ON CASTIGLIANO'S THEOREM.
K. Shibata.

If ‘7 forces or moments or both A, » =1,2,-z, act on a body with the
<corresponding displac:ments or rotatioas é,, and if they are supposcd to
have attained their ultimate magaitudes by increasing uniformly from the
initial magnitude zero, the work done on the body is

W=12P, d,cos( 2, 3,).
=)
If one of P’s, say P,, is supposed to be P, +dP, instead of /, we have

b Y
,}ﬁ £ 55 )co>(1’,,3 ).

If, on the other hand,.at thz loa.ded state of the body, we increase £,

aniformly by &7, we have

QW n
o =r_zl(P +12 DP 413) e os(£3,)

'ﬁ DP 5 Peos(£,3, ),

neglecting the infinitesimals of first order against the finite magnitudes,

Comparing these two results, we have

n
—g% =r._?lg—ﬁ,):a,cos(a,a, L

In an elastic solid = of density p referred to three rectangular axes &,
7, %, subjected to body forces (K,, K, K,) per unit mass, and with the
surface o subjected to surface tractions (7., 7,, 7,) per unit area, if (X,
X, X)), (Y., Y, V), (Z, Z, Z) are the stresses on the faces dydz,
dzdx, dédy of a rectangular parallelopip:d with its edges dx, &y, dz, parallel
to the coordinate axes and with its .anzular point n=arest to the coordniate
origin at a point (x, y, 2,) in the interior of the body, and, if (%, #,, x.,)
are the displacements caus:d by the external forces, and (s, ¢, &), {05,
a,, 0,) are the rate of clongations and shears in the interior of the body,
we have, denoting the time by ¢,

du, Pu du,
W= fol (8= 5 o (K S Jo (& S Ju e
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+ f (T + Ty, + Tin,)do,

U= f f f (Xue,+ Ve, + Zia+ Vio, 4 2oy + Xyadudydz,

U being' the internal work done by the stresses. Making use of the
equations

X, K A2, Y.\ _
PP dy Y +P(K'_ dF )‘
X, Y 37, ( __”’ﬁ)_
S ek )
X, dY, dZ, u,\
w Ty ta +P("’x“ af-')-°

YV,=2, Z.=X, X-=FY.
IX,+ m¥V,+ nZ,=T,

X'+ mY, 4+ nZ, =T,
IX, + mY, + nZ,= T,

in which /, m, n are the direction cosines of the outward normal on do,
and the tensions are taken positive, we.shall have, by Gauss’ integral

]

theorem,
W=1.
Thus we arrive at the very important result
1124 n 5
= ‘,' —_— 3 N 3
38 = ZE, rees (Bt

W 2
= f f f ( Xu+ Voo b Zs+ Yios+ Zoo,+ X ,0,)dx dy ds.

The current practice is to suppose £, to be independent of P, when
‘r==s; but this 'is not necessarily the case.
Last formula also applies to statically determinate as well as indeter—
minate elastic systems.
If there'are g equations
Fo (P, Ppyee, P = o, a=1,z,,p
and if we take m of P’s, m+ u=n, as independent variables, we shall have
Pis =ﬁa(Pn,Pm"“y P....‘,. A= T, 2,0,
so that

W R W .
3P =a£1 3P Stacos{ Pra, 612 )
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U 3 ,
ey = amg [ [ f At Yas 2ot v
l + Zo,+ X0, drdyds,

"? = 1, 2,000,
and these m equations, together with p equations
Fa=o0
may serve to determine all /’s when J's are given.
Ex. 1. To find the deflection J at the loaded point of a simple beam
of span / subjected to a single load P.

. :
¢ - Tmo s >
C RS [24 g
/ / Z
x 4 od i
[ A, - e I e e _)1

Here, if 7 is the moment of inertia of a normal cross section of the
beam about » axis, and £ the Young's modulus we easily see that

1
U= ’,’IEI f M’dz

neglecting the work done by shears and denoting by 3/ the bending moment
about (2. Thus

(/=_2_IEI_[Jin(flﬁz)zdz +jia{ P(l—l- a) (l—z)}'dz]

72

= 6E7 =)
3 W P

= = . - 2
= 3E”a’(l a)

Y

Ex. 2. To find the moments and reactions of a beam of span /, whose

one end is absolutely fixed and whose other end is fixed against the rota—
tion and is displaced by & normal to the beam.
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Giving to / and £ the same significations as before, and neglecting
the work done by shears we have

U= -»---f(M. + Rayd

R
R+ 3' ),

EI
and by the principle of Statics,
M, — M+ R!l=o0
R, + R, =o.
If we take M, and R, as independent variables, we have

3R, T 2ET
a%%= SET (ZMIH R ) =o,
whence it follows that
R o= — Ry = — ,,l?%lf
M= — M+ 65‘{3—

If we take M, and M, as independent variables, it will be convenient,
although not necessary, to put U/ in the form

7
U= *6‘2-7(1’[1’*-%/%4'%’)-

Thus we have
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P14 M 3
U ! ]
oM, = BE7 M+ 2M) = —

whence it follows that

3
= —ag, = 22
R,=—-R,=—Eﬂa-

the same results as before.

Ex. 3. To find the theorem of three monents.

Let 3 denote the bending moment for #th sp

an considered as a simple
beam, then the reactions at A, and A, are

"J’{r\";'Mr Mr—l'—M
TS apg P T

respectively.  Hence giving to 7 and £ the same significations as before,
and neglecting the work done by shears, we have

y
1 -~ M+ M ) :
U=t o (M_l + Ay Y

/,
A ¥ 2 irierd
= .EET(M’,-1+M,-|JL+M)+ E7 \ s

/, /
_/‘{,,‘—Mf' L " 27
“ET- " Mz dz + SE7 . M3z
Thus we obtain-



6 ON CASTIGLIANO’S THEOREM

/,
Y/ Lo, v ok 3,8,
S = i (Mt adl) + g [ Mrde = — g T

¢, being the rotation at 4,.
Similarly for (r+ 1)th span, we have
Ir+l

A M,
Uppr = S8 (M2 4 My Mo+ M) + 7 ) M dz
L3
/, ],
ﬂf—M.,.lj"“ 1 J"*?
— T Hrt = § M dz,
o ., Mz ds + BT “ /3
so that
. /,
;)”U’__H _ l'i‘ﬂ 1 fr+1 _
N7y (2M+ M) + il ) M(ly—2) 2z
— 6r - 6r+|
L Ir+1

Adding these partial derivatives of U, and U,,, with respect to M, we
have. after multiplying the result by 6E7 and transposing the integral terms,
LMo+ 2L+ 00 M+ L M,y
6 1r+l

6
f Mo ds — S ML, 2)ds
lr ° lr+l N

3,-14 + ‘31- - 5r+l >'

—omr(*3 n

a well-known theorem of three moments.

The case when 7 and E are not constant mmay be treated in an exactly
similar manner.

It will be noticed that by finding the partial derivatives of U, with
respect to M, , and M,, we ‘shall have the solution of the general case of
Ex. 2.



