§ IV.
THEIR INTEGRATION WHEN THE MASS IS BOUNDED AT THE
TOP BY A PLANE AND INFINITE IN OTHER DIRECTIONS.

17.  First Integration.

Consider at first a mass bounded at the top by a plane and infinite in
other scnses, or, what comes to the same thing, comprised laterally between
two infinitely smooth walls perpendicular to a horizon at the top slope. By
virtue of symmetry, the displacethents will take place in the planes normal
to this horizon and in the same manner in all of them. If, then, we
take one of these vertical planes for that of xy, the preceding formulae
established for the case of plane deformations can be employed.

LetO4 (fig. 1) be a line of greatest inclination of the free surface or of
the top slopé in the initial stateof the mass and OG a vertical drawn down-
ward. I will take for the axis of x the bisector of the angle GOA4 and
for that of y a perpendicularto Oz in such a manner that the angle GOy
may be acute. If we denote by w the initial inclination of the slope on
the horizon (inclination variable at most from — Sto %), the quantity a
which denotes, in the formulae (28), Ast. 14, the angle ‘made by the
vertical with the axis of ¥ will evidently be =%, and we shall have at
-once

(38) GOA= F+ewo, aor GOp=T5—%,

The mass being indefinitely parallel to OA, all the particles of matter
situated at the same distance from the surface are exactly in the same

-conditions. In other words, the quantities Aj, N; 7 and cousequently g, 3.,

3y & at each point are fanctions of only the initial distance / of the point
ainder consideration to the surface. The perpendicular / drawn from any
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point (xy) of the mass to meet with OA makes the angles o and e
with the axes of x and y respectively, and we have
(39) ! =x cosa + ysina,
In consequence, the derivatives in x and y of every function of / will be
obtained from its derivatives in / by the symbolic formulac
{40) ~jx— = cosa —;Z-, %’7 = sina 7:}- ,
and the indefinite equations (28) can be written
S—(-;;— (N, cosa + (T + pgl)sina=o,
(41.)
l__gl_ (T + pglycos . + Ny sina)=o,

The normal to the free surface 04 making the angle o with the axis of z,
the special conditions (35), in which y is to be replaced by a and which
must be satisfied at this surfacz, show that the expressions
N, cosa + (T+pghsina, (T+pglcosa + N, sina
vanish for /=o. These expressions, after, (41), should then vanish every-
where, and v\ve shall have
Nycos a + (T+pgl)sina=o,
(42) {(T+pgl Yeosa+ N, sin a=o,
By adding the two fundamental equations (42) after having multiplied them
respectively by cosz, —sinaz and by sina, cosa, and by substituting in the
results the values
I(1+cos2a), 3(1-cosza), Isin2a, —p,
or, after (38),
(1 +sinw), 1-sinw), jcosw, —p.
for cos'a, sin'a, cosa sina, } (N, +NV,), we find that they come to the two-
following equations

N —N,)—psin w=o,
T+ pgl—peos w=o.

(43)
18.  Second Integration
Replace, in the first equation of (43), &, and A, by their values {27).
in which the two dilatations 3,, J, are equal and of opposite signs. Since
the mean stress p is evidently not zero in the interior of the mass, we
shall have

Sinw
du— 3=,
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4
( 44), ¢/4

). or 7;’= sinw o dv

2y
% and ¢

y 9y oOr -
2m 2m
These equations (44) with the introduction of two arbitriry functlons

Stnw

give by their integrations
sinw
(43) =

2 48] v= T2yt ()
We deduce therefrom
(46) Loy OF {1%_,_{{2_1_

SO N e (),
2t o (#'(2)+¢'(x)2

Now the deformation g, must depend only upon the distance / of the
point under consideration to the free surface as already remarked, and the

symbolic formulae (40) which are consequently applicable to them show that
its two derivatives in x and y must be in the ratio of cosa to sina, so that
(47)

¢"{x)_ ¢"(»)
rosa sina -’

2¢.

Two successive integrations conse
quently give, whith the introduction of four arbitrary constants ¢

S(y) =cyisina+ (+c" Y+,

¢(x) =cxcosa+ ('~ x+

The expressions (45)' of u and v thus become
sinw-

and the two raties (47 ), the first independent of y and the second of z, can
only reduce to a same coustant

' s 1.
W€y Chy €75

(48)

it +cy'sma+ (d+c")y+ 7)),

[ —y+excosat (! —c" )z + ),
and those, (44), (46). (27), of 2,,

Y &ap My Ny, T are in their order
_ Stnw Sinw
dp=—3,= P L= (t"+ ),
(49)
Ny= ~ p{1—sinw),

Ne=—p(1 tsinw), T=p(4 cl)sinw.
As to the mean stress p, it results from the second equation of (43)
in-which we shall replace 7 by its value (49). The solution of this equa~
tion with respect to p gives in consequence

(50)

n

p= A,_»_;ﬂg[v JR—
cosw— (' +cl Ysinws

19.  Transformed Lines of a Family of Pavallel Material S’ing/tt Lines.

Of five arbitrary constants ¢, ¢, ¢, ey, 'y, the first two oﬁly enter

in the expressions of the deformations 3, & encountered by the mass.

The

three others in fact correspond to a small motion only, viz., ¢ to & ‘small ro-
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tation of the mass around the origin 0, and ¢, & to two translations par-
allel to the axes; now this motion remains indeterminate so long as the mass
is supposed to be infinite and consequently its relations with the fixed bodies
which touch it at a more or less distance from the origin of the coordinates
are disregarded.

We can thus suppose ¢” =0, ¢/;=0, ¢"’;=0 when we have only to study
the form taken by any material line whose equation was f{x,y) =0 before the
displacement. 1f #/, 3 deriote, in the new state of equilibrium, the coordi-
nates of the material point which was initially at (#,7}, we shall have. after’

(48),
r=x"~ u=x’-———"—l—rfﬁ’(x’+ ¢ysina+c'y’) nearly,
(51)

y=y—v=y — :;:;u —y + cx'cosa+ c'x') nearly,

and the transformed curve of f(x, y)=o will be

(s52) f{~— sinw x’+cy’2:ma+ Yy, ¥ — Jm{"( ~y' + cx'*cosa+ '+ ) )=0.

Every family of parallel straight lines

(33) xcosA+ ysinA=k,
where A4 denotes the constant inclination of their normals to the axis of x,
and 4, the parameter variable from one straight line to the other; their distance
to the origin, transforms into a family of conics having for equation

(o Sinw A dsino . 4+ sinw ., dsine
(54) #'((1 o A S sinAJ4-y'C (14 o YsinA o= cosA)

¢ sthaw
——a

o y%sina cosA+ x'*cosasinA) =k,

or rather

2m
( 1— YeosA—c¢ .cmA
Stnw

2¢ cosa sinA

(55) cosa sinA[x’ -

( + I)smA deasA
Stnw ]

2¢ sina cosA

[( 2m —-x)cosA c’:zmﬂ "(—-—4' I)Ji”A_"‘”SA]! 20tk

Sinw
4ccosa stnd 4 sina cosA ¢ Sinw

These conics are similar, concentric and have their axes parallel to
‘thase of x and y, that is to the two bisectors of the four angles formed by
a vertical and the- profile of the top slope. They are reduced to circles when

+ stna cosA f y—
~
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tne proposed straight lines are parallel to the free surface of the mass or
when A=a, and to parallel straight lines, after (54), in the case - where the
constant ¢ is zero.

The latter result would be directly deduced from the values(49) of 3., — 3,
&« Which become constant when ¢=0: the material plane elements initially
‘rectangular, cut up in the plane of xy by a double infinity of equidistant
straight lines parallel to the coordinate axes, are there changed, by the de-
formations produced, to equal parallelograms, and the trains of points thus
formed which were initially situated along two parallel straight lines do not
discontinue to -be disposed ia two rectilinear rows both having the same
orientation.

20. Elastic Forces Parallel to the Flane of Deformations;
Corvelative Dilatations and Shears. .

To find the two comgonents, normal —R and tangential T, of the
stress (elastic force with its sign changed) exercised on the plane element
parallel to the axis of z, which makes a certain angle .¢ with the vertical
or whosenormal makes the same angle ¢, with the horizon, the angle w—¢,
with the top slope OA and finally the angle —(3-—~3+4¢) with positive
it will be sufficient to put in the formulae {30) the values (49), (50) of
N, N, T, p and then to make B=—(3—5+¢&) or 2f=—F + (& — 2¢, .
Thus we find

~R=p{1+sinw (' +cf )cos(w—2¢) —sin(w—25) )1,
T=p sinw (' +cl Ysin( w—2¢,) + cos(w—2¢,) ).
tPu
(56) 4 el=tg(w—2z),

& denoting an auxiliary angle GOM, which becomes sensibly constant for very
large {, whatever ¢ may be: we choose its value in general such that the dif
ference w—2¢ may be comprised between —% and +3, although it can have
yet this value incrcased or diminished by any multiple of I. The above
expressions of —9t, T and that (50) of the mean stress p then become:

= pgleos! @~ 2¢)
cos2{w—¢e) ’
) JY - new sin2(e,—
(57) RN= cosz(ru——e)EwS(w 2¢) + sinw sin2(e,—e)),
T=__ g —e).!
< cosz(w_c)smwcosz(sl €).

It is easy thereby to deduce: 1° the value ,, of the small dilatation
suffered by a material line initially normal to the plane element or inclined
above the horizon by the angle ¢; 2° the small cosine g,,,. of the angle
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made by this material line, after the displacements, with that which was
normal to it.and whose inclination to the vertical (directed downward)  was
equal to ¢. In fact, these values are deduced from the gen:ral ‘expressions
of the elastic forces parallel to the plane of deformations

~R=p(1—2mdy), T=pmguy,

when 'we substitute for —R, T, their lexpressions (57). It  will then
) V4 P 7
become
(58) 3y = — St sin2{e,—¢) o= sinw cos2(5,~——e)

2m cos(w—2¢) ' mcos{w—ze)

The formulae (56), (57), (58) will be of a great use to us. [ shall
now be content with deducing from the last two Some consequences almost
evident.

The dilatation 3,, is zero when ¢ =¢, i.e., for the rectilinear material
element whic¢h is inclined above the horizon by the angle ¢ defined by
equation (56),and it is also zero for the rectilinear element, initially perpen-
dicular to the former, which makes the same angle e with the vertical or
the angle e—3% with the horizon, the angle which can equally be taken for
value of e satisfying equation (56) without that the equilibrium mode is
thereby ‘in_any way modified. These two linear elements and their opposite
are, at each point, the only one which do not suffer any variation of magni-
tude; one of them rotates with respect to the other so as to reduce their

. Sl)lU'
angle by the small quantity g, = wm
maximum absolute value in these two straight lines.

It is along the bisectors of the four angles formed by the directions
thus. defined that the two principal linear dilatations 3,, 35 are produced.. I
will derote by ¢ the inclination above the horizon of any one of these in—
termediate directions, so that

(59) ¢=etg,
denoting by ¢, as is seen to be permissible, the inclination above the horizon
of one of the rectilinear clements neither contracted nor elongated and making
an angle of 45° with the principal dilatation under consideration. These
principal dilatatious, one of which 3, is positive and the other I negatne
have the values, after the first formula of (58),

Jln — sin
(60) P N LB WS S L

“2mecos(w—2e) 2mcos(w—25)
The rectilinear ‘material elements which suffer these dilatations rem in

always rectangular, since the second formula of "(:8) gives g, =0 when we:
make thesein &=¢ =¢F%.

-, which just acquires its
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We shall see later on that the only modes of equilibrium which are
uscful for our considerations are those for which the arbitrary constant ¢ is
zero, wmaking ithereby, afier (56), the value of fg(w—2¢) and that of e
constant. Thus a double system of respectively equidistant material lines, one
anitially inclined to the vertical and the other to the hovizon by the angle € and
r?z'wkz’ing a normal section of the mass in equal squares, are yet rectilinear,
parallel and have the same lengths after the deformations: although they are
Sinw

T, and  the squares
m cos(w —2¢)

rotated from cack other by the small angle

comprised by thent are thus transformed into equal lozanges. Consequently,
the definttive form of the mass is simply obtained if wwe concetve it to be divided
mto infinitcly thin couches in  the initial state all inclined by the acute
angle < 1o the vertical, and then we make them slide in their respective planes,
sucl that, one of them remaining fized, every other situated at a distance D in

. . . D sinew .
vout of the first couch displaces (downward) by the quantity —— 22320 %
/ of the /2 places ) &y 7 Y cos(w —2¢)

* For a mass solid and not pulverulent, the formulae (38) to (43) always give

Ca9bie) N, =—p(1~sinw), N,=—-p{1+sinw), T=p cosn—opgl,
and, p depending on ¢ only, the relation (28%r) (p. XXVII}, reduced to
Mz dlp
Atu  dliz

shows that p is a linear fun:tion of . The formalae (57) do not discontinue 10 be applicable, if
we continues to take
6bis tgCw—2e) = _ X Coosw— el .

<5 ) _q(w ) num( @ r )
t thus becoming yet sensibly constast at sifficient’y greit depths I. We easily tind by means of the
formulae (24) (where A=0} and (37) that the two principal dilatations 4,, 65 have then the
values:
_sinw
s(w—ze) 4
Observe that, after the relation (568 which is also restored to the first equation of (57> the

G6obie) b= ,1?,[ By

2 K )+p " co

angle w—2: varies continuously in the same sense when the ratio ,,PT increases continuously
9!

from —oo to oo ;this angle ¢ thus changes from —g—m to g—-m if «©is positive and from g——w to

—_g—-m if v is negative, its absolute value being greater than, equa! to or less than gaccording

as the ratio J;—, is negative, zero or positive.
09’
i



§ V.

STUDY OF THE SAME MASS WHEN WE SUPPOSE IT
NO MORE TO BE INFINITE BUT RETAINED AT ONE SIDE
BY A PLANE WALL WHICH INTERSECTS ITS TOP SLOPE

ALONG A HORIZON.

21, The Formulae Obtained For an Infinite Mass are
Somtimes Applicable to the Limited Masses.

Of all the mode of equilibrium represented by the formulae (48),
(49), (50) the most interesting one are those in which they are satisfied for’
the whole length of a line situated 'in the plane of xy, the conditions at a
wall being, for instance, the first two or the last two of the relations (37);
for the equilibrium will not discontinue to exist if the profile assumed by this
line of the material couch becomes the back face of a sustaining wall, and
we shall have the solution of the problem of the equilibrium of a mass
which, instead of being infinite, would be limited and sustained on one side-
by such a wall.

It is evident that the formulae (48), (49), (50), taken in all’ their
generality, will hold true for whatever profile of a rough wall if the particles
adjacent to this wall remain there immovable in such positions that their
displacements #, v might have precisely the values (48); but I will confine
myself in this paragraph to the study of the modes for which the “simple
conditions will be satisfied at all the points of a same line.

Whatever may be the direction of a wall at the back plane face, in-
tersecting the top slope along a horizon which we may suppose to be chosen
for the axis of %, it is easy to determine the arbitrary constants: ¢, d,
¢", ¢, ¢/ in such a manner that the first or the second line of the relations-
(37) may be satisfied on the whole extent of this face.

22. Case of a Mass Limited by a Wall With =
Plane and Rough Back Face.

Suppose, in the first place, that the face in questiomis rough and di-
rected along OM (fig. 1, p. XXXIII), so as to maintain only the part AOM
of the mass. The earth couch adjacent to OM will remain immovable while
all the other parts of the mass displace. Now, after what has been said’
below the formulae (58), the only material couches in the infinite mass.
which suffer neither dilatation nor contraction are those whose inclination to
the vertical is at each point equal to one of the values of e given by equa--
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ition (56): one of these couches having to coincide with O3, we shall have
‘a uzique mode of equilibrium which may be admissible in taking, after the
same cquation (36),

{ar) e=GOM; c=o, =17 (w—2¢t).

Thus the earth couch initially adjacent to OAf does not suffer any
deformation, and every other couch parallel to it ‘and situated at a distance
D from the back face OM of the wall, simple slides in its plane in moving
in the sense from O to M by the quantity *D%

m cos(w—2¢)
point O not displacing, we must have #=0, v=0 for x=0, y=0 and conse-
quently ¢/=0, ¢/ =o. Lastly the constant ¢’ is determined in such a
manner that the displacement #, for instance, vanishes all along the straight
line OM which makes the angle a+e with the axis of y and whose equation
is' consequently r—y fg(a+¢)=0: we thus find that ¢'+c¢”"=—tg(ate¢),
or

The material

= tglat €) 4 ¢ =tglake) +iglo—26)=1g(§ - +e) +tg(—2¢)
1

cos(w—-2¢)
We observe that, of all the modes of equilibrium of an infinite mass,
there is one and only onme for which a plane couch OM of the pulverulent mat-
‘ter ‘vemains immovable while the deformations go on: it is one jfor which the
various constants ¢, c, ¢, ¢, ¢ have the values whick we have Just  detér—
mined; . particular, the constant c is theve zero, and the angular parameter
e thus invariable and characteristic of the mode of equilibrium is equal to the
inclination of the tmmovable couch to the vertical: The scttling produced by the
weight of the mass takes place pavallel to this couck (or to the back face of
the wall ), and for eack particle of matter it is equal to the product of its dis-

dance D to the wall by the constant factor .S
- m cos(w— 2s)

To find how much the settling caused by the  weight of the mass
-diminishes the inclination of the top slope to the horizon initially equal to
o,

-The perpendicular D dropped from the origin on every plane parallel
‘to~ the immovable couch makes the angle ¢ with the ‘horizon and conse-
-quently the angle w—e with the initial direction of the top slope and below
the latter; whence it results that the -initial distance, meéasured pai‘allel to
‘the wall; of the foot of this perpendicular to the top ‘slope is equal to
Deg{m'—e). Asitdécreases, in virtue of the settling, by the value of ‘the total
-displacement, the inclination of the top slope ‘to the perpendicular D), initial-
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ly equal to w —e, decreases simultaneously by a small angle &, such that’
the difference

- - - éD
Dl tg{w—¢)—tg(w—e—§)), or sensibly o o—e)
is exactly egual to the expression DY of the total displacement.

m cos(w— 2¢)

The scttling then results in diminishing the inclination @ of the top slope

above the. horizon by the quantity.

(62) £ Sinw cos’(—e) _ sinw

mcos(w—23)  2mcos(w—2¢
We shall have the occasion in the following Article to know by
what angle & the settling causes to turn about the origin O a material line
taken in the mass starting from this origin and initially inclined to the plane
OM of the immovable couch by half a right angle. The perpendicular D
droppzd from a point in this straight line to OM is evidently distant from
the origin O by the quantity Dtg% before, and by Dig(T+¢') after, the dis-

<4

placements.  The increase, nearly equal to D;R or to 2D%, which this
cos”%

): 1+cos2(w—¢) )

distance receives, represents exractly the displacement Y D of the
m cos(w— 2€)
point under consideration, We have then
e A Stnw
(62") T T 2meos(w—2¢) »

Observe that the angle made by the top slope 04 with the material
line now under question which was initially inclined to OM by one-fourth
of a right angle decreases by the quantity

(62¢7) f_g Sinw “’5'2<‘_":i),_
27m cos(w— 2¢)
23.  Case of a Mass Limited by a Wall with
a Plane and Smooth Back Face.

Suppose, in the second place, that the back plane face OM’ of the
wall (fig. 2) is smooth. Then the infinitely thin earth couch OM’ can
sustain the normal pressures only, which amounts to the fact that it con-
tains at each of its points the direction of one of the two principal dilatations
2, % Now we have denoted by ¢, at Art, 20, the inclination of any one
of these dilatations to the horizon or that of the other to the vertical.
Hence we may take

(63) ¢=GOM',
and e=¢ -7 after the formula (59) in which the last term may be chosen
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negative or positive as we wish. Thus ¢ must be the same at all- the points
of OM’, i. e., at all the distances / from OA as in the preceding Art., so
that equation (56) must be put

c=0, c=itg(w—2¢e)=—cotg(w—2¢).

Besides these, the couch OM' can slide in its plane but not to leave
it. I shall consider only the motion which the particle O situated at the
coordinate origin can suffer along OM’, or, what comes to the same thing,
I will suppose the axes Ox, Oy to be endowed with such a translation that
the origin O always coincides with this particle. We shall have then #=o0,.
v=0 for’x=0, y=0, and whence to take ¢'=0, ¢”=0 in the formulae
(48). It remains then, to satisfy completely the second line of the relations
(37), to express that the points of the couch OM' displaces along its proper
direction OM” inclined by a+¢ to the positive y, i.e., to determine ¢ such

that we may have =% =yg(ate )=4 T _e—2¢ at all these points
y P
vy 4 2

Now the values (48) of # and 7, in which we have already” c=0, ¢ =o0,.
" =0, ¢'=—cotg (w—2¢'), change this last condition to

X 4 —2g .
Z4 (I tof 2 — O 28N ot w—2¢' )+
Za(ere)  g(fm ) —collo-2d)

% o ’g(ﬂ - (0—25’)_

adl o L = = .

v 4 2 —1+Z(d=e") —1 —tg(l—-ﬂl)fcot(w—ze)-i- dn
¥ 4 2

cos(m—2¢'}) % _ m—zé’)
which, simplified by the substitution of m or tg\4 )

and solved with respect to ¢/, finally gives
d'=o,

Among all the possible modes of equilibrium of an infinite nass, there

is then one and only one for whick a given plane couck of the pulverulent.

A,

(Fig. 2.)



—XLV—

matter can support the tangential sivess and the displacements in its plane
only: we obtain it by supposing the constant ¢ to be zero and then by taking
2he angular parameter €, which remains to be solely characteristic af the equi-
Librium mode, to be equal to the inclination of this couck to the vertical decreas-
ed by 45° or % This mode of equilibrium will exist if its every part situated
at one side of the couck OM under consideration was rcplaced by an infinitely
smooth sustaining wall, while the mass, becoming heavy aftey having been at
first in the natural state, suffers the deformations as investigated.

We have a clear idea of the settling produced in the actual case of
a smooth wall having OM7 for its back face, by conceiving, instead of a
smooth wall, a rough one O inclined thereto by 45° or making the angle
yOM,=a+¢ —% with Oy, and by considering the settling then produced
parallel to OM, This settling, at a distance D from OM,, will be equal to

(64) sinw sinw

meos(w—23) msin(w—2¢)
To bring the mass AOM' to its definite state, it will be sufficient in
consequence to turn it simply around the origin O in the sense from Oy
itowards Ox by the small quantity

64 r o SW__ Sne
(64") ¢ 2m cos(w—2¢) 2m sin{w—2¢’)’

in order to annul the equal and contrary rotation suffered in this fictitive
settling, after (62"), by a material line initially couched against the real
wall OM’ and which really does not receive any rotation around O.

The inclination of the slope or of the surfice OA to the wall OM'
decreases in total by virtue of the settling and to conform to the formula
(62%) by the small angle

(64%7) gt S cos2(w~e) _ sinw sin2(w—¢e')
2m cos(w—2¢) 2m sin(w—2¢")
24. The Egquilibrium Modes of the Infinite Mass Cannot be
Satisfied by the Conditions (37) in Other Cases.

The formulae (48), (49), (50) do not satisfy the first or the last
two of the relations (37) along a line situated in the plane of xy, in any
.other case tham those we have examined, i. e., in any case when the line
under question will be curved.

This we easily recogaize at first for the first two conditions (37). In
fact, if we put #=0, v=0 in the formulae (48), the first becomes the
equation of a parabola of the second degree whose axis is parallel to that
of z, while the second becomes the equation of ‘a parabola of the second
degree having its axis parallel to that of . These parabolas can evidently
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not coincide for a finite length unless they reduce to the straight lines or
¢=0, which brings us back to the case investigated at Art, 22.
Now to find how to satisfy the last two relations (37) at all the
points of a same curved line. '
If we put the values (49) of 3,, —93,, d, in the formulae (33) of
sin2f,, cos2f,, we find

sin2fy=

el 1
e Ll e OS2y = e
+"/(L'+L'/)+I Ao FY(d+ed Yt
where the radical must be taken with the same sign on either side. The
first of the last relations. (37) then gives

th= —lr
v
and consequently
co.r2r=-7/z—u2 . sinzy=_7 2%V
Ve u s

‘The last equation of (37) which is nothing but
cos2fosin2y — sin2fcos2y =0,
then becomes
(65% ) (V' =)+ el )+ 20v =0,
It is sufficient to replace #, v, / herein by their values (48) and (39)
fo have the finite, integral and rational equation of the required line. ‘
Again, r denoting the angle made by the normal to this line with

its angular coefficient .:;Z, is at each point equal to — L oorto Z, and we
x 4

u
have
udy — vdx =0,
this differential equation, after the values (48) of # and v, can be immediate-
ly integrated. 1If we denote by 7 the arbitrary constant introduced by
the integratien, it becomes
(65) 3( Ssina—xcosa) + xy+5( V' —2") + G (S +2") +e/y—c 2+ =o0.
That the line' (65%7) which is of the third degree, may have a curved
arc in common with the line of the fifth degree represented by (65%*), it is
necessary that the first members of these equations admit asa common fac:
tor a function of the two variables x, y and of at least of the second degree.
In particular, the terms of the highest order which are, with the exception
of the finite and constant coefficients,
c(a*cosa—yp sina)
for (65*"), and, observing the values (48) and (39) of , v, £
) &} xcosa - ysina)( x'costa—y sina)
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for (63"™), must have a common factor of this degree, unless they are i-
dentically zero. As they do not admit a such, it is necessary that these terms
vanish or that we have ¢=o0. But then, after the formulae (56) and (59),
the angles ¢ which measure the inclination of the principal dilatations to the
vartical are constant at all the points of the medium, and the surf'accs,’which
suffer the normal stresses only or in which the last relation. of (37) is satis--
fied on all its extent, are reduced to planes.





