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CALCULATION OF THE PRESSURE EXERTED ON EACH
., ELEMENT OF SURFACE NORMAL TO THE PLANE OF
DEFORMATIONS, AND OF THE TOTAL PRESSURE
SUPPORTED BY A PLANE SUSTAINING WALL,

31.  Formulae which give the Direction @, and the Value R
of the Pressure (— R, T).

It remains us to study the pressure, having for normal and tangential
components —N, T, and supported by a unit area of each plane element par-
allel to the axis of z, and then to evaluate the total pressure suffered by
any plane section taken through this axis in the mass : this pressure will
evidently be exerted on a plane sustaining wall whose back face will coincide
with the section under consideration, when the mass, instead of being infi-
nite, would be reduced to its part situated at the back of such a wall, while
the contiguous pulverulent couch had been in the same time undisturbed in
the positions x+u#, y+v, z+w@ which it occupies in the infinite mass.

Let ¢ be the inclination to the vertical of any plane element paral-
lel to the axis of 2. The two components —9 and T of the pressure which
it receives on unit area are, after the relations (57) (p. XXXVII),

- - =a;f%l_?)[ws(w—25)+sz'nwsz'n2(el—e),]
< |
T = _rel sin w cos2(e—¢).
cos2(w—¢) :
I will call

B3
the total pressure whose two components, normal -and tangential, are —%
and T,

&

the angle, comprised at most between —3 and §, which it makes with the

&
prolongation of the normal to the plane element and whose tangent, —’)"9—:,

define it completely. We shall have

T

sing, '

tg¢l=:%! R=
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or

(M) g = sz'nmco.rz'(e,—'e) R siﬂwwﬂ(ﬁ"'.e) ool
7 ) g¢1 [0&((!)‘-25)+51nwﬂ”2(€l—5)’ £052(10—5)51”¢1r°

The first of these formulae presents the inconvenience of not being
calculable by logarithms. It is preferable to evaluate #g(&,+¢&—et%) by
means of the relation ‘

_ i tigle—et]
g(h+a—eti)= I{¢lg¢12(51—5i4‘2)) ’
in the second member of which we shall put for #¢@, its value (72"*). This
second member will become much more simple if we replace therein
ces2(g—¢) or Esin2(e—ekE) by t2cos{e,—et§)sin(e,—e+T),
sin2{e,—e) or Ecos2(e,—exT) by TFcost(e,—e+§) Lsin®(e,—et3).

We thus find
(72"") tg(@+e—ct}) =tg(e,—e+T) ig%:‘%é%%
tg,}(g—m+2sim)

%} (3—w+2¢F0)

This formula, in which we can take upper or lower sign at our pleas-
ure, will make the angle @, known without any indetermination, which fixes
the direction of the pressure, when we shall have given the inclination @ of
the top slope to the horizon, the angle ¢ made by the plane element with
the vertical and the parameter ¢ characteristic of the equilibrium mode. The
second relation (72°*) will permit us to calculate in consequence by logarithms
the magnitude R of the pressure per unit area, if we know besides the depth
/ at which the plane element is situated, that is its distance normal to the
top slope and the weight pg of the apparent unit volume of the mass,

We obtain between R aud T an extremely simple relation by adding
the two equations (72) after having multiplied them respectively by
—sin(w—¢,) and cos{w—e¢,), then replacing in the second member the terms
affected by sizew by their total value

sinwcos(w— 2¢ + &) = sinw cos( w — 2¢ ) cose,— sin( w — 2¢) sine, ),
and similarly the term —sin{w—¢ )cos(w—2¢) by

=tg(¢1"ei%)

cos(w—2¢e)( — sinw cose, + cosw sins,
and lastly by reducing. It thus gives
(720 N sin(w—¢,)+ Teos(w— &) =pgl sins,.

This formula is nothing but a particular application of the theorem,
called one of reciprocity, expressed by the relations (21) {p. XXI):its first
member represents the projection, on the normal to the top slope, of the
elastic force suffered by the plane element of the inclination ¢, and the second
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member is the projection, on the normal to this plane element, of the elastic
force supported by another plane element passing through the same point
and parallel to the top slope: the theorem above cited shows that these two
projections must be equal.

32. How the Two Components —N, T Vary with e.

To find how vary the two components —%R, T of the pressure R
exerted on a same plane element, when we make the equilibrium mode
change, that is when we make the angular parametre ¢ vary.

After the relation (70™), it will be sufficient to make e increase from
‘3;3 to “’T'H, or to make 2(w—¢) decrease from @+7 to w—rt, thatis from
an upper limit less than § to a lower limit greater than —3%. In this inter-
val, the expressions (72) of —R, T remain constantly finite and continuous.
The denominator cosz(w—e) vanishcs at the two limits in the  particular
<ase w=0, 7=%; but the numerator vanishes at the same time and the
values of —N, T taken at these two limits tend, in proportion as w decreases
up to zero, toward the perfectly determinate values given by the formulae
(77) in sequel,

Differentiate then, with respect to e, the expression (72) of —9%, T
and replace in the results

sin2(w—e)cos(w— 2¢) — cos2(w —&)sin{w — 2¢) by sin[ 2(w— €)— (w0 —2¢))=sinw,
0052(w— €)cos2({e,— &)+ sin2{w— <)sin2(e, —¢) by cos2(w—r¢,);
sin2(w —e)cos2(e;— &)~ cos2(w —e)sin2(e,—¢) by sin2(w—e):
‘we shall have simply
d( = N) _ —2pgl sinw(1 +eos2(w—¢)],

e cos’2(w—c¢)
(73) dT  _ —20g! sinwsinz( w—¢,
& cos’2(w—e)

These derivatives of —% and T have constantly the same signs

whatever ¢ may be: the first is negative or positive according as the incli-
nation @ to the horizon of the top slope is in itself positive or negative; the
second has the same sign as the first when the sine of the angle 2{w—¢,)
is positive, and the opposite sign in the case when this sine is negative.
Each of the two components —N, T then wvaries continuously in the same sense
when ¢ increases, and it is comprised at eackh instant between the two extreme
“%Ff: also if we wish to have the least value of

w1t T . .
2 according as w is

values which it recetves for e=
- the normal pressure — N, we must take e=
> or < zero.

The second formula (72) could be deduced from the first and the
relation (72™%), which gives € as a linear function of R, no coefficient of

w—
oy €= 3
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which function depends on ¢, and after which the ratio of the two deriva--
s AT a—-n)
tives e and Z

23. Extreme Values of the Components —R, T. Study of the

Limiting Equilibrium whick can bc Presented by the Infinite Mass

To evaluate the extreme values of —%R, and at first those which cor—
respond to e="’T""‘ for positive o, to e=“’_;‘_" for negative ®, and conse—
quently to the least value of —J.

1 will call ¢ the auxiliary angle, comprised between o and §-3 when
@ is >0, between 0 and —%—3 when @ is <o, and defined by the equa-
tion

is equal to zr(w-—¢,).

Stnw
sin@

This equation, compared to (70), shows that z is equal to the com—
plement of the absolute value of w+2¢, or that we have

(74) sin{o+2¢)=

(74") r=3F(0+2¢),
and consequently
fer —2¢ or —(wtt)=FF+2¢,
74 +zt2¢

2(w-)=TFi+2(w+¢), 2(a—¢e)=FF+2(e,+¢), o—2e=TFF+(w+2¢).
The formulae (72) become, if we put therein these values of 2{w—e¢),
2(g—c¢), w—2¢,

o~ Sinw sinz2(g,+¢) sn{w+ 2¢)—sinw cos2(e,+ ¢)

T="" /, —R= - ogl.
(75) 3 szl @0+¢) r& sinz(w+¢) 8
The expression (75) of T appears indeterminate when w=o. We
can transform it by making successively
o N cos{w+¢) _
(75)% sin2(w+ )= 2sin(o + $cosd Teosg
' f
‘or b )+ sin{ + cos{@+¢)
sin(w+¢— )+ sinflw+E+ ¢ ) 2o y
and then replacing therein the ratio
stnw or after (74) sin@sin( 0+ 2¢)
stnw=+ st o+2¢)’ T sin@sin(w+2¢) +sm(w+2¢)’

by
sing siug
1+ sing 2c05*(5—%)
We shall have thus
- pglsing  cospsinz(e 4 ¢)
(76) T= . ; .
2008 (§—%)  cos(w+¢)
As to the expression (75) of —%€, it is not calculable by logarithms;
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but we shall obtain —9 when T will have been evaluated by means of

(76), and if we know the angle @, which measures the inclination of the
resultant pressure R, applied to the plane element under question, to the
prolongation of the normal to this plane element. The formula (72*) will
give, for the calculation of this angle, when we make after (747) —e=TF§+¢

sinw,
* sin@
(76") tg(piteat+¢)=15(a+d)

and also cos(w—2¢)=tsm(w+2¢)=

1+sing _ (e +¢)

=g )
Finally we shall have

=%, tg¢1
Now to evaluate another extreme value of* — 9 and T, knowing the
values which correspond to e:f';T for w>o and to e—-“l’—;-'- for w<o. It
is convenient to take, instead of the root ¢ of equation (74) which is com-
prised between 0 and +§—%, ¢ which is comprised between +%—% and
+35—$%, or which is such that, with respect to the preceding ¢,
(76%) w+2f =Fn—(w+2¢),

adopting the + or — sign according as @ is > or < zero. We shall
have, instead of (74"*),
—5t(w+2¢),
and consequently, by virtue of s="’::1,
—z2e=TF§+2¢.

This value of —2¢ differs from the preceding (74*) in this only that ¢
replaces ¢. Hence, aside the change of ¢ to ¢, the formulae (72) lead to
the same relations (75), (76), (76°*) as in the preceding case.

To sum up, the extreme values of the two components —N, T of the
pressure exevted on a first plane element making the angle € with the vertical
that is those which corvespond to the two modes of equilibrium lanit allowed by
an infinite mass inclined by w to the hovizon, are given by the formulac

sin( o+ 20) = smw’ te(Bi+e+¢)= R/ at¢d)

)Z¢ lg‘ \I '33
(77) o Singcospsinz{e + <,/) = .
2¢os*( 3 — a)co:(w+y) f£’¢ '

the awxiliary angle  whick can be calculated by the first equation (77) should
be so chosen that the sum w+2¢ may be, in absolute value, less than § for
the equilibrinm mode whick gives the normal component —N of the pressure
its least value, and consprised, on the contrary, between § and =, or supple-
mentary to the preceding, for the equilibrium mode whick gives —N its great—
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est value; as lo the inclination @, of the pressure to the prolongation of the
normal to the plane element, as it can vary at most between —3 and § only,
the second equation (77) will completely determine it by knowing 2B, + &+ ).

The angle ¢ has an important geometrical signification. We have

(77°*) —26=F3+2¢, or —e=TFi+¢,
and consequently, after (59) (p. XXXVIII), ¢ (or ex%)=—¢. Now &
denotes the angle made with the vertical, on the side of 0A (fig. 1,
p.- XXXVI), by one of the two principal dilatations or of the two principal
stresses produced at each point: ¢ then represents the same angle, but es-
timated positively in the opposite sense, that is on the side of Oy.

This is nevertheless what we recognize by putting successively
€=—¢, =—¢+F in the formulae (75). In these two cases T =o0, and if
RN,y Nz denote the two values of N,

_q, = Sin(o+ 2¢)— sinw

g _ Sin{w+2¢)+ sinw
sin2(w+¢) rgl, o= sinz(w+¢) og
Sin (w+2¢) and sinw having always same signs after (74), —%R, is the
least of the principal stresses, and —N, the greatest. Consequently #e

dirvection whick makes with the vertical the angle — & coincides with the profil
of the plane element on which the smallest principal stress is exerted.

The above formulae of —%,, —N, are simplified when we replace
sin(w+2¢) —sinw by 2cos (@+¢) sing, sin{w+2¢) + sinw by 2sin(w + P)eosy,
sin2(w+¢) by 25in(w+¢)cos(w+¢): they become

or sind cosg

(77"7) _m1=w%’/’ — = ?a-s(tT:}-W‘Og/’
34. Stress sustained by a Vertical Plane Element.

The mode of equilibrium limit for which the component —R of the
stress acquires its least possible valie is precisely that which has been stud—
ied by Mr. Maurice Levy in his memoir sur une théorie rationnelle de légu-
dibre des terves fraichement remuées et ses applications an calcul de la stabilité
des murs de soutinement The formulae (77) do not differ from those
which have been given at Art. 15 of this memoir.

Mr. Macquorn-Rankine had already, since 1856, considered the two
modes of equilibrium limit which can be exhibited by a mass limited by a
plane slope and about to collapse in all its extent: he had set forward the
laws which govern the pressure exerted on vertical plane elements, that is

*® This work, presented for the first time to I’Académie des sciences de Paris at June 3, 1867

and reproduced at -June 21, 1869, is found in Journa! de Mathématique de M. Liourille Ct. X VIII,
1873).
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on those for which ¢=0.*
These laws are Very simple even when the equilibrium is not limiting.-
In fact, putting & =0 in the general formulae (7z), we shall bave
cos26sinw €0S26CoS®
(78) ‘E=[052(w_€)pgl, —§)E=m 5t
whence we have evidently to take, for respective values of the resultant pres-
sure R and of its inclination @, to the prolongation of the normal to the

vertical plane element under consideration,

(7¢)

cos2e
=___ " ol =w.
cos2(w—e) 2" #

The second relation (79) signifies that, i an infinite mass, each ver-
tical plane element suffers a pressure parallel to the top slope. The first,
specified for the modes of equilibrium limit, that is, for the values of --2¢
equal to FI+2¢, gives

(79") %=

Now we can put

sin2¢h vl
sin2{w+¢) pEe

stn2¢ or sin{w+2¢—w) by sin (w4 2¢)cosw— cos(w+ 2¢') sinw,
stnz(w+¢) or sin{w+2¢+w) by sin{w+2¢)cosw+ cos(w+2¢1)sine,
and observe in consequence that, after {74),

sinw

3 N St — sin® z e
sin(w+2¢)= o + Vi@ — sinfw _ F Vcos’w—cos’@
5

) 2 = . = - s
cos{w+2¢) sing sing

the upper signs corresponding to the absolute value of w+2¢' less than §,
or to the equilibrium mode for which the normal pressures are the least
possible, and the lower signs corresponding to the other mode. It thus.
becomes definitely

TN oo~ rosid

(80) g = Cos0F tox:u cos»¢(‘g[.
coswt v costw— cos*p

The upper signs give the value of the most feeble stress exerted on

the vertical plane element which is produced when the mass is about to col-
lapse downward and the friction of the earth acts with the possible maxi-

mum to retain it, the lower signs give on the contrary the greatest value

* See in the Annales des ponts ef chausstes (November, 1872, p. 242) a note in which Mr.
Flamant, ingénieur des ponts et chaussées, has given a very simple geometrical exposition of the
theory of Mr. Rankine. Mr. Considére has also inserted, at June, 1870 (pp. 545 to §94) in these
A4nnales, a memoir containing, besides the same results at which he had arrived from his own
part, many judicious and interesting considerations.
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of the pressure which it exhibits, as Messrs. Considére and Flamant have
remarked, when the same mass, compressed horizontally, is supposed to be
at the point of collapsing upward (or rather of flowing back above its free
surface), and consequently when the friction balances to an increase of the
weight of the mass: it is this kind of pressure which Poncelet has designated
by the name of abuting of the earths (butie des tcrves).

We observe that the two modes of equilibrium limit corvespond to the
two kinds of collapsing, by pulling and by crushing or compression, whick can
be exhibited by a pulverulent mass with the plane top face, when it is disturbed
at the same time through its whole extent.

35. Calcnlation of the Total Pressure Suffercd by a Wall

with Flane Back Face.

Lastly to calculate the total stress supported per unit horizontal length
of a plane section taken in the mass through the axis of 2 up to any
distance L from this axis and also having to the vertical any inclination ¢,
This pressure will evidently be that which is undergone by the back face
of wall contiguous to the mass along the section in question and supposed
to be capable to produce on the pulverulent mass situated at its back the
same effect as produced, in the infinite mass, by the matter situated in front.
of the section in question.

Divide horizontally the plane section or the back face of the sustain-
ing wall into infinitely narrow bands. Any one of these bands situated at a
certain distance L from the axis of z, that is from the top margin of the
section, will have the height 4Z and its base or length equal to unity by
hypothesis: it will suffer a total pressure NZL, composed of the normal force
—~NIL and the tangential TIL directed downward along a perpendicular in
the section to its top boundary; —N, T, N will have the values (72),
(72"). The elementary pressures NdL exerted on all of these bands will
make with the normal to the section taken outward from the mass the con-
stant angle @, determined by the formula (72%), and they will be parallel;
they will thus have a resultant or w¢al/ pressure P equal to their sum and
whose product to the distance L, of its point of application to the top
boundary of the section will, after the theorem of moments, be equal to the
sum of the respective products of the elementary pressures RdL by the cor-
responding distances L of their points of application. This is expressed by
‘the equations

L L
= d, =1 Ndl..
(81) P afs)a L L P!L)(d]
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It only remains to effect the integrations indicated, after having sub-
stituted to 9 its expression (72°) and put therein, instead of the normal
distance / of each point of the section to the top slope, its value in function
of the oblique distance Z of the point in question to the same slope. This
oblique distance Z, estimated along the section, is inclined by ¢, to the ver-
tical, while the perpendicular / to the top slope is by @ : / is thus the pro-
jection of L under the angle w—¢ and have ‘the value

(81™) =L costw—z¢,).
The formulae (81) become finally, by adding (72%),

Ly=3I, P=K‘0ié2 where K:_f)Ecox.’w —&)_ .vz'nwcos(:u——s,)ca.szszge1 —£)
(82) ? 1] {’f‘i u+2».~+'w)£os-’(w—5)szn '
e s ==
A homegeneous pulverulent mass in elastic equilibvinm terminated at the
i#top by a plane slope with the inclination © to the hovizon, thus exerts, against
@ wall which has its back face inclined (in an internal batter) by an angle ¢,
20 the vercital, a pressure applicd at the third of the height of the back face
of the wall inclined to the normal to this face (normal being taken inward fto
the wall ) by the angle @, given by the fourth equation (82), and equal to
2he half of the product of the weight of apparent unit volnme of the wmass by
the square of the obligue height L of the face in guestion and by the coefficient
K whose value vesults from the thivd formula (82). These laws oare never—
theless demonstrated only for the modes of equilibrimm in which the state of
Zhe matter is the same on all the extent of any planc parallel to the top slope
and consequently depends on the sole parameter «.
We have to consider the two components

L L
normal 2= f (—9)dL  and tangential 7= f 4L,
o o

-of the total pressure 2. These two components will evidently have the ex-
.pressions

ogl?

Pk 1)”:1{"—”53,

. .- - Teosiw—¢
where the coefficients X', KX’ denote the ratios Neosfw—&) Teosw—e)

»

o8l ol

»

ithat is, after (72), the numbers

X' - cos(w—e,) f cos

o5z w—3)© (w—2¢)+ sinwsinz{e,—e))
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0—¢) . .
" -—i(”—(-f—‘?)-swwwsz(s,—t) =K'tg{w—e) + sine, :

" cos2(w—¢)
the second expression of K, namely K’ fg(w—¢)+sing, is deduced im-
wmediately from the relation (727%r).
36. Values of the Pressure when the Wall, Rough or Smooth,
is Fixed and the Natural State is Supposed to have
Existed Beforehand.

The third and the fourth of the formulae (82) are simplified when
we admit, as special to the wall, the relations (73), that is when the pul-
verulent couch contiguous to the wall is supposed to be maintained in their
position of natural state when it is rough and at least in its primitive plane
when it js smooth. Tt must then be put, as we have seen at Arts, 22 and
23, e=¢, in the first case, e=¢,—§ in the second. Also the value of @; will
be easily obtained from the two expressions (72) of T and —RN, whose
ratio is equal to Zg@,. Thus

Sinw
(82%r) ;g¢l=520s{w—2sl)
zero (smooth wall).

The third of (82), after the valucs (72°*) of R, in the case of rough
wall and observing that, in that of smooth wall, 9 reduces to

_q=T sz'n(w.-— 2¢,)4+ sz'nwo
—sin2lw—g)

{rough wall),

2co8)w — €))sine,
2cos{@ — &)sinie,—w

- sine,
)pgl sin(a,—w)pgl’

will give
cos{w—e¢, )sinw
cos2(w — & )sing,
sine,
lgl{e—w)

{(rough wall),
(ruatery K=
(smooth wall).

When the rough wall has its back face vertical or ¢=0and conse-
quently @,=w. it results simply
_. OSw
T eoszw

Observe lastly that, after the formula (82*"), compared to the condi-
tion (69), the absolute value of #g@, will be always less than or at most
equal to sizg; which signifies that the pressure supported by a sustaining
wall undisturbing the pulverulent couch contiguous in its positions of natural
state, makes with the normal to this couch an angle equal at most to that
whose tangent equals the sine of the angle @ of internal friction, It will be
thus sufficient, that such a wall may be supposed infinitely rough or capable
of undisturbing the pulverulent couch contiguous in its primitive positions,.
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that the angle of its friction against the mass shall be equal to or greater
than that whose tangent equals the sine of the angle g of internal fiction
(at 357 16" for g=45"). We have always in the pratice, at the sustaining
wails, enough of roughness that the angle of external friction shall be even
greater than &.





