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OF THE EQUILIBRIUM MODES WHICH CEASE TO BE
POSSIBLE, WHENCE OF THE ELASTIC LIMIT
OF THE PULVERULENT MATTER.

25.  Conditions Expressing that the Elastic Limits are not Izceeded.

For all the bodies which tend to restore their form when we set
them free, there exists what we call the elastic Zimit, that is the maximum
values which the principal dilatations 3, J,, 3; cannot surpass at each point,
without that a persistent and sensible alteration of their initial molecular ar-
rangement or even a rupture is produced. In particular, the pulverulent
media, at the moment when their clastic limits are attained, present this
state of unstable equilibrium which permits them to collapse and which we
call state of collapse (état ébonlenx).

The existence of an elastic limit in the pulverulent media is proved
by this fact that they are destitute of cohesion, that is incapable to exert
or transmit a tension however feeble. In other words, the normal component
of the elastic force exerted on any plane element taken at their interior can-
not be positive, and whence, after the first formula of (22) any of the three
principal forces F,, F, F,, and even the greatest 7, can never be positive.
“The mean —p of these three forces then must be always negative, and the
condition

F <o, or —p(1—2md,)<0, or finally )‘<;;T
signifies that the greatest linear dilatation 3 at the clastic state must always

remain less than the ratio %

Let us confine ourselves to the case of plane deformations in which
the linear dilatation 3, is zero and which are, by virtue of the relation of
incompressibility 3,+3;=0 or d;= —3,, defined completely in their magni-
tudes, by means of the single positive dilation 3, in a small extent about
any point. The absence of cohesion of the medium shows 3, to be less
than the ratio -2_:'., but not that 3, can attain this limit without that the
equilibrium is compromised ~All which we can conclude therefrom lies in
this that the limit of elasticity is less than 51;,, or equal to ’;":: , if ¢ denote
a certain angle, comprised between zero and 3, which shall be determined
by the experiments for each kind of pulverulent bodies and which shall be
precisely what we call the angle of internal friction. Thus the two limiting

conditicas




(66) >0, < P

expressing the imperfection of elasticity of the pulverulent masses, shall be
imposed to the equilibrium modes which these bodies can exhibit when we
suppose them to be perfectly clastic, and they shall make the realization of
those of the modes impossible which shall not be satisfied at all the points
of the mass.

We can introduce, in the second inequality of (66}, the extrene
principal forces £, #; in place of the maximum dilatation 3. The first
equation (34™*") (p. XXIX] gives R=2mp),, so that the inequality (66),
9 <, becomes

Zm

(66" ) §< sin@g, or R<psing.
Now after the relations (54 ), we have
AR _R
F+F 9’

and. the inequality (66"*) takes the required form
_F—F

. . = 1—sng (:: ¢)
66" 1> = 0P =t — .
( ) 1{.1+Eg<sm¢, or '—E«> T sind lg i

Thus the ratio of the smallest stress o the greatest at the same point
always exceeds 1g°(5~%); or, what comes to the same thing, the difference of
these two stresses ts less than the fraction sin@ of their sum.

The same inequality is yet susceptible to another interpretation.
Consider a plane element whose normal is inclined by a certain angle 8 to
the axis of x. The tangent of the angle made by the stress exerted on the
plane element with the prolongation of this normal is equal to the ratio of
the tangential component T of this force to its normal component with its
sign changed (or the pressure properly called) —N. Now the formulae (32)
give

T _ Rsinz(B—-5)
—N  p+Reos2(f—f3)°
and this ratio, which is zero when sin2(f—@,)=0 or when g—j3=o0, =%,
=3, etc., attains its absolute maximum values when the derivative

d( T )_ZR:pcasz(ﬁ—ﬂo) +R)

I\ (p+Reos2 B—B,) Y
vanishes, that is when wc have
R
(67) 5052(f9_:80)=—7-

Thus the inclination of the stress to the prolongation of the normal,
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the maximum inclination which I shall call @/, has for its tangent

R sin2(f—B)
g kit S A iV S S SO S LS S—
g9 p+Rcos2 f—p3) & B /I_fi ’

this relation is equivalent to .rz'n2¢’=—§—.:;—, and gives, after [66'¢),

(67" sin*@ < sin’ @,

Thus the second condition of (66 signifies also that that the equili-
brium ay be possible the inclination of any pressuve to the prolongation of the
normal to the plane element of action, must akways be less than or at most
equal 1o the angle of internal friction @.

The inclination under question attains its absolute maximum value
+ ¢ when we have

cos2{B—F) =~ -1;———- —sin@ =cos(5+ '},

and consequently, excepting an intzgral number of semicircumferences, when
’
13 _/30=‘_t(—g -+ %)
Now, after the reflections concluding Art. 15 fp. XXX), B, rep-
resents the inclination of the smallest principal force F; to the positive #:
the excess 8—@, then denote the angle between this force and the normal
to the plane elements under question or that which the same plane elements
make with the principal plane element subjected to the force £ under
consideration. If lastly we observe that this force is negative and conse-
quently constitute in its absolute value the greatest principal stresses, the
above equality leads to the following theorem enunciated for the first time
by Macquorn Rankine: #he planc elements for whick the inclination of the
stress thereby sustained to the prolongation of their norwal attains its mazi—
mum value ¢ are those whick make an angle equal to §+%’ with the prin-
cipal plane element subjected to the greatest stress, and whick make in conse—
quence with the plane element subjected to the least stress the complementary
angle 2-—?_,/.
26. Characteristic Eguation of the Eguilibrium Limit of the
Pulvernlent Masses at the State of Collapse and of the
Solids at the Plastic State.
The inequality (66%7) is changed to equality at the moment when
the ass, ‘at the point of its rupture, passes from the elastic state to the
state of collapse: the equilibrium lmiit which is produced at this moment is
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then characterisea oy the relation
(68) Fi—Fy=— (F,+ F)sing.

The solid bodies also present an equilibrium limit when we apply to
them sufficiently strong stresses; but the equation special to the plastic stase
which they produce can only be established by means of a little less simple
considerations even wheu we confine ourselves to the study of a matter
istropic that is constituted equally in all the directions, and to the case of
the plane deformations such that one of the three principal dilations, 3., is
zero. These bodies, subjected to the unequal actions in different senses and
very gradually increasing, begin to show the sensible permanent deforma-
tions as soon as the two other principal dilatations 3, 3 produced at a point
acquire the values satisfying the relation 3;—d;=/{3,+ 3;), where 7 denotes a
certain positive function: we then say that the elastic Zmit of the matter are
attained. The deforming actions continuing to increase, the positions of
natural state (or from which the elastic displacements are reckoned) of the
varions particles which constitute the bodies change at each instant; and
besides, the experiments show that if we make it resist to the disintegration
by means of the suitably applied stresses, the body remains to be constituted
with respect to these new positions of equilibrium (with the exception of a
slight alteration of the isctropy) as it was in its initial state with respect
to the first, its coefficients of elasticity 1, u changing a little: but at the
same time its molecular structure becomes more stable, since the function
J5 which measures at each instant the greatest possible elastic deformations
9 —2;, is transformed aad increases for a determinate value of the cubic
dilatation 3;+ s, such that the persistence of the same actions does not
bring continuously new deformations. Lastly, the deforming actions still
increasing there arrives a moment when the function £ attains a maximum
value which cannot be surpassed, and when, in conszquence, the body is
no more apt to assume a constitution which permits the deformations to be
arrested. The equilibrium limit, characteristic of the plastic state, is produced
at this moment. Now if in the relation u— 9=/ 2+ %) we substitute
for 2, J their expressions deduced from the formulae (5) (in which we
can take 4=o0, 3,=0), we have

F—F=2f (

which is the required equation.

In general, very malleable bodies, to which here we specially refer
resist much less to the change of form than to that of volume, and the in-
verse, 2+ §4 ot their coefficient of compressibility must be very great with

s+ 5
2h+2u)’
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respect to their coefficient of rigidity u we can then suppose for the first
approximation 22+ zg= o when F+ F, is not of a higher order than /-5
and the preceding equation is reduced to
= F,=2pf(0)=a constant 2K,
conforming to the fundamental principle of plasticodynamics which Mr. de
Saint- Vénant has given as the result of the experiments of Mr. Tresca
Sur le poingonnage des metauxr.™ But it is preferable to observe in addition
the term of the first degree with respect to F+F, in the development of
the function £ by Maclaurin's series, which since / increases probably with
the density or the mean pressure will give an equation of the form
{68%) F—F=2K-a(Fi+ F,).

We see that the formula of the state of collapse is nothing but a
particular case of the above in which K=o and a=sm@. In this particular
case, the demonstration of it is more simple for two reasons: 1° for the
pulverulent bodies, there are no different molecular constitutions which are
susceptible to become in succession the more stable as the deforming actions
increase, or in other words, the intermediate period during which the func-
tion increases, and which is improperly called the period of the imperfect
elasticity dozs not exist in them; 2" the cubic dilatation d,+ 3, is there sen-
sibly equal to zero. Consequently, the equation of the equilibrium limit is
reduced to 3,~ 3=/(0) or = constant, as we have seen.

It is probable that the same causes of simplification occur for very
malleable solid bodies as lead or clay, and the latter seems to require that
we can suppose the maximum elastic value 3,~2, to depend little on 3+ 3,,
or to admit approximately the equation of the equilibrium limit /A —/;= a
constant 2K. This is also perhaps the case with th: former, for which the
function £, at the instant when the equilibrium is limiting, does not depend
on the successive values assumed to this moment by the deformations 3, J,
or by the principal stresses 7, A. If such is the case, the equation /1 —F

=2uf /M) will not perhaps apply, with a sufficient exactness, to the
elastic bodies as iron which are suceptible to become considerably springy

\2d+2p
undzr the action of more and more considerable permanent loads, or for

# Refer in Journa! de Mathématiques of M. Liouville (t. XVI, 1871) to various memoirs of
Mr. de Saint-Venant oa this subject, especially to that which is extracted from the Compte-rendn
de la séance de 7 mars 1870 de 'Académie des science de Paris (t. LXX, p. 473} and in
which the formula F, -~ F;=2K is put in other forms. Very interesting memoir of Mr. Tresca
on the punching has appeared at t. XX of the Recueil des savants érangers of the same Acade-
my 1872.
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which the form ot the function f, variable between large limits, will not
always be the same at the instant when the plastic state is established.
27, Application to the Equilibrium Modes Previously Considered.

Now return, in view of the inequality (66), to the study of the mass
with the indefinite length and depth and limited at the top by a plane in-
clined to the horizon by w. The expression (60) of 3, put in the second
inequality of (66) raised to squares, is changed to

2 \ St
(69) ros‘(w—zs;>ﬂ,ﬂ2¢.

Two important consequences results from the fundamental relatiomn

(60):

1’ The first member of this inequality being essentially less than
unity, the second a fortiori must be the such, so that #ie mclination o of
the slope to the horizon is always less than, or at most equal to, the angle &
of friction, in absolute value. In fact, the experience has proved long since
that the sand, the earth newly turned up, the heaps of small pebbles, etc.,
can only be sustained at angles less than a certain limiting angle, constant
for the same kind of matter, but variable, for different kinds, from 24" or
26" (small lead shot, mustard seed) to 55" (most compact earth), and often
taken equal to 45 in practice. The natural slopes of rupture as we ohserve
for instance at the foot of steep rocks, along valleys or in mountains, are
about 31° for fine and dry sand, 32° to 33’ for marl, limestone and free
earth thrown to wheelbarrow, 37" for chalky earth, 38> for moist quartzy
sand, 45" for moist gypseous sand.*

2" The inequality (69) being satisfied at all the depths in the in—
terior of the mass, the cosine of the angle w—2¢ cannot decrease in its
absolute value to zero, or its tangent cannot increase indefinitely with Z
Afier the formula (56), we must then have c==o0, or e= constant; in other
words, all the modes of equilibrium for which the constant ¢ is not zero
are irrealisable when the pulverulent medium is sufficiently deep. Conse-
quently, an indefinite mass does not pernit the real modes of cquilibrium differ-
ent from those represented by equations (5;7) and (58), when we suppose the
angular parameter € lo be constant, or when the deformations suffered are
equal at all the points.

Nothing needs to be engrossed with the first inequality of (66). In

* Mémoires sur la pousiée des terres, by Mr. Saint.Guithem, ingenieur en chef des ponts et
chaussées (Annales des ponts et chaussées, t. XV, May and June 1858), note VII,—Also se: the
Mécanique app'iquée of Mr. Coilignon, t. I, p. 478.
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fact, after (56), the expression (50) of p is nothing but

_rgl

T losw— 57 PPN
cosw-—- sinwtg (w=——2¢}

and it will be greater than zero when the positive term cosw of the denom-
inator is in absolute value greater than sivw {g(w—2:). Now the inequal-
ity (69) can be written

siw I .

SIEG ST+ (w—28)

whence we deduce
sintw 1% (w— 2¢)<si*¢ — s’ o,
and a fortiori,
st w— 28) 1~ s =cos’w,
so that the absolute value of sizw fg(w—2¢) is much less than cosw, The
inequality (69), in the study of the equilibrium modes of the indefinite mass;
thus hoids the place, in itself alone, of the two inequalities {66) which we
had to consider.
28.  Lumits between which the Angular Farameter s, measuring
the Inclination to the Vertical of the Non-dilating and Non—
contracting Conches, can be Varied.
Now continue the study of the inequality (6g).
Let = be the angle comprised between zero and §, whose cosine has
the value
Sinw
sine

(70) cosT=

(in absolute value).

As the equilibrium mode corresponding to a certain value of ¢ sub-
sists without the modification when ¢ increases by 3, we can confine our-
selves to consider, whatever @ may be, the values of ¢ comprised in an in-
terval equal to §, and suppose in consequence w-—2¢ to be variable from
—3 to § only. Thus we shall have cos(w—2¢)>>0, and the inequality (69)
becoming

cos( w—2¢) >cost,
will be equivalent to the ensemble of the two:

g -z >(qj r,

123 2
(70" w— 2¢ or €
<_ <w+r
z, P
Given any value of w of the inclination of tiie slope to the horizon,
the equilibrium is then possible: 1° when the inclination e to the vertical of
a non-dilating and non-contracting couch (or consequently of the .rough
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back face of a sustaining wall which will not move such a couch in their
positions of natural state) is exactly equal to §; 2° when this inclination is
less than or greater than 3 by a quantity at most equal to the half of the
angle 7 defined by equation {70), or, in other words, when the direction of
a couch of invariable extent is comprised in the angle r so constructed that
its bisector may be inclined at 7 to the vertical; 3° when the inclination ¢
differs from one of the preceding by only an integral number of right angles
that is, in general, when the direction of the couch under consideration is
comprised in the interior of one of the four angles, equal to 7 and opposite
in pairs at the vertex, which have for respective bisectors the straight line

"

inclined by i to the vertical and its perpendicular.

On the contrary, the equilibrium becomes impossible, with the given
value of the inclination @ of the slope, when the direction of a couch of
invariable extent (or of the rough back face of a sustaining wall which will
not move it in its positions of natural state) falls in the interval left out be-
tween these four angles. Finally the preceding inequalities change to equal-
ities and the elastic limit is precisely attained, when ¢ acquires its cxtreme

wFT
2

values, .

plus an integral number of right angles, which takes place

when the invariable couches are found exactly parallel to a side of thesc
four angles; the state then becomes collapsing and the equilibrium witing.
For w=o0, the angle 7 is a right angle and consequently the four
angles under question comprise all the space around the point O, or do not
permit the existence of any direction ¢ for which the equilibrium may be
impossible. But, as the absolute value of w increases, z decreases more and
more until it vanishes when « attains its two extreme values T @. This de-
crease of 7 is also more rapid than the increase of +w; for the differentia-
tion of (70) gives
—dr cosw cosw I — sin’o
dar singsins Vsz'n2¢—sz'};2w*~/ SInt® — stn’ a.:>I (in absolute value).
Consequently, when w increases from zero to @ or decreases from zero
to—@, the two extreme values of ¢, “ and "’;H, tnitially equal to —% and
3 respectively, vary continuously each in a same sense, the first in augmenting
and the second in diminishing wp to thety common final value whick is the
half of that of @, i. e, 1% The four conjugate angles © which form, by
their symmetrical grouping avound the point o, a kind of Maltese cross whose
arms they occupy, and in the intevior of which is founa’ at c¢ock instant the
admissible divections of the invariable couches, contract all together, for a si-
multaneouns movement of vetveat of their feur sides in such a manner as to leave
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onl betroeen them a greater and greater number of directions whick cease to be
admissible for all the subsequent values of w.*
23.  Limits between which the Inclination w of the Slope nust
be Comprised for a Given Value of e.

The two limits, one n2gative and the other positive, between which
the inclination @ to the horizon of the top slope must be comprised that
the equilibrium may be possible for a given inclination ¢ of the invariable
couchss to the vertical are easily obtained. The inequality (69) is changed
to equality when @ acquires these two values, and extracting the square root
of the two Jmembers, it gives

sinw =t sinpeos(w— 2¢) = L sin@(cosw cos2¢ + sinw sinze),
or, solving with respect to égw,
i71) tgw = i_sz}%yf cos2e __ hcosae
1 Fsing sin2e I

——_TFsinze
sin ¢

To these two values of #gw correspond respectively the required two limit-
ing angles, one comprised between zero and +¢@ aad the other between
zero and —¢@. We observe that they simply change their sigas when ¢ is
changed to —e, and w2 can confine ourselves to calculate them for the
positive values of e. It is also sufficient to make ¢ vary from zero to  or
45", since the same circumstances are produced for all the values of ¢ which
differ from one another by an integral number of right angles.

If we adopt for @ the value § or 45, the expression of fgw becomes

* When the mass is solid, d,, &, have the values (60bis)(p. XXXIX). We see that these
principal dilatations, if they are not negative, will put an end by surpassing every admissible
elastic limit in @ mass sufficient’y deep when we shall take ! or p great enough. We shall have
then »<o; or, by putting

(a ).1:5;:8'7"‘#’
where ¢ denotes an acute angle, we return to the first inequality (66) and the inequality (69),
that is precisely to the twu same conditions as for a pulverulent mass, resumed in the unique
condition (69). Thus, all those which have been said in this § on the subject of the limits be-
tween which » and & are comprised apply to a solid mass ef great depth, except that the equi-
librium will be stable for the extreme values &t of w—2: (observe that we have then &,=0,
5,<C0). In particular, the incination w of the slope must be less than ¢, as Mr. de Saint-Venant
had already recognised. This angle ¢ will be 30° in hard bodies in which it is probable that

the ratio -L;~ does not differ sensibly from umty, and it will be nearly zero for soft bodies, in

. u
which the ratio T is doubtless near to zero.
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+cos2e
gw=—=—
A2 dsmnze

and we can form the following table:

Values of ¢ o, 10°, 207, 30, 40°, 45,
35°160% 41°14/, 4448, 42°22', 2201/, o,
-25"16/, ~28°09/, —-20"26', -12°22', -4°08%/, o.
By differentiating equation (71), we find
dtgw _ *2sing( —sinzetsing)
de (1 Fsingsinze}?

limiting values of @ {

Wien ¢ increases from zero to 3., the negative value of w that is the
lowwer liniit, increases continuously to approack to sevo. As to the upper limit,
or extreme positive value of w, i increases at first up to a maxivum @ whick
it attains for s=% (that is for e=22'% when $=45"), and it decreases after-
wards. The two limits, initially equnl in absolute magnitudes to arc tg(sing)
Gut of opposite signs, vanish in latter case for e==3.

We can, by means of the tangents of these limiting angles which I
will call o, o,

sin@cos2e
1 —sin@sin2e

tow! =~ Singeosze

4
tow = , Lo

calculate the tangent of their difference w'—w”. It reduces to, after some
evident simplifications,

209 cos2e:

cos@

it diminishes continuously when ¢ increases from zero to L. The deviation
o'~ of the two limits is then the greater the less the inclination ¢ or the
less the invariable couches deviate frou: the vertical.

We observe that a rough sustaining wall, inclined by e to the verti-
cal and which will be supposed not to move the contiguous pulverulent
couch in its positions of natural state, could not sustain a mass limited at
the top by a plane slope whose inclination to the horizon will be ecither
greater than the positive limit o’ or less than the negative limit «”. No
doubt the part BB’ (fig. 3) of such as lope which will be very far from the
sustaining wall could receive any declivity less than or even equal, in abso-
lute value, to the angle of friction . But the surface of the slope must
then cease to be plane as we approach near the wall O3/, so as to become
concave toward the vertical for positive @, convex jn the contrary case,

(o' —o")=

* For fine dry sand we shall have only $=31°, and the limiting values which . correspond
to =0 will become 270 15,
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and no more, very near to the wall, to have its inclination © to the horizon

(Fig. 3)

on outside of the two limits o, w”  The formulae above established are

not applicable to such curved slopes, and the rigorous calculation of the
cquilibrivm which will be then produced is perhaps inaccessible; but if the
curveture of the surface were little sensible and if we propose to know the
circumstances produced at sufficiently small distances only from the origin
O, we shall commit merely a negligible error by replacing the true profil
of the slope by its tangent along OA, the tangent whose inclination to the
horizon will be equal to the corresponding limiting value o’ or . In
other words, the case where the angle w is found to be greater than o'
could be approximatly confounded with that is which w=«’, and the case

where @ will be less than o could similarly be not distingnished from the
case w=w".

Basides, this remark will not appear to have practical importance, and
for two reasons. The first consists in this that the rough sustaining wall

which we construct shall not undisturb the contiguous pulverulent particles in
the positions of natural state, or nearly in that which concern to the couches
of earth or of sand not yet compressed during the period itself of formation
of the mass: as we bring new couches on the preceding the latter sufiers a
large number of ruptures, in consequence of which the positions of natural
state of their cles are found entirely changed, as we shall see at
§ VIII. The secoid reason consists in this that the inclination ¢ tothe ver-
tical of the rough sustaining wall, supposed also to be capable to undisturb
the contiguous earth particles in their positions of natural state, has, almost
always in practice, such values that the upper limit «’ is near to its maxi~
mum @, while the negative limit «” is found much below the inclinations
of the slopes which we can employ.

Nevertheless, while we discharge against the back face of a wall the

earth or the sand which it must sustain, the negative values of w less than

«" are often produced. and it appears then that we verify the convex form
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of the slope indicated by the preceding theory.
30.  Limits which contain w for a Given Value of €.

I have above considered cnly a wall with plane and rough back face.
Suppose now this face to be infinitely smooth and inclined to the vertical
by an angle ¢, but always so given as to prevent the contiguous superficial
couch of the mass from leaving its initial plane; we have seen at Art. 23
(p- XLV) that the equilibrium in these conditions does not differ from that
will be produced by a rough wall inclined by e=¢'—%, or by e=¢/+ %, in-
asmuch as a difference of § in these angles causes no change in the mode of
equilibrium. We shall have then, in particular, the two limits «' »” which
contain between them all the admissible values of the inclination of the slope
by extending, by means of an observation which follows the formula (71),
the preceding table to the negative values of ¢ varying from —% to zero
and then adding for ¢ % or 45° to all the values of ¢ registered in the
table. We have thus

for /= o, ', 15, 28,  35%, 45, 55, 6%, 75, 85, 90
limiting {o, 408, 127227, 20°26/, 28%0¢/, 35°16/, 41°14, 44°48’ 42722/, 22’01’ 0,
values of @0,-22'01/,-42 22 ,-44°48' -41'14',-35"1€/ - 28°0¢/ -20"2¢/ - 12"22’,- 408’ 0.

The four angles, equal to 7 and symmetrically disposed in a cross a-
rcund the origin O, which contain, for a given value of w, all the admis-
sible directions of the back face of the wall, remain the same in magnitude
as in the case of a rough wall; but they are turned by half a right angle
so as to be precisely in the middle of the four gaps left between them. If
the angle 7 is greater than half a right angle there will be, in the midst of
each of the four branches of a sort of two crosses, an angular space, equal
to 5—r7, which it bas not in common with the other cross; but there will
be, on each margin of the branch.in question, a band equal to v—% and
common to the two crosses. Along each direction comprised in one of these
eight bands of angular magnitude r—7 and symmetrically disposed with re-
spect to the bisectors of the eight angles formed between the axes of the
two crosses, we can take with the exclusion of the rest of the plane, the
back face of a sustaining wall, whether rough or smooth, capable of main—
taining the equilibrium under the hypothesis to which I have been subjected
with the special relations (37). The necessary and sufficient condition that
these bands may exist consists in that © shall be greater than % or cost <

_X_, that is, after 70), that we shall have
V2 sinm <sz’n¢
vz
in absolute value, or, by supposing =45,
sin 0 < %, w < 30



