Notes on Tchebycheff's and Simpson’s Rules.
S. Yokota.

L. Extension of Tthebycheff's rule to the calculation of the moment and
the moment of inertia of a plane figure about an axis.

1. The advantages of using Tchebycheff’s rule for quadrature and
cubature are very well known among us. So I have tried to extend this
rule to the calculaticn of the moment and moment of inertia, and have
obtained the following rules.
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Let ABCED (Fig. 1) be an area. Take Oy drawn at the middle of
the length perpendicular to the base AB for y axis, and OB for x axis. As-
sume the curve DEC to be a part of

Y=yt i + Gx - @A e ko AT aat

Then the moment (M) of the area about y axis

14
= f yadz,
hy)

where / is the half length of the base AB.
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i} Consider the case when 7 is an odd integer
Let
M=5{}’1 +9,+ ........+yn__2~1_ (PorF Yot e +y_,,2;1)§,

where p, pyyereereeresy Y1, Y1y Y_gymeerers ,¥ n-1 are the lengths of ordinates
2 2
corresponding to &y, Apseveeer,An1y Xy, Hog,rreere % n-1respectively, and ¢ is a
2 -2
constant.

Or,
(2) M=25{“1("—’1+f’v’z+" ...... +xg;3)+a3(x13+x23+--"~-~+x3n_—1)+--~- ........

....... aeve +ﬂ"(2-ln+xzn+ cesisae o4 x",,___l) }
2

Equating the coefficients of a;, ayeee,a, in (1) and (2), we have the
following ! equations:

3
c(xl+x2+ ....... .+x,_.:1)=_%,
2
E 5
[kr'l‘_{,.xg_*_ ........ ..|.x,‘_1)_*v
(3)wnemee wee e sesassasnin R S
[nt2
e (x + 20+ ....+x",1:_1)=”+ 5

Therefore, all the *t' unknown quantities can be determined.

Thus, when #=3,

c=04308 1,=07754
when =35,

c=0239 /% x,=01500/

2,=0892
or ¢=032470, x=0180/
2,=0'849 /.

When #=7, we have six sets of values for. ¢, #,, #, and .
(To find these values, I have proceeded in the following manner.
The simultaneous equations to be solved in this case are:
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Xy Ay + 2= '
3¢

3

A+ 45+ xﬁ:iu,
5¢

7
xf+r;+x§=L,
7c¢

1')
At Arr=——
gc
Put c=al? -'?zx, i;‘?zy, ~?3’=z.
Then the above equations become
x+y +z :3%'
1
‘ 13+)/‘+33=;{,
(@) wweeerisinsesnincens o
r+y+z _ﬁ'
Tpyigs=_1
'+ +s o0
From the first three equations we have
P ¢ 1 1 I
b Y= [ag?— e
(4) ! 3au (a 3aa+ 27a’ 5)
5 sy 5 2 7
@) () (e

where a=y+2z J=yz
Also from the first and the last equations of (a'),

5,8 8 27 ¢ 32 2 24 54 4

4 e’ = + 154% L — "4 +=1a
) (27 =) (Slxs 30 s )
+ aa(47 A9 e T 4+3a>

7 \729 27 X5 25
(_—— 2 + 24t +Qa“)=o,

27%5 35 35

by virtue of the relation (¢).

Therefore we have to find @ and a from equations {¢)and ( &)+ These
are cubic equations in @, so we can find the general expression for « in
terms of 4, but as the expression is tolerably complex in this case, I had
rather resource to graphic solution, and have obtained the following curves
for {¢) and (&), (Fig. 2).
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Fortunately enough, the solutions are all real and the first approxima-

tion to these solutions are:

(i') (Z=O‘47,

(it.) a=048,

(iii.) ae=o053,

(iv.) [l=0'66,

(v.) a=o06y,

(vi.) a=zo0,

Consequently we have,
when 7=y,

(i.) e=o047 2=

(il.) c=0'487, =

(iii.) c=0'530% =

(iv.) e=0660 =

(v.) e=0672 x=

(vi.) c=200% x=

—038/,
052/,
0’51/,
029/,
0374,
o'14/,

@=0'22;
a=1'32;
a=0'12;
a=—026;
a=0'13;
¢=0'03.

Xg= 049/
Z,= - 0'62/,
Xy =—070/,
Zy=—0'55/,
Xy=—0'73/
Xy =— 1'02/,

3= 060/,
2,=080/;
2, =088/
x> 0774
x3=0"87;
Xy =1'05/.

This result is only a first approximation and the last figures may per-

haps not be correct.

I am now calculating these values for the second approximation and
believe in a short time will be able to give more precise values for these

quantities. )
ii) Consider the case when » is an even integer.
Let ‘
M=£{J’1+J’2+ ........ +J’%'—‘(,’V—1+J’42+ ........ +y_£)}y
as before. A
(4) M=2€{tll(x1+xz+"" ...+xg)+as(r}+x’2‘+ ........ +1’:§—))+ ............
............ .,_an_l(x;»—l F+ A s +,1;:*1)}
Comparing (1) and (4), we get the following # equations
I E7E T T i.;;):.é_
c(x‘;’-*-x;.*. ............ +x-:‘l):L,
2z 3
e
- b
(A + P )—_= l"“
2 E n41
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Therefore we can give to one of the unknown quantities an arbitrary
value whatever we please.
Put c=1/%
Thus, when =2,
c={% x= 0333/
when 7n=4,
' c=1% x=-0270/

x,= (603
when =26,
c={% ;= 0183/
x,=— 0584/,
K= 0732/

2. As an example, take the arca ABCDE (Fig. 3), and lct us com-
pare the results obtained by the above rules with that by Simpson's first
rule with eleven ordinates. The usc of Simpson’s second rule for finding
the moment is not so exactly cdrrect as we suppose, except in certain spe-
cial cascs, but the first rule is always correct on the assumption that the
curve is made up of portions of parabolas with vertical transverse axes, as
I will show in the next chapter.

The moment calculated by the usual formula

2
M= _};:_gyl X (_ 5) + 45, % __4> [ R 4P RO 2P X 1 A eeeresiners
. o
4 P X4+ Y X5 I€
where gy, pyieeee #n ave the lengths of equidistant ordinates and /4 the hori-

zontal interval, is 1898 inch units.
The moments calculated by the above rules are:

when n=2, M==24'5 inch units;
” n=3, ?=1881 7 ’
” n=a4, 7=1800 " Ty
N n=s, "=18g94 T
or 1887 7 "
Y 7n=0, "=1800 ” ”

Hence we see for this particular arca, remembering that the last one or
even two figures in the results may not be correct owing to the error of ap-
preciation and of reading, that the results are practically the same with that
by Simpson’s rule with eleven ordinates when # is an odd integer. This
may be easily judged to be so0 as the form of the curve in this special ex-
ample resembles very much a portion of a cubic parabola with vertical trans-
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verse axis.

More extended examples arc necessary to test the relative accuracies of
the above rules.

These rules for calculating M is especially convenient when finding the
moment of the volumes of displacement for successive water lines about the
midship section.

For example, when z=3, if 1, 2, - 1, —2 of Fig. 4, be the correspond-

ing sections of a ship at x;, 4, #_;, and 2., respectively, we have only to
trace successively the pe-
ripheries of the arcas by
-7 -2 /2' 7 the pointer of a planimeter
/ as indicated by arrows;
— —> — / — namely, those of the fore
l // body in one direction and
\ J/ the aft body in opposite

/ direction.

i)
/

\ The difference of the

i initial and final readings

\ u multiplied by a constant

Fig. 4. 2 factor gives at once the
/ moment required corre—

sponding to water line (a).

Similarly, the difference of the initial and final readings corresponding to
any other water line multiplied by the same constant factor gives the moment
corresponding to that water line.

o .

When some of &, ay,weee e-eiave negative, it is better to write all the
positive sections on one side of the centre line and the negative sections on
the other to avoid a chance for mistake.

3. The moment of inertia () of the area about y axis (Fig. 1) is
given by

13
3=fyxza'x
-
3
:f (B4 @i oveere F 2,
-1
(6) S:Z[a(hln-l+f_’”_f’/n—3+. ...... +L['+¢_l4>)_ % odd:
742 n 3 3
2
=2/ “(_(’A_l"—,L Bpt yn-2 g oo AN gq)‘ 2 even.
7+ 3 w1 B 3
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i) When 7 is an odd integer,

let
(7) 3= €§y0+(yl+y-x)+(yz+y_g)+ ~~~~~~~~ +(J’";2;l+J’._"2;1)}
=2;§gao+az(1f+x;+ ........ F Lot} A rrreeneneens
. 2
........ F Ay (7 2 A crevsee o+ AT] }

Comparing the coefficients of @, @, W2n_y in (6) and (7), we have

c =i!3,

3n
A2 22 e +,1¢2,,;1=_3_n.1_-,
T 2X5§

When n=3,

c=3/%, 2, =0 049/
When #=5 or 7, the solutions are unreal.
il) When 7 is an even integer,

let
{9) J= c{(_j/l-l-y__l)-k(yz-*—}/dz)-f- ........
=2c{,’z‘a0+az(x;’+:¢§+ -------- +x";)+
........ +a, 2(x1"~2+x""2+
+a, (27 a3+ £
Comparing the coefficients in (6) and (g), we get
¢ =—2~l",
37 R
PP FUNS . L2
3 2X§5
$ 4 e . 37
(IO) ...................... st ap+ +x%_2x77
e rre £ eresases \
P P TR + =*,‘3,’.d
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When =2,
e=3% x==0775

when n=4,
c=1/3 2,=0'581/,
2,=0'928/;

when »n=06,
c=3/°%, 2, 7=0'500/,
2,=0'81%/,
X3=0'9414

I think this method is generally more convenient and more accurate
than Simpson’s rules, and will show this fact with actual examples after I
have calculated the values of ¢, z;, Tyreneenes for #>7.

4. The moment of inertia I of the area about x axis (Fig. 1) is given
by

i
I= f 3 y'dx
-1
! p
=%f {afn JL'% + Safn an—lx’m_l + 3an(anﬂn—2+ a?z - 1)1’5”—_2 + """"""
~1

------------ + 3ay (@, + @t ) P2+ 3aiax 4 o dx.

(11) 1=§1{_3_"3-.3‘2113n—1+ ........ +3_"o(ﬂ“23i‘ﬂ/f +¢3}, n odd;

=§1{ B pougyen . S0 @@ F )

+a?,1, 7 even.
3+ 1 3 §

i} Consider the case when z is an odd integer.
Let

(12)  Tmed st (st (hsta) ot (s 420
2 2

=25}§2ﬂ(z&"‘+ Sao((zoa?.f-a"l’)(xf.}-xf;.}. ........ +x§n_>_l)+ ........
H

An—1

........ +3@ @, (AT AT +x3,;__,) }

Comparing the coefficients of (11) and (12), we have
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Sy omet g s _ 37 ot
R o +x3,,%1—2)<3n-
When n=3, (13) becomes
o2
¢ =
27
2
sk 2 A+ 2=
4
(13’) [T [TTTTTORTIRION s x:+x;+x§+x§=_9£<,
6
xf+xz+x§+x§=%,
8
At A=
v

The solution of (13"} is unreal.
ii) Consider the case when » is an even integer.

Let

(14) I=c{ (42 + (S +52,) + e+ (y%+7i?g ) }
:2[{3775 as+ 3ay( @y + ai ) (27 + 24 e £ 23,) e
2
-------- +4aj (x;"+xgn+........+xg;)}.
2

Comparing (11) and {14),
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Thus, when #=2, we have

e=h,  m=o0272,
Xp=0419/,
2,=0"866/.

The number of absciss® to be measured increases rapidly with 7, but
the accuracy of the result is surely very much superior to that by Simpson’s
rule, as the latter will sometimes give rise to results very different from true
values for I, as we will see in the next chapter.

I hope 1 can give in a near future the complete results of calculations
corresponding to higher values of # useful for several rules explaincd in this

paper

1L Analysis of Simpson's vules for the moment and moment of inertia
of a plane figure about an axis.

A
D//Er‘

Fig. 5.

5. Take ABCED (Fig. 5) to be a plane area we have to consider.
Take the y axis at a distance s from the end ordinate y,, and assume the
curve DEC to be a part of

y=al+bzx+ec.
The moment about y‘axis is given by
(0 W= [ up=[ 2y 08, T
A 4 3z U
But
H=ass+bs+c,
wm=as+hr)}+o(s+h)+e,
ps=a(s+2h) +b(s+ 24 +c.
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Multiplying to both members of these equations s, 4(s+4%), s+2% re—
spectively and substituting the results in (1), we have finally
(2) M=g{sm+4(s+r)p+ (s+22)pm},
the usudl formula for the moment.

Therefore this formula is right in all cases on the assumption that the
curve DEC is a part of y=aa®+bx+c.

6. Nextly, take Fig. 6,and assume the curve DEC to be a part of

# e
2 /’_" (\{\ [\_~/

% % % %
é—-———ﬁ—-———;%————%—“——?%——— i—"—-b

0 4 A X
Fig. 6.

PR N

y=ar’*+ b1t + cx 1.
The moment about y axis at a distance s from y, is given by
s43n 3 2 Ns+3k
A 5 4 3 2
Put s=mh.

(3) M=# g (m+3 — )+ 7 (m+3 — )it

+ é-(m+ 3A —m“}/z+§(m—+32—- ') }

But
= (Zﬂl/t +bm}z -I-cm/z+f
Py= zzm+l/z3+ém+llz ‘em+1ht+f,
V= am+2/z +bm+2lz ‘em+2h+f,

=am+3 Y m+3 /z +em+y3ht/)
Multiply to both members of these equations the undetermined multipliers.
4, p, v and ¢ respectively and add them together member by member.
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(4) A+ pint vyt S=a (P + m+ 13,u +mE zsy-i- m+ 335)/?"’
+&(mtA+m+ 12,u+m+ 22u+m+32‘-“)/z2
Fe(mitmt1ip+mtzvim+38)k
+(A+ptr+§).

Comparing the coefficients of @, &, ¢ and f in (3) and (4), we have

§(m+3—ms)_mu+m+1/1+m+zv+m+35
i(m+3—m)— ’1+m+1p+m+2v+m+3é
3;(m+3,—m, miAtm+1ptm+2vtmt3é,
‘}(m+3— m)=+pt+v+&.

3 3 3
%(m+3 —ms) m+1  m+2 m+3
—_—2 2 2
1(m+3 —my m+1  m+2 m+3
& %(m+3 —m?) mH41 m+2 m+3
— e
Y(m+ 3 — ) I I I
A= 2
4
5 3 3
w Y(m+3 —wf) m+2 w43
4 2 2
m® Yom+3—m) mtz m4+3
3 -— —_—
m  Mm+3 -—m*) mtz2 m+3
2
1 Yom+3 —wt) 1 I
©r= 1
4
3 5 _ 3 ;
w® mE1 ;‘;(m+34—m5) m+3 i
m? m41 Ym+3-mt) m+3
.3
m m+1 J(m+3 -’} m+3
e .
I 1 Yom+3 —mt) I !
Y= -,
)
3 3 5 |
wm® m+1 mtz Em+3—w)
2 2 4
w® m+1 m+2 Y(mt3—mt)
3
m m+1 m+2 Ym+3—wd)
2
1 1 I L(m+ 3 —w®)
E:
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where
3 3 3
w m+1 m4+2  m+3
2 2 2
= w' m+1  m+2 m+3
mo om+1 “mt2  mt+3
1 1 1 I
Or
1= 3(sm+2)
40
p= 957+3)
4
(5) ...................... - 9(51ﬂ+121
= 97,
£ = 3(sm+13)
40

(6) M=i—f§ (sm+2)+3(5m+ 3)p2+3 sm+ 129+ (5m+ Is)y.}.

The usual formula for the moment is

2
() W= oy 3t Vgt 3Ot 2 (4 320

Let us’ see the difference between these two formulee (6) and (7).
2
(8) M-—M’=3—ﬁ$‘ 29— 62+ €y5 - 2}/4}

2
= % {(Jf. —74)—3(72—.73)§-

Therefore the formula (7) does not always give the correct value of M
and the error of that formula is given by (8) on the assumption that the
curve DEC is a part of

y=ax*+ b+ cx+f.
For example, put
m=0, k=1, 1=5, 1=4.5, 3=4, 3,=0.

The moments by (6) and (7) are respzctively 14°5875 and 140625 units

and the difference between these is 0'525 units or about 5 of the true

moment.
As another extreme example, take
m=0, h=1, 1=3, 3,=0; J4=5, J4=0.
The moments by (6) and (7) are respectively 1425 and 71°25 units
and the difference is 3 units or about 3 of the true moment.
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7. The moment of the area between ordinates y, and y, about ¥ axis
(Fig. 5) is n
(9) M= f yxdx
=!—ﬂ4+ixj+££]/m+m
L4 3 2 Jma
by putting s=m/.
But,

)

n=a ﬁ2+ bmh+c,
y2=az—+_f21z’+b mE1lh+te,
SemamF2 Bt bmEE hte.
Therefore, multiplying the undetermined multipliers 2, p, v to the above
equations and adding them together member by member we get
(10) o+ iyt vy = akt(Jan +/1m+1 +vm+2 )
+bh{(dm pm+1 fvmy2)
+ c(A+p+v).
Comparing (g) and (10), as before,

_ 3 —_—2
34+ 6 rqm+ 1) =2+ pm+1 vvmt2,

(11) < 4{3m+3m+1) =m+pm+1 +vmtz,
6(2m+1) =+ p4v.
3(4m® + 6+ 4m 4-1) il mre
4(3m*+3m+1) m+1 m+2
6(2m+1)
A=
4
341 +6mP - qm+ 1) Py }
m 4(3mt+3mE1) m42 [
1 6(2m+1) 1 i
p=— p ,
w EL 34+ 6P+ 4m+1) !
m m+1 4(3m+ 3m+ 1) ' ’
I I 6(2m+1) !
y= ’

4



—XV—

2 2
et m+1  mt2

4=m m+1 m+2

where

( 12 ;. R e LA

Therefore,

2
(13) %%‘4-{(l°m+s>yl+z<8m+s'yg—<m+”%}

Similarly, the moment T8, of the area between 3, and y; about y axis is

2
(14) W}n=%{—(2m+ 3+ 2(8mt 1)y + (10m+17)1, }

The sum of (13) and (14) is
2
93?,2+93t23=.2%{ 8m29+ 2(16m+16) y,+ (8m + 16) yg}

o

=%{ mpy+4(m+ 1)+ (m+2)p; }

Thus, we have again obtained the formula (2}, as it ought to be so.
8. The ‘moment of the area about x axis (Fig. 5) is

M= [y,

—h

by taking the origin at the middle of the base, The generality of the
problem is not lost by this assumption.

h
(15) M,:-&f S@xt+ 2abat 4 (B + 2ac) 2% + 20cx + Chdx
Zh

4 2 3 2 ~
2abxt | (824 2ac)x + 2bcx I
4 4 2 d-a

2 40
= £+
=/z§:‘5’f/f+ ‘ﬁi;"_"/fw}.

But,
n=al—bh+c,
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Fa=¢€y
Vs=alt+oh+c.
a =J’1+,1’2: 2}’2’ b= 1’32’};.71 , =

Substituting these values in (15), we have
6 2 v an
(16) Mx=15 J’l+4,“’2+J’§+J’1J’2+}’2_73_%.73,71
The formula in common use for the moment M’, is
& o\ a
(17) Me=—(sit+4si+5)
The difference between M, and M/, is
Y/
M',-—Mz=§8{ (]1+}’3‘(J’1+J’3_4J’2) +4.7§}'

To discuss the amount of the error for variable values of 3y, y, and 7,

put
Yo=Y Y3=ny,

Jnyn)

R

7

.

=
-

A
) \ /// // /
: —

ZNN\NN\
—_— & yralo : 7

nm
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and firstly suppose y,2z0.

M, -M,= /;Jo/ig (1+#n)(1 +n—4m)+4m”'}.

Put  fump)={1+n)(1+n—4qm)+ 4"

If we take w2z, 2 and f(mn) for rectanguler coordinate axes, the above
equation represents a parabolic cylinder (Fig. 7), whose generating lines are
parallel to s = plane.

" M, is always greater than M,, and only equal to M, along .the
straight line 2m—n—1=o0, provided y,%o0.

If ,=o0, put

N =Yy Y= e

Then, as the expression M’,—M, is symmetrical with respect to y; and
s we can proceed in exactly the same reasoning, so that the position and
the nature of the cylinder remain unaltered.

If y,=p;=0, M’,—-M, reduces to

MM, =5 x 4.5
and the error is proportional to 3; for Z=const.

9. The moment of inertia of the area about » axis is

= [Za
o)

-k

taking the origin at the middle of the base, (Fig. s5).

) 2
{18) I=§f (a2 + bx +c)’dx
—h

=28an | 3alltac)
307
Substituting the values for @, & and ¢ obtained in the preceding para—
graph, we have

(19) IT=— — {1391+ 64 3+ 13 75+ 5, (5 i+ 23+ A +1s)

+e(ac+ )R+ L‘“}.

/e
3X35%2

=23+ 3y + I%)}

But the formula for usual calculation for the moment of inertia 1’ is

(20) V=4( i +455+54)
The difference is
/ o ;
Ve T= 21 5310~ 60%+0p) + 843( — 63, + 117,— 6,)

g X 35 X2
+73(971— 609 + 314) +48y, yy st



