :E'ig.l 7_' £=0 and -gi—: at  y=0and !

This gives Ci=C,=C3=0C,=0, i. e, £ is throughout zero or the strip will
not bend at all.

T P ¢29)
Therefore we have,

0'y=a',$—__._‘.€£_._.a(9__6m)’ Ty =0
11
m
IlIHZI[/L:;—_.Eg.).i_ s -ﬂfyzmo !‘ e s ..‘(,:,

1——

m

Vy=V.=0
- If both ends are fa'ec.to rotale (like the simply supported condition in the usual
bending of plates), for the boundary conditions we have:—

1) This is nof frue, of course, if both ends are supported not fo yield to in y direction.
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g2 i
E=0 and AL=-D '[&; _ e =0 at g=0and!
. ' day [— 1
Com
These give:
nl nl -
Ci=0, Ch= e E® , ngz—-—-l-riq)l—— and ¢=
21)(1~_1__) 21)(1——1.-)
m m
— ]‘)@ n . . .
= — (" —1ly) .. . .parabola or civeular are, if £ is small.
7 Y=oy I _
21)( 1—-1) | .

ey
=Ve=0........(5)

If one end is encastré and the other end left entively free, for boundary con-
ditions we have:—

My=0, AM=—E®, M,=0,

‘ dy
2 A H
My=—D di— B _6  and R,,:—Di%—z at  y=1
dy f— 1 dy
m
These give: (1=0, U;a,:—-_—-ﬂg-—-—, C:=0, (=0
20 (1--L)

Vi

Eoe ECI)'afl
oD (1—-?—;)

My=0, M.=—E® Bp=0 ............(7)

parabola or cirenlar arve, if £ is small..(6)

Vi

This is applicable for the retaining wall without but-

RN vz tress as is shown in Fig. 8, The bending momeoent
Ay ! . cxists only lengthwise z-direction, along which the wall
i ‘:‘/, _ is not allowed to deform freely. As to strosses, o,
g I;:\* vanishes or nearly wvanishes, (for linear distribution
37 of temperature or for other distributions) and «. has
> Q r the following value:—
%l ' . 4 Z o I’ _ FBo(8—6.)
Fig. B m(l——];—)(lm LYp -
_ m Nt :

m
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Eozg (6—86,) xdx

o N -2 Gl Y U '
m(l—-———)S »tda 1-L
m m ‘
In the cas® of uuiformly varying distribution of temperature, (Fig. 2.)
6—8,=0g, ® 0.6 , constant.
47
O'z:‘—]ﬁ'“@ﬂ}:"‘*]":a (9_0;51) fr e ar a s e as e e ..(8)",

This ecoincides oxactly with the case of a straight boam, therefore wo may
caleulate the mormal strosses lengthwise the wall simply a3 a straight beam.
Here we have found one more justified case of my former calculations about
the temperature stresses in a reinforced concrete wall. .

In a plin concretc wall we have approximately E =200 000 kgfem?
e==.00001 for 1°C, for 100°C difference of temperature botween outside and middle
plano, we obtain ¢,=4200 kgfem’ on the outside surface. It is a dangerous
value, not to' speak of the tension, even for the comprossion of concrete. In
the case of a reinforced concrete wall, I computed them in my former papor.
(Beton und Eisen: Ileft 21. s. 885, 1926, loc. eit.) :

IV. Rectangular Plates with Four Sides Free to Rotate,

The general solution of a bi-harmonic equation (IL 7) is well known as
the following form:—

E=fly+ia) Hfly—ie) W +O) U (y+ie) Hfo (y— i)}

Teve fi, fr, f5 and fi are any analytical functionz. But it may not be

easy to find ihese proper functions for the present con-

ditions. The wsual Navier’s Method in using ZZ sin.

sin. is not convenient here neither. It séems to me that

p—— y 4|  the method of M. Lévy may here be employed with
z officacy, though our present equation is a homogeneous

equation in place of a non-homogeneous one which is

usually treated by this method. -
Put E=E"4E"
- Fig. 9. We may use as & a solution of an infinitly extended

strip obtained in the preceeding paragraph, i. ¢., & m-—-—-—-—-—E—q—)-i--— (hy=7)

21)(1——%1—)

As to £ we take the following form
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E'= DY Z,sin —L?y
5 1

here Z,.is a funciion of z ouly and s is any positive integer.
Therefore, ‘
g=gagr=— Lyt 3 Zisin STE L)

2p(1--L) : h
Vi

This fuﬁction £ must satisfy the fundamontal eq.
AAE=0 or AAE+AAE=0
and the following boundary conditions:
y=0& Ii: £=0 and A,=0 }

z:i;-zz.; E=0 and M.=0

As  AAE'=0, we have AAE=0 1. e.
&*Zs _ 28w A7, swt
Ll 2 : A
dz nwood Iy
The general solution of this equation is,
swre ,,sf'fi
Zg:(cs'l‘ 0;,-’2") 4 l-‘- -+ (Ds'l“.Ds 7)6 1,
=, cosh *TZ . B, —‘T" sinh 272 4 ¢ sinh 572 4 p, 572 ooqly ST
1 1 1 1 1 1

hore A, Bs, Cs and Dy, arc arbitrary constants.
In the prezent boundary conditions we take only the symmetrical terms,

: 3T sTZ . s
Ze=4scoshy + B I sinh
1 1 1

Therefore, Elf Z(AS cosh :El *+B, filrf- ginh -—S-'-’F-) sinvs—'ﬂll N 1]
1

§ 1 1 1
At y=0 & I: =0 and E&'=0 ... E=0 iz satisAed
__ploE, 1 g_aigl}_ 2%, 1 aﬁgﬂ}ﬁ Ed
h=-D { m Oz b { o m o7 1—L
m
e { s sTY A Zs - sTY E® -
= —D{=- Z +— gin Sod | ——
T 2 . sin N ) 2 d L } 1.1
om ' n
1 &$'Z: .. smy
=-p 3|~ ___7+___s. sy
2 n, d’z } i I

J[y]ytﬂ &1, =0
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At Z= +~§L_ we must determine 4; & By so asto give E=0 and M.=0

E]Z=i—;"—=(5’+§”)]z=tizo

2

2 2h b 29(1—¥L

or 2(‘43 eosh wl" + B, STl ik - ;Z“)qm STY — . LD ) y—"y
m '

If we express the right hand member in Fourier’s Sine-Series
8L’ 877

388 o6inSTY =0 (y—y)  s=1, 3, 5....
s ST Z

therefore we have one equation to detcrmme 4 and B; as follows:

A; cosh WZ‘{-B 571y ginh STh %lf C .o ()
2l 2L &nt
5‘:1, a, 5....
e ED

2D(1—j%)

Next condition is Mz] , =0
=

2
M= {3?4ulwﬁ§}_p{3?’ 1 Fg}_, E®
o' m oy o m oyt 1.1
m
2 2 22 7l
=22 p el Bosr gy oy BT
m (1__ dz m I b 1—_L.
m m
*Z. _ Zy s'r*) . sma 1 D
L
2 it m LT m /1
m
_I.’II_,] I, =0 gives;
grm——
2 .
Z‘{A Sw-coah smley p 8T ”r (2 cosh 8712 4. 57 iy 'Wli)
I’ 21 I 20 2 2L
_1 &’ (A cosh STl +B, sarls sin sﬂz)}ﬂu -SEQHz(l L) o
m l;_. 25 251 211 ll m
Expressing right hand side member in Fouricr’s Sine-series
s1~ﬁ~)0

sin 877'?/ 2(1 )0 s=1, 3, 5....
) :

Z‘ i
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Therefore we have another etjuation to detormine s & I
- . 3 2 .
g eosh sl +L’s{ 2 cosh STy 8Th g 5T }ZJILI, C (4
2{1 1'__L 2[1 251 ’ 23 &'
m
S:l, 3’__,_ (}m—:-—_EE)_l_.__
2n{1--L)
. U
Trom equation (3) & (4) we have:
v7 2 f
Ae= 211_3 -._(:—_T and - By=0
§T eosh STtz '
2
o . 1 cosh ss(;rz
f/ < L
e Sl bty
2D (1 A) T8 goeh 8T =
m 20
Therefore,
y cosh 72
S S TR I S T
2])(1.”__1.) T 5ot 3... 8 cosh Szrlz 1
m 26
1 HL 2 8TY _
or hy -sin =hy—y*
? 81, Bun, 'L
We may write it down in uniform sﬁylc:
D e cosh 7 \ .
QD(I__;) e cosh 72 !
?ﬂ; L peiy 3 )

This solution is not convenient to obtain reactions on sides, as it is compara-

tively low order with respect to s and the Ifourier’s scries may or may not

converge for the higher derivatives.

Putting off all these difficuliies for the

further discussions, we, for the present, proceed to obtain moments, shears

and reactions in the formal way.

825 1 E o
¥y=~D] =1
J.Iia‘ ’ay 'm. a2 } 1__;.'-‘_
m,
cosh ST2.

4 2 1 87
-———-——-—--—-——S]D. J
T selyh,. 8 th 8T be

Ed)

= I

1
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) T 2 nl )
M=-p{ P, L TN TP e
‘ oz wm oy f 1__1_

: m
cosh 272
=E(I) { -1+ iz‘_.l____ll_sin ﬂy,]»
aT L) Sﬂ"l_v l[
cosh 2772
2l
1 ginh 572
M,=pp- 251 O oo STY
W 5 gosh STl b
2'?'[ I

—— W - =0
i { 3y’ + oy az‘*}

. .. (9)
3 -3
v=—n{28 1+ TE 19
9z Iyos
T 4 cosh 59—";--@--
=] 1, ++~ﬁ] T B IR [
” [ tooe i b 22 cosh 7k
Y
L L0y
sinh 2%
p’:[ S a,n.[ya] = ED i_Z! I ain STY
ay Jr=yT 1 cosh STk b
2l

Discussions on M, T~ and R: M, vanishds on z-sides and has the constant
value —I @ on y-sides, which is the largost bending moment. M. vanishes on
y-sides and las the constant value —F @& on z-sides. The surfacos represent
M, and IL are of an anticlastic form. (Fig. 10.)
Take the sum of A, and M.,

M+ AM.=—E® |, consglant.

Therefore ‘
o L FE Myt B
of % p(iet)
' T oom
L2 == L2 - constant.

‘D(Hi)(l_%)i p(i-L)

The smm of bending moments together with Lulerian Mean Curvature is con-

stant at every point of the plate.
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JM,. vanighes on the central lines of the plate. On y-side (y=h)

. T2
sinh STE

My = HEQJ_‘;L_Z_]:__—Z'.
T s 5 cosh sy
1
It is comnvergent except at the corner where —c% becomes equal to
cosh.
tanh n'quf—li, which is nearly equal to 1 for higher value of s. And the series

approaches to the harmenic series which diverges. On z-side (z:—l;——)

My=E® 2 3V L ot S0 o5 8TY
el 2l I
Though this scries has the vibratory property, still it converges excopt at tho
corner where it diverges as is stated above.

Regarding 7 and V7, we see that they vanish at every point of the plaie
from the geometrical relation that the Bulerian Mean Curvatare is constant
overywhers i. e.:—

I

N 1 )
p(1--L)

m
Vy=—D -2 AE=0
oy

. vy O
= — j) et AE =0
L oz ¢

AE=— constant

V, & V. are zero at every point of tho plate, so we practically need not obrtain
Iy and R, in case of My, on sides are known. All the required values of
extornal agents on tho boundaries are, therefore, to be said to be seltlod down,
in caso of the values of M, on sides aro known. About the convergency &

divergency of I, following the wusual eriterion,

cosh ¥75.
we put g= h
cosh sl
20
cosh (s+2) e cosh 272 cosh 2z +ainh 27 giuh 2z
Us 41 = l‘l = 1 ! L 2‘1
cnfah%f)i cosh s7ls cosh Ejﬂﬂ—sinh smls siuhﬂi

&
1 1 1 1 1
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Qi . e
cosh 272 4 tanh 272 ginh 2
U1 — 1 1 A
R T i sl arls
$ eosh 2 +fanh 222 sinh . 2
1 1 1

When the value of z is less than —5;— this ratio is less than a constant valuo

=

which is less than 1. Therefore the series converges for z<—g"— i. ¢., R, has

a finite value except near the corners of a plate.

As to R., it is vibratory and in consequence iz difficult-to get to a rea-
sonable value. If we take, howover, a parallel line a little inside from tho
side zz% , 1t i8 cagy to prove that the series will converge on this line except
near the corners of a plate. Tardly we need treat R, as such. If we inter-
change the y-gide with z, we can obtain R. in the form of R,.
Numerical Example: (a square plate) |

We take, for a numerical example, a case of aquare plate.
Put . L=L=I

8T
: Ho 81° 1 cosh l ] s STY
E— . - s 2 g 1 - sin 7
¢ 1 T gagn. S w
ZD( _E) T selse 8 coshT F (1)
) R
or E=IG 833 : LD
™ ep(1--L)
m

This serics is quickly convergent and it may be safficient if we take first 2

terms only.
The value of R, in eq. (11) (sec PL 1)

¥ 1 r o, ! . 1
2 0 12 SET! 39 ST g 6y
0 0 .1816 .3374 A513 5207 - 5538 5656
le— 0 77 502 4413 L5086 5494 5518
21—"2 0 .1664 .5084 A110 A722 L5024 5106
3 1’;2 0 458 2605 3573 4082 4323 4385
T;- 0 1147 .2108 L9778 .3139 .3299 3337
5 ;2 0 L0683 1245 L1619 L1807 .1876 ,1839
6—— 0 0 0 0 0 0 0

12
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4 1 cosh 37;2
My=~FE® =32 4in%TY
T §  aosh s;r l e (12)
or M,=~J,ED

This is quickly convergent for the values of z near 0 i.e., tllm central baud
of a plate. The neaver it approaches the corners of a plate (z becomes equal
to %— together with 4 equal to 0), the moro slowly it converges. TFor example,
it may be suffiicient it wo take only the first fow terms for M, at 5=0. Tho
following values in the table are obtained by taking only the first 2 terms

for MM, at 2=0, but we must take 5 terms for values M, at y=—l~ and
_ 1

=5 to obtain the same order of accuracy.

z=0: My=—HED 4 sl 1 sin gwy
g 8 cosh-27. ¢
2
- cozh 53::*
p=Dli My=—B® dsnl 12 g8y
- ™ § gosh 2T
2
gt fe—ped t VL g0V - _po
2 T p {

The values of &, in eq. (12)

i3]
e
£

0 Hmm— 6

” 12 12
L 501 10
12 "
I
25 .26 Lo 1.0
g 7
305 .780 1.0
!
- o ] R
B 483 .812 1.0
I3
A 4 * 5 1.
675 497 854 1.0

" This must be rigorously tremted equal to .500, as at the center of the plate

1

. fiind
cm0& y=——): 3= 4 (=1 ° 1 1y
cosll 3
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By M.=—E®—1f,, wo oblain tho values of M, from those of I .

sil)h STZ |
ﬂfw:E@iZL cos STY )
'71' § coeh 87 l ceea (13
or | My==— K, B®
' 1 ginh 27T%
On y side; y=L: M= —E® __4_2_
4 §  cosh &

This is quickly convergent except near the cornors of the plate.

1
8

sTY

8
tanh —2—003

1 —_ l . T — 7 4
On 2z side, z_?_ MM_ECI)?Z‘

This is vibratory but convergos except at the corners of the plate. We obtained
the following values in the table, by taking the first 8 or 4 terms in the case
of M. on y-side and the first 12 termsg in gome cagos of M. on z-side. These

two values, of course, must coincide with each other.

The values of A in eq. (13)

Y Y !
L s —
Z ¥ 2

o P
ETH L1407 : 7
7 51—2 — 1875
272* . 2966 ; -
-? 4"?; — 2082
3 1'2 4860 ;
1 : ‘ 3‘12— — 4841
4—1-’2—‘ 7450 7
1 2-—1'_—)' — 7301
5—15' 1.1636 f
—_ -—1.2279
12

Remarks:
The results of this paragraph may be appli-
cable for the simply supported flat concrete slab

____,________/.,/
/ of rectangular form with strong stiffening stems all
i around 4 sides preventing the sides from being bended
but can not resist rotation in the perpendicular diree-
Fig. 11 tion. (Fig. 11). 'Tho dirvect stressos in the slab caused
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by its un-oqual clongation with the stems are neglected. We must expect some

difficulties at the corners of the plate.

V. Rectangular Plates with Two Sides Free to Rotate
and Two Sides Fixed.

Put, as the foregoing case,
ED.

E=E’+§“=-—-——-T—(llyﬁy')
213(1—_)
: m
+ Z‘ (_fl cosh 272 4 3,572 ginh 572 )c:m STY 1)
e2T,5.. & I I l:

This equation must satisly the following boundary conditions:
y=0 & I : ‘§=0 and RM,=0
0

z=t ; : E=0 and Zfz

Already we have scon in the forepoing case that the equation (1) will satisfy
the first houndary conditions. Therefore we will determine the constants ./,

& B; from the second houndary conditions, i. e.

g| _n=+en] =0
2

g="y i

This gives the same conditions as (3) in the foregoing case, i. e.

S?T‘lz 3 S‘?Tlg : S‘ﬂ'lz_ Sllz 4 )
A cosh o + Bs o, ginh o, g U (2
where C'=——-—-—-—'E-®—l— and  s=1, 3....
2n(1--+)
' m
o8] (O]
[F z=—; o oz z=-l—;~
’
%,
Z = ?
Q& s sl (.s‘ °ls sl
== As th + B, cosl
=N 3 = T o, 2

4. BT sinh S?l'lz)]_si“S‘h"y =0
20 {

i 1

A svrlo B(svrlz h svrlg_}_ 1 srlo)zo o
:sinh ) + o0 cosh 9, ginh ol 3
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From (2) & (3), we obtain
. ' 14+ 37l sl coth srils
./.l.g: O 2!1 Ql'l

s cosh i_"{f'_l_z_’_Sle cosech )
231 211 231 3

sl 4 57l ogech STl
2h 2L 21

cosh 2=

g BO Si,t
9D 1—L) G
Mm

(1+'S7rlz coth SWZZ) cosh 222 . ST2 ip £72
21[ 211 ll 1 L

2 1 [ I .
i sl s, sl o
5 cosh 372 4 3T ogecly S702

2l 2l 20

Therefore

E= EP gm0

oD 1~i) T

m

(1_*_&% coth b—ﬂ"—) cosh ST4 _ 8T2 oinh 572
1 21 2h I 2 ¢

5Ty

1

sTY’

— sin

sl | 8wl sl
2 2 sogech 2

2h 24 25

¢=1,5.. § cosh ===

or
g B 8L

2p(1-L) ™

hY m

(l—l-————s;rl' coth —Sﬂz) cosh 22 — 872 ginh 272

2 is 1— L 2 b b b gin

1

STy

=1, 8... S )
=l 8 cosh

sy + .Sﬂ—l‘ cosech 222 s7ls
o, 2, o1,

Moments, shears and reactions are as follows:

ﬂf,,——L‘CIDM A 3
- 8
141
. m_y 57l ooy ST ), STZ ST2 i 872
l—i— 251 2Z1 Zl l:[ 51
m _ «in STY
osh 272 s7ls 3 8Tz sy cosech gl . l i
21 24y 2L -~

(D)

..(8)

3]
w
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4 1
M,=E® {—1 +-2 1
. T 2 8
14+-L ,
m_ 87l oop 8The] 4 sTZ 8Tz N
1~ 1 24 1 1 1 1
m osmy L 2
sin 2040 L L (B)
cosh 570 + smly cosech 57l 1
1 2l 1
M,=E®- % Z\L
T 8
STl ootly STl gy, T2 STE ooy 872
24 g L l b s S7Y
cosh S;llz +—~—s;r;2 cosech ST by b
1 1 31 /
— cosh 272 cos 7Y
F,= ECI; (; 5 1
1—. 2 M cosh sy + sy cosecl ST
m : 1 1 20 ! )
sinh 272 giy 5TY B
po__B® 8 TRt
1—L & cosh S 4 8Ths ooy, ST
T m 204 1 2
Ry=E®-L
1
o L
o_lla — Sgllz coth 5752 cosh s;rz + 52 gipg]y £72
1 At 27 S 1 1 1 33
m /
> L (10)
cosh %@5+%003ech sy
1 1 1
sinh STl gy 7Y
Ro=— _ﬁq_)__ 8 L L
1——1~ b cosh STl + sl cosecl 87 ls
m 214'1 231 211 F4
If we take the sum of M, & M.,
. . 1+L , cosh 272 gin 57V
Myt M= —Bp— — " e 8 s 1 L b
. T S cogh STl 35Tl ocech sl
M 2l| 2lr_

20
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this is not constant as in the foregoing case, but the second term of this right
hand side member is quickly convergent, therefore we may conrverently use
this relation to obtain the values of M, from the values of A,.

As to BEulerian Mean Curvature

L 8TE . 8TY
Af=— £ + ILd iZi cosh 7 SL12 2
D (1 —...1_) D (]_——L) " 8 cosh st ls + MGOEGCI} 8l
m, e 21 2n 26

The first term of this equation is a constant
. and equal to the foregoing case, i. e., the case
- of 4 sides free to rotate. The curvature has

, ; : : ;o b,
Fig. 12 the opposite sign near th sides g=dg- to

that of the contral portion. (Fig. 12)

The value of M, on sides zzj:% vanishes. On y=I[; we have

4 1 S:l"’ coth sl ginh ST;Z - sv;-z cosh S_W'z
M=—Be L3 L 2 2 e h D
" 8 cosh sty + 37 ogech ST
21 20 2l

This is zero at 2=0 & z:im‘;— and has opposite signs on the different
sides of 2=0,
The series for Vy is divergent near the corner and the series for V; vibrates.
la

If we take a little inside from the sides z=k— it will converge.
Numerical Example: (a square plate)
Pnt l1=lz=l
ED - 87’ 1
E= 1 i Z A
2D(1——) s
m
f
J (1+8—7r coth i’—r—)cosh STM2 372 4inh 2T2
1- 2 2 — sin T . (12)
[ cosh 2T+ 5T _cogech -27-
2 2 2

Taking the first 2 terms, we have the values of K in the equation
z
£=K, 1«;@1 = e (12)n
2p(1-L) 7
h
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ag arce shown in the following table.

The values of &, in eq. (12). (sce PL II)
¥ o I 1A 7 I i I
— [ I — Q.. _ I —
. 0 12 i Yt S S
Q ] 00621 108 1208 L1299 1216 J17
—1%— 0 .05 108 280 1230 L1146 110
2-%2— 0 0025 L0906 1067 1048 0967 091
3 —1%— 0 0402 L0GS5 079 0753 D653 0062
4Tl2- 0 0247 0415 0466 L0424 0353 032
5-112— 0 .000 0145 L0156 L0180 .010 008
) .
6-3'2— 0 0 0 0 0 0 1]
M,=—E® _‘-’zzi
- s
141 -
e L ST ooth 57| cosh STE — STZ in},. 372
11 2 2 l i { 2L . (18)
i . gin Sﬂ;y
ooshf"—h- + 5% osech ST
or My=—I,ED }

As to the Poisson’s number m for the materials like concrote, we have
not yet a decided value, but wo sce that it may be a higher value than those
of ordinary ductile materials. We may, for the present, assume m=10.

The values of I, in eq. (13)

(m=10)
z 1 [4
0 5 6
y 12 12
: .
ETY 3343 0313 1.2055
1
ZE ) 53239 1.078 1.1806
4 —l— 1.0109 1.143 1.1683
12
I

GE— 11221 - 1.149 1.1631
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26

54AS
l—i—L 1 cogh 572 gin 37Y
M= =My~ B ——"— 5@ S sl
11— K 8 cosh 2T 4 -7 cosech =
m 2 2
M= ED
RN G T
The values of K, in eq. (14)
z 1 [
¢ S5 6 —
y\ 12 12
i.
Ty 930 1.162 1.824
._..Z._. = q T
2 15 878 1.370 1.670
l ed f414
4*{2— 835 1.435 1.660
.% 835 1439 1424
- Regarding MMy, on y-side (y=1), we have from the equation (11)
. 4 1 s;r coth 27 ginh 272 — 572 ogh 272
Mp=—E® =) — :
4 8 cosh ST+ 5T og:¢h 22
2 2 2
M=~ K,ED
(15)

The values of X, in eq, (15}

z z I 1 1
0 —_— 3— 5—— 6—"m
y\ 12 12 12 1

{ 0 -0084 2941 4289 0
; =0 for any value of y as mentioned already.
z=i?
Remarks: The above results may find an important application for a

concreto slab bridge with side stoms fixed to abutments. (Fig. 13).

In the case of a squaro slab bridge we
see from the above results, that the largest
bending moments occur near the corners
in' the longitudinal direction of bridge.
They are about twice as large as the bend-
ing moments occurl-fhg in the fat retaining
wall (see the examplé in III)

M =—-2Ed
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In the case of uniformly varying distribution of temperature,
0—6,=8xr and ®=a®l. @, const.

S( O do=M.= —2Em®j 2" de

)
S o.=—2Ec (§—6,)
E =200 000"¢/,,2, «=.00001 for 1°C. for concrete.

For 50°C difference of temperature between outside & middle planes o,=
200"/ oceurs nt the outside surface at the corners of the bridge. It is a
dangerous value for ordinary concrete. In the central portion of slab, much
less stresses oceur as obviously seen in the tables of M, and M., with regard
to stress caleulations of a reinforced concrete slab, we may put the above
values of bending moments equal to the resisting moments of sections as usual
practice. Here, of course, we cannot avoid the erroneousness coming from the
discrepancy of assumptions for the caleulations of bending moments and resist-
ing moments. For the former we assume the body is elastically homogenoous
isotropic and for the latter not elastically homogencons isotropic. This dis-
crepancy is nod avoidable even in the usual caleulations of Bendi-ng- of rein-
forced conerete structures under lateral loads, especially in the calculations of
slabs and arches. Ag to the 'torsion_ moments, we hardly need consider them,
except near the corners as are shown by the equation (15) or the accompany-
ing table. Practically we always put some pfoper fillets at the corners to
increase resistance for them. This is the same for the slabs with different
boundary conditions (see the preceeding paragraph ete.).

VI. Rectangular Plates with Two Sides free to Rotate and Two Sides

Unsupported.
Put I
5*&'+E”=——m€—i—(l:y-—y”)
| 21)(1—-—) .
mn
+ Z‘ (A8 cosh. $72 4 B, 5T% ginh S7% )sin Y1)
LS P N ll ll ll ll -

This equation must satisfy the following Kl)oundary conditions:
y=0 & kL : £=0 and M,=0

Zﬁ_—;’—-': M.=0 and R,=0
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We have seen in the foregoing cases that the equation (1) satisfies the first
boundary conditions. Therefore we will: determine the constants 4, and B,
by the.second conditions, i. e., ‘

m] =0
gtz
. 2 _
2
Adyosh 2Tk 4 p, 2 cosh STl le T A %l'.; C....(2)
o, L TN 2| &
mo
where o O:———-F;QL——— and -s=1, 8, 5,....
21.)‘(1——1—)
8"5 _ 1 e Vv '
I ——plZE ) } 1 =0
l ]z=% Vo™ oy Oz
aarg-'r 'a?-gr' . o i 1 aﬂgu
As €0 and 28 g, . 2& (2
i . 24 an Yoz ’ '8"‘+ ’ayaz
Z‘{—A (1-—-~ ginh swz’+B,[(l+—l~) ginh 2= sl
5 m A . 2l
-—-_(1-—-+~) STl osh svrlz] }sin 5TY =0
- om /2L 2l L
— A, (1-——) sinh sl + B; -1 1+L)6mh sy
om 2l m 2l
—(1—i)SL"’“'cos :W_IZ}=0......................(3)
m/ 2L, - 2L :
From (2) and (8), we obtain ,
- 1+ L B
wm_ swle coth sls
1 2 21
A= 87 o m
'’ 3+L
M oosh 3?32___ 87l oceeh ST L
-1 2t 2L 20 ¢ (8
“m
812 1
B,=—0
s 3+i
e cosh smly_ sty A eogech =2 sl
1—_L 2l al 2l

m /4
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. ‘ 51° 1
’g':___ﬂ___; (dly'—yz)-——l—;u > —
Q_D(la—i_) T sina. 8
"
= |
m__ 8wl o, 57D cosh STZ g 872 .1 8§72
1.1 ah ol A f 0 :
m gin 272 L ()
34+-L .
Mooy STl sl cosech swrls
1__,_1_ a2h L 20
m
o
£= e 851; 2 1u
gp(l_i_) T o 1a. §
. m .
14+
m 8l o, ST o STE 4 STE ooy SR
-1 2 21 } L . )
41— i ' : rsin STY
gL ;
M cogh ST 3Th ooy, ST
-1 21 al A
m
| AN (6))
Moments, shears and reactions are as follows:
4 1 3
My=—EdH — ¥ —
v N |
.(1fﬁrﬂcot1]. 'Sﬂz)cosh STZ 4 372 ginh S7%
) 231 2% __h 1 1__ain sy
3+-L | g
M oosh swly _ swls cosech, STl
1.1 21 2l 1
m
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S 4 .
M=ED -1+ 2. Ry
T

fs+ L , :
m sls sl sTE , §Tx ST
; — coth cosh + gindy
{1 2n 2, Loon
.:m ' sin 2TY
gy 1. b
L cogh STh ST ech STl
-1 2L, 2, 2h
0
M.=Ep 2 s 1
e
- 2 _smls coth 57l ginl STZ | 372 cosh Eirl
1_ 1 2ll 251 l1 1 Aas
m cos SHY
341 } h
— T cosh smly_ sl cosech s7ls
11 2L, 2 20
‘ m
- E® 3 . cosh ms?cos 'Q"':y .
= o
1— 1 L g4 L
o e M onch smls 87l ocooh smi,
-1 oL 2, 2
mo ‘
L 872 o ST
. E® 8 sinh 7 ~=Z gin |
1—L b 3+L . . ,
mn ™. cosh smly _ smrls cosech ELi)
'1___1H al 2l o2l
S, B : ) -
R=—E® L = DI )

——

()

()

30 -
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1
)
m__ 8wl o, STl g 872 L 8TE g ST2
- 2z1J Lo b Lo
2 m . . ? T e (9)
a 1 ‘
‘ 3+ = - .
M eogh SR STl oo STh
1 1 21, 21, 21
oom
1,=0
1+-L ey
M+ M=—-ED+—" po & L
1—-L ™= s
m
cosh 2% gin nsﬂ{"—
1 1
g+-L -
e T gty STl ST e, ST
11 2L 2h 2L
m

The first term is a constant equal to the case of 4 sides free to rotate. The
second term is a quickly convergent series, We may thorefore use this equa-
tion to obtain M, from M,.

As to TBulerian Mean Curvature:—

p(i-1) »p(i-L) "=
m ‘ m
cosh 72 st gory
1 1

g+-L A ;
M oash 3Tl STl ool ‘371' 3

{met_ 21 271 231
m

The first term is a constant equal to the case of 4 sides free to-rotate. . The
second term will not change the sign of the curvatwre. Therefore, we Lwe
eurvature of the same sense throughout the plate.

The values of M, and R, become indefinilely large at the corners .
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Numérical Example: (a square plate)

Put L=l=1" _ .

d . 81’ 1
b=
2p(1--L) ™ T
m
1+-L \
M ST coth —2 | cosh 2T% 4 572 gy 11 272
1 2 2 [ l
1_ e 1 / &-gln 37;?} (10)
34+ =
- M cosh 27 — 57 cosech 22
1. 1 2 2
S
T "1 12
or E=K EP - 81;
2p(1-L) 7 |
m _ /
Teking the first 2 terms and assaming m=10 for a concrete slab,
The values of K, in eq. (10) (zsee P1 III)
{(m=10;
N Y ; R ! z ) i
L — . G—n
x 0 T S T T | 1 ;
0 0 L3014 5651 L7766 O1706 «0081 1.0231
—lr‘;— 0 ,2097 - H6490 L7720 19 9917 1.0104
£ —1%“ 0 .2945 55346 S7h744 5938 9713 09538
3 _lf;__ 0 2846 5356 L7303 8605 L9350 0565
4—1%— 0 2683 H042 .6862 L5060 LT 8050
5—1’; 0 .e48 451 L6174 721 7861 8034
6712“ 0 1977 5720 5104 GOS8 0574 8742

Jn this case we have no large values of bending moments on the sides. It
will be sufficient if we obtain the bending moments along the central lines
of the plate. ‘As for the torsion moment we have infinitely large value at
the corners where wo may find some difficulties to maintain the slab on the

strafoht supports.
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4 1 ' \
My=—E®— ¥\ —
I
(1—- 5T eoth 27 )cosh IME 4 3TE ginh 272
2 2 [ l I .. sy
- sin ==
3+L l Fo (1D
M oosh 2T — 5T aosech 5.
L 2
m
My=~—K, E® /
; . 1— 7 coth —%
- 4 : X
2=0: My=—E® __'_Z_L a_ ain 5TY
. m 5 o 1 {
3+—
™ cosh-2T_ — 3T aosech 5T
2 [5
fom
m
EER
. 2
e=—t_. = _E@iz‘LwL},,, .
2 T s
(1-— 5T coth 2. )cosh T2 + 272 ginh 277
2 2 ! l I
341
M —cosh -2 — 5T unseeh ST
f— L 2
m
The values of K in eq. (11)
L 1 s 4
h 0 12 ST D STy
0 0 —
1 g7
5 —-0357 241
H
1z 0854 . A +.287
14
LETH ~.0084 +.214
[4
615 —.1062 —.0082 —0715 +.0140 +.205
1+
M= _pep 5 .1
1_,.}__ ™ s
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STE . ST . l
cosh ﬁl—’ sin 3TY

' —B®- 11, [ --(12)

1
3+ —
m KT ST ST
e -cogh —— — 22 eozech ——
1 -2 2 2
1——
M

or J]I’zz - 1‘(‘3 B

The values of K3 in eq. (12)

# I ! z !
0 ~ 2 4 6
y\ 12 12 12 12
0
o

1.00 0
T 830 0
2 ¢ 8064 0
12 8
4- ]Z 760 0
6 720 701 639 —.4% 0
This will be applicable for a concrote slab,
which is provided with 2 side stiffeners ag
= is shown in Fig. 14. Some difficulties
may be involved at the corners fo maintain
Fig. 14. the straightuess of 2 sides with stiffeners.

VIL Rectangular Plates with Three Sides Free to Rotate
and One Side Fixzed.

Put E=f 4t = Oy Sz T )
3]3( MJ_) P h
ne

For Z;, we use the full oxprossion, as it is not, at this time, symmetrieal
with respect to z. (see IV)

8T 8T s8TE . sz 8wz ST
+ 3 —T’— ginh . + Cesinh ---E-Z—— + D, - cogh -

“1 1 1 1 1 1
Y ¢

This equation must satisfy the following boundary conditions:
=0 & & E==0 and =0 )

Zsf_— ;1,, cosh -

2=+ ff : E=0 awd =0

2

g=—_ E=0 and iE——=0
2 Jz
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sty

Already we have scen that the oguation (1) will satisfy the first boundary
conditions. By the second conditions, we have got the following two equations:——

g eash smly + B, sTis sinh STl 4+, sinh sn‘l; +D, ST s cash STIJ

Lk sinh 3Tt

24 2l 2
. 2 cosh-s#lw
s cosh L] + B; -+
2l e 1 .
. m
2 sinh 8;‘!
+ D h
i
om
where C= B
2D (1 — 1
m

By the third conditions wo geb two more e uat-ionq as follows:
g

Ayeosh 5Ty B 57l win TR 0 sinh 87l _ 1, 8Tl coq) srls

2L 2L, . 24

_ 8 e,
g

.. (8)

..(4)

_8I? _¢

. 1, 87le ( smls | sl
As sinh o, + B sinh 57 +

bl

—-J)( sh STh . 8
s} COSIi1L 251

whare ¢ and s have the same meaningz as above,

cosh SWZ”)— (s cosh
1 a1

871"

.- (5)

6

By these four equations (8), (4), (5) & (8), we can determine consts 4,

B, C;, and D,

005118;22{1+( coth ‘%"—lﬁ)z}_

1
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B.— . 1 8 o | )
8§ P l % 3 g
n STl {1 ( i sarlz) - s'n'lg( sech ST ,,) s
cosn ——= 97, +1{ co 1——%1 } 27, cosech o, |
arrla sml \*
coth 2)
o o, (° 2, 1
5= : TR
smis sy )‘ _ 8wl ( _ s'rrlz)" g
cogh 222 o { 1+(cnth o0 } o cosech o,
—oth 5L -
Dsz 231 Sll, o
37"]2 ( t] S"rlz SWZQ( ] 57.!']2 ngfr"
cosh =2 i, {1+ coth o, )} o, cosceh 2 o7, )
Therefore we have
L cozly 3?3
£ P Sl; Z‘ 1 f
2D (1-—1—) T osann. § cosh sl
m 2L
_ 1 [( 871'?; f:ﬂ]‘lh Sﬂ'l’
1, ST 1 ( ih S‘?T'lz) S'n'lz( cosoe]y ST ) al
cosh ——= 20 { 41 co 20, } o, cli
e sl 87z sy sl \?
+ == coth 2= 2) cozh —{——( cotl ")
L 2L L Ql; 2l
+8wz}siuh svrz] sin ™Y N )]
i A N

or,

o LD s 2 1
2D(1——~—) s 51

m
i— 1
b i3
cosh smly {1 +( coth __swlz) } 87y (cosech 'Wl”)
al, 20 20 24
J i CO‘-l strls '
14 (coth s'n'lz) 3 37l sl 2,572 coth 577
l on /7 oy, 20 (qu ol ) A I ]’
20
¢ osh ST —{ sls (cot-h Sﬂ-lz)g—l- swr'z} sinh 222 |lgin 87¥ .. (8.
ll 2[1 21] Z]_ ’ l]_ 1
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‘Moments are as follows:

My=—-Ept > L - \
T og=123. 8
' . 1
S'?TE S'J'I'lz)z . Sﬂ"lg( 1 STFZz)
cosh —2= 20, { +(coth o, } o, cogech ——= o,
1
1+—
m . smils V' awly sl sz
— " i {cont 2) _ sl o4y, 87l {(cot.h——-)
1_—1— -l-(co L 2, 2, oth o, or, /)
m
-—2}+ sz cothﬁfl-—l"g cosh 272 - 2 T coth SZ}Z"’
L 20 b m (1 _H_JH) =11
m
+—Sﬂz (coth sl )2+ 572 L einy 272 \gin 3TY
211 251 1 1 ll
‘ 4 1
M,=—E®| 1+ —_
: m 8=§,. S
1
1 S'ﬂ'lz {1 ( tl S’Ti"lz) S’n"lz( l Sﬂ'zz)
cosh 20 + * 2l } 21, cosect 26 ;o (9)
F 1
1+
mo (Coth S’?F'lg)z_l_ S'n"lz Cot]l Sﬂ'lg {( coth Q'?I'Z )
l—i 26 2l 20 2l
m -
__2}_W__s-n-z coth 278 cosh 577 — 2 coth Sl
ll 1 tl l”‘“i 1
m,
_ 87l (coth Sﬂ") sz 1 ginh 22— W" ginh STY
2% 2l ol J I I
4 1
Myp=-~F® — .-
” pad I
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1
b 2l 1 (aoth 2B Y] o2 (g 7Y
fos 231{ coth a7, ]‘ o, cosach o0,
—(cot.h 373-?2)"+ sl coth sorly {( coth 877'32)2__2}
24 2l 21, %,

~ 372 ooth Sl gy ST —-{ coth 5Tl ——-—'le( coth 7k )2
A 2l A 2L 2h 21,

! STz 871
_smz} cosh 7 J cos ™Y
I

l]_ ] ll )
As to Eulerian Mean Curvature:—
Agz; Ef) _ Efb 4 2_1_
(1 - -———) D ( 1—=3p 7 8
m s
{ 51 1 AT I---?. cosh 272
cogh 57t {].-F—(coth 7 2) }— 87 z(cosechfw ‘2) - L
2l 2% 2L A
+2 coth b gin, 572 ] i STY
251 ll ll

The first term of the right hand member is equal to the caso of 4 sides frec
to rotate. The second termr converges quickly. This relation leads us o obiain

the value of AL from the value of My

1L
M= — My~ E®+—" pp 2 5 1
-1 T 8
11
2 - [——cosh AT
cosh 222 sl { 1+ ( coth 'WZz) } swly, (uosoch sy ) !
24 20 21 21

8me 7
T ]91 7Y

+ ccvthswl2 ginh
21

1 1 3

We obtain My=—E® and M.=0 at z=-%—, which are of the same

values ag in the casc of 4 sides free to rotate. The expression for shears and

reactions are omitted.
Numerical Example: (a square plate) (see PL IV.)
Pllt Z]_:Zgzl
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g LT S s 1. | .
21)( -L) w5
m
1— 1
' 00511——&{14-(00*011 AL )1}— LS (cosech—s—w—y
2 2 2 2

* | %
1'[’( coth 27 ) +27 { coth 7 — cosh 27 (coscch - S'"'—) }
2 9 ] 2

2

- e - 2
+3T2 ooth ST 1130sh STE _{ 8 (coth kil )
l _ ; 2 2

2 !
ST sy 8Tz .. smy
+—l }smh l]} su_l--____l PR £ 1)
ED 8

or E=K,

2p(1-L.) ™
_ o m
Taking the first 2 terms,

The values of K in eq, (10}

)

0 0 am .01 260 288 206 .98
-1~z§v o a8 a5 .29 8L .3 3%
2% e .19 216 .28 .18 .82 .8%7
3712— o  .a10 .00 260 .29 209 301
4~1~52— o .09t 168 212 .23 341 .42
5% 0 056 101 120 4t .43 148
s% 0 o o 0 ‘0 0 0

- —1'!2— 0 L0068 176 .226 .247 252 .252
—2% o .o .42 a7 .93 .05 .98
—3% o .58 .01 - .26 s 2 18
—4—112— o 0 5 .07 o 06T 005
-—5% o .1z .0 028 .02 .02 019
65 o o 0 0 o o 0
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The valies of M, arve as follows:

/ : *
My=—pgo-4 v 1 .

el

cogh 5T {l-l—(coth s;r

..l =

2 ' s \?
) } S L (cosech e
2 2

141 ) : .
———m-—-l-(coth s )_— 5T coth, fr {(coth il )
1 _ 1 2 2 2 2
m r (1)
-—2]-+ STZ coth - cosh 27 2 coth s;r
2 ! m (I———L)
i )
2
+ 5T (coth s ) + 272 ginh T2 fain STY
2 2 ! T

or Mye==— I, E® _
The values along the central lines arc given in the following table.

The values of K: in eq. (11)

"(m=10)
# /4 4 7 i [4 I
y\ ¢ ' e Sy T tw Y
0 0
?
'-i“é-: .2533
=  am
O
i2 :
6 Tl2— 8767 818 866 1.00 1.007 1.151 1.130
The values of M, are given by the following equation;
' ' \
14l BN
M=—-M~Ed+—"_pp L Z'_ﬂ_
1— 1 8

m
2

. : s L 12
cosh 27 {]+(coth-8—w—)z}— s (cosech LLL ) ( (12)
2 2 2

..r

L
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- {-—cosh AT2 4 coth AT silnh LI } ain 37Y
or M=—K; ED

The values along the central Jines are given in the following table.

The values of X, in eq. (12)

i 1 I I 1 1 1
Q _— — — —t —
o 0 “ 18 EET 6 12 z 12 4 12 ST
z
13 004
st 847
~ 18 ’ :
l -
. 4 13 L7232
6—132— G694 405 .272 0 960 1.407 1.978

Remarks: In the same way, we can obtain the expressions for two more
asymmotrical cases, i. e., the one case is with three sides free to rotate and
with one side unsupported, while the other case is with two sides free to rotate
and with one side fixed and the remaining side unsupported. And, also, the
expressions for the semi-infinitely extended strip-plates with various kinds of
supports aro easily obtained, though we will not give their expressions here.

VIII. Circular Plates.

We will change the cartesian co-ordinates ¥ and z of
the fundamental equations of thermal flexure into the

polar co-ordinates by the following relations.

Yy=7Co8 P
z=rgin@
By the usual change of variables, we have aig 15
* e 2 1 .., P 1 ... 2 2 . o°
— =08 P ——s51n° ¢ —gn‘ P ———-—=l cos @ ————
o Op* - ? p? vy ot 4t ? or 7 ne ? oy Op
2 .
- = 81ln @ cos
7 poos? op
® .. 2,1 . P, 1 , D2 . o
=g8in? ¢ ——+— cos" @ +—cost @ ——+—sinPcis
o2 ? aort ot # ot p ‘p or L PosP or O

2 .
— = sin @ cos
"} q,z qJ aq)
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-2 . o° 1 . Xa
=gin @ cos @ ~e—t—-gil @ coz @
#t

oy oz or?

2

1 (oot ain2e
- ; —g [7 -
+ " (cos® p—sinp) S oy
1 g @ o8 @ o + —1—(sin2 ¢ cos' @) 2.
P 3 e o

If we make tho radius vector coincide with g-axis, i. e., put =0, we lLave

az a‘.a

X
# _1 2 1 %

az? » Or 1 Ogf
o _1 2 1 @

ydz ¢ orop 1 op

Therefore wo obtain the following expressions for stresses and moments divectly
from the equations in IT;— ' ‘

p-
My M
%
Ve
"Fig, 16,
B { o°E ﬂ:(l oF 18"’5) \
= ¥ - +““*‘" +_'
7 1 1 ¥ @ m \ e Op ¢ ogt
m’

reieL)o-o}
r {,L(1 of L 1 PEN, & OF 1y

Fp==— ‘

r o y? QgF m

5m(1+%) (e—a,,a)}

' ~(1 PE 1 a&)
=2 (_ 1
M R P ¥

where suffixes » and ¢ mean radial and tangential directions resp. (Fig. 16)
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8'; m Ny Or p Ogf 11
: m
= 1 9&' A OE 1 % E®
T My==D L -
" { r o  ¢F B¢ * m o } 11 [ @
m
Ma=—(1-L)p(L_ZE _ L 2 )
m

s T or op 72 o
Bl

1 —
mt

wlhere D= and ©= S o (@—0,) % de

Shears and reactions are as follows:

Vis=—D 0 AE
.
5 . (8)
=—D——__A
! or oy ¢
where A= aﬂ, 1.9 +~1——@~:
: or r o » Dt
R?,H[V,.jLﬂ&c_]
: rog Jp=p, @
_f o OMy ]
re=[ 1+ - ]w’n

'The condition of equilibrium is, p being the distributed loads on the plate,

f O 1 2 1 &Y )
AA =( + 4L ) =L .5
£ = » Or 2 Dgf £ D ©)

If we consider only the tomperature bending, p=0

4 1 92 1 )
(a:-‘* r or 4t op’ &= ®)

When the values of £ have an axial symmeotry, losing the terms about @,
the above equations are simplified into the following forms:

e e e (i) -}
gt

N SEY NS STRYN A
m’




5606 On the Thermal Bending of a Plane wall Heated on one Burface. 44

d’E 1 1 dE Ed
My=—D 11 48}
{ah'2 * mo o dr } 1L
m
_ 1 dé 1 J% . ED L e (D)
M=—D{— +— —-
L { r dr m d'r”} 11 |
m
i M‘a-.'.:O }
Vi=—D-L ) |
dy
1 d K + @)
=0, A= T4 ¢
e t” r poodr
o=V
r=ra (9)
a: 1 4y
AAF={ Y 3+ — 2 VE=0..............(10
-E (do'2+'r cl'r)g- (10)

The genei‘al solution of equation (10) is well known in the following form:
E=C4+Cor+ it logr+Cilogr oo vvoves oo (A1)
~If a cirveular plate 48 supporied so as the deflection angles at every jmints
on its boundary lo be cqual to zero and io yicld frecly in radial direclions,
we have £==0 throughout the plate. We have (5=0 and €;=0 from the con-
ditions that £ and M, will not tend to infinity at the origin, and C,=0,=0

from -the conditions that £ together with dg is equal to zero on the boun-
dy
dary. In this case we have M,=M,=— J@l_ as it is obvious in the funda-
1——
m

mental equations. '
If o circular plate is supported free to rolute and 45 {o yield in the
radial dirvections, we have Cy==C,=0 just as in the above case. And £E=0
& M,=0 on the boundary, y=rs, give:
E=0: O+ Corf==0

M.=0: —D {202_!_ 20, }_ E(D;- 0
me

Sy e n il
9D 1—_~) 1 ——)
( e ( I- m
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21)‘(1—_1—)(14-—1»
.M m
Therefore we have, o
E= B ey 1)

)

This is a paraboloid of revolution or a spherieal surface, if # is small. In

“this case, ab any point of the plate, wo have, ) _
M,=0, M,=0, ¥7,=0 and R.=0

1. e., it is the same with the case of the boundary

not supported at all. - Next, we deal with the

case of o ring-shape plate with _bmmda?':ics free to

rofate, '

1 We bave tho following boundary conditions
E to detormine constants in equation (11)

i at F=ga: E=0 and A,=0

: at  »=b: M;=0 and R,=0 }

[
'
1
1

" A " Gy .
These conditions will give the following equa-
Fig. 17 , “tions: —
Ci+ha*+Csa®log ¢+ C; log =0 _
. ) "y it
2 (1+~1—)02+209(1-!—-1—)10ga+ (3+—1~)Cs—(l'——1—*) (’; SR -
Vi m m m /o D (1 _ 1
B : o o)
' - 1
2(1+ Doroo(t+ L ogr+ (3+ LYo (1- 1) G = - L2
m K2 m m /b D (1 _ L)
m.
_pAG )
b o,
We have
o, H®a’
2D (1-~1—2)
m
v Ed .
=
2p(1--L;
m
03= 14=0
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Or, we have just the same equation as (12)
. g:___.ELI’__l,____
2p(1-2)

m

fo*—r®t e (13)

If it is fived at the cxternal boundary so thet it mey have zero deflection
ongle and may yield only radially on 4t; The boundary conditions are,

r=q: £=0 and J-{i=0 }
dr

r=b: M=0 and R.=0
These conditions will give ¢4=0 as in the preceeding case. -
For the deterinination of other constants wo have the equations of conditions,
Ci+Cra®+ 0, log 6=0

20.,,a+£:0
(142 )0m (1= L) CmrBR__
m D(l-—i)
m /
which give:
E@(—l-mloga) \
= TN (1 21 1/1 1
)
( m T b“+ e b }
f2=-- 2“’ F
' 1 1 1 1 1 1
1——}D{— —-.~+—-(—-ﬂ.~‘“—. }
( m { a? + P om \a* Db
== D :
o 1 1, 1. 171 1 }
1_—)0 A1 11 )
( m { o + /s + m N\ a® o®
Therefore wo have,
E@{—l—-(l——— +100M}
= 2 et (1)
D 1—_) 1 H_H_ﬁﬁ)
( m { + b + m N a b* }

The moments are,

1 ( '
Mo EP | _& 'r* m. 7
1 1 : 1 |
1 a’ L* J

Vil
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r . ’ y
Jo %f; ql* +%(_17+L) B
M=l 7% |
e az*?*}?(“a.?“ z,)
| Mu=0 | ?
S ( 2
ot r=gi | My=—— Eq;_*l— —— i’ —
U )| L
12
Mo B m & (
1___1_ 1,1 +_1_ H}___]L)
m o V¥ mNagt BRSS
at r=0: My=0 ‘
ety ]
Mym - Ed i m

: 1 1 1 1 1 1
- 4+ %——) i
m @ »om N\ g B

As to Exlerian Mean Curvalure:—

af= -t 11 f T 1y’
D 1~;) AL +——(--——
n a0 om Nt P

conglant throughout. ‘

Therefore, we have V,=0, throughout. F; is, of course, equal to zero.
Numerical example: (sce PL V)
Take s case ¢=2b and m=10.

_ oo 40 { 1 ( e ) 7 }
= 2 (LT N Joe T
£ (-Lyp 2 )T oE
m
F .. ..(16
- E® 1)
or E=I e
(1—— D
m , /
The values of K, in eq. (16)
{m=10)
\ * 3
— b 50 25
E-;—(l—% 375 L981 0
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Balog = 893 —.288
a0 ' ‘
?(A-I-B) —.&71 7 —.006
Mg=——E2 B (L) o M= L2
TP T TR S _1
: ’ m . m
i ] . . _
My= _.__12_?____0_(')_(1 _ _T)T) or M=—FK—L2
P S s ‘ -1
m m

The values of &, aund K, in eg. (17)

N e , o n
. . Qo .
\ N 5 b. 25

B 0 426 575
K 1582 1.106 957

The end.
Tokyd, March 1927.
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