1. まえがき
都市内高架道路に代表される多径間橋では桁間の伸縮ジョイントが維持管理のネックであり振動騒音源でもあることから、桁を連続させるノージョイント化が求められていたが、現在わが国では、桁長の600mの多径間連続橋が現実化している。温度変化やクリープ等による伸縮量は、許容変形量の大きなゴム支承、すべり支承、可動支承と粘性ダンバーの組み合わせ、可撓性橋脚等の採用によって処理されている。一方、鉛込み積層ゴムや高減衰積層ゴムに代表される免震支承は、減衰を高めるとともに桁を水平方向に軟らかく支持して長周期化する機能を有しており、その変形特性はノージョイント化された場合の連続桁の温度変化等による伸縮を支承部で吸収するのに活用できる。

本研究では、免震支承を採用した1kmの超多径間連続橋を試設計することによってその成立性を分析するとともに、入力地震動の位相差を考慮した動的解析を行って地震応答特性を検討した。

2. 免震設計の適用性
（1）モデル橋
鋼桁橋とPC桁橋について試設計を行うこととして、それぞれに図-1と図-2に示すモデル橋を設定した。桁間橋は16径間、PC桁橋は26径間で約1kmとなる。設計条件は、橋格：1等橋（T L=20, T T=43）、幅員：11m、地域区分：A、重要度：1級、温度変化：PC桁±20°C、鋼桁±30°Cとした。検討を簡明にするため、橋梁線形は直線とし、地盤は橋軸方向に一定の平坦な地盤とした。また、桁端部はかけ違いとした。
（2）免震設計 設計基準には原則として道路橋示方書V耐震設計編（以下、道示）を対照し、免震設計に固有な項目については「道路橋の免震設計法ガイドライン（案）」を参照しました。免震支承は鉄管入溝層ゴム（LRB）によることとした。LRBの水平せん断ばねは、温度変化のような緩速変形時には鉄がクリープして軟らかく、地震のような急な変形時には比較的剛になる。

表-1 は設計されたLRBの諸元である。連続桁の端部の支点と中央付近の支点では支承の特性を変えていく。温度等による緩速変形時の剛性は端部に向かって小さくなるよう設定してその影響を軽減し、地震時の保有水平耐力照査用の入力（以下、レベル-2入力）相当の大振幅時の動的剛性は端支点で逆に対数挿入るような設定して地震応答変位が端部で大きくならないように配慮した。

PC桁橋の場合は移動支保工による分割施工（施工サイクル20日/スパーン）を行なうこととし、免震装置にはクリープ、乾燥収縮による移動量の1/2を予めせん断変形として設置時に与えることとした。

（3）解析結果 表-2 は固定周期とそれに伴って定まる設計震度を示したものである。道示の震度法の地震力設定により、周期1.3秒付近は長周期化による免震効果は明確に現われない。表-3 は橋脚支承の曲げモーメントと支承部の相対変位を代表的な橋脚について示したものである。温度の影響による曲げモーメントは、PC桁橋の場合には震度法の27%、鋼桁橋の場合は同28%であることがわかる。一方、支承部の相対変位を端支点で見ると、震度法による変位は温度による変位より小さく抑えられ、さらに、レベル-2入力の場合の変位は中間支点より端支点の方を小さく抑えられた。

<table>
<thead>
<tr>
<th>表-1 免震支承（LRB）諸元</th>
<th>表-2 設計震度</th>
</tr>
</thead>
<tbody>
<tr>
<td>橋脚番号</td>
<td>P1</td>
</tr>
<tr>
<td>鉄直圧力 Rmax (tf)</td>
<td>220</td>
</tr>
<tr>
<td>平面形状 a × b (cm)</td>
<td>90×90</td>
</tr>
<tr>
<td>ゴムの総厚 (cm)</td>
<td>24.0</td>
</tr>
<tr>
<td>鉄ブリック寸法 (cm)</td>
<td>φ20×1</td>
</tr>
<tr>
<td>材屋架重 Q (tf)</td>
<td>23.5</td>
</tr>
<tr>
<td>緩速変形剛性 (tf/m)</td>
<td>294.2</td>
</tr>
<tr>
<td>震度法等価剛性 (μ)</td>
<td>6.5</td>
</tr>
<tr>
<td>レベル-2等価剛性 (μ)</td>
<td>47.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表-3 橋脚基部曲げモーメント (t×m) と 支承相対変位 (cm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>橋脚番号</td>
<td>P1</td>
</tr>
<tr>
<td>橋脚方向</td>
<td>温度</td>
</tr>
<tr>
<td>震度法</td>
<td>3,690.0</td>
</tr>
<tr>
<td>レベル-2入力</td>
<td>14,460.0</td>
</tr>
<tr>
<td>直角</td>
<td>震度法</td>
</tr>
<tr>
<td>レベル-2入力</td>
<td>10,740.0</td>
</tr>
</tbody>
</table>
３．動的応答解析

（１）入力地震動　１ｋｍの長さの連続橋の各橋脚に同じ地震波が同じ位相で作用すると考えられていない。ここでは地震波の平面的な分散の影響を簡略化して考慮するために、同一の地震波が一端から多点へ見かけ上、地表に沿って伝播しながら作用するものとして多点入力の応答解析を行った。地震波形としては道示に示されるⅡ種地盤用の標準加速度応答スペクトルにスペクトルフットさせた開軸橋の記録を用いた。見かけの伝播速度は地盤に生じる平面的な歪が２×10^{-4} 前後となるように500m/sec (3.6×10^{-4}) と1,000m/sec (1.8×10^{-4}) とした。比較のため伝播速度無限大、すなわち同位相入力の場合についても解析を行った。

（２）解析モデル　全径間を一体としたマスばね系でモデル化した。自由度はP桁桁の場合同で、軸橋を軸橋方向458、軸橋直角方向338である。免震装置はその両極特性能を等価な剛性と減衰率で評価した線形バネでモデル化し、地盤も同様にバネでモデル化した。P桁桁と軸桁桁の結形成定性的に一致したもので、ここでは軸桁桁の結果のみを示す。

（３）固有振幅解析の結果　モード群は①支承上の桁の水平並進振動、②軸橋方向では桁の曲げ振動、軸橋直角方向では桁の曲げ振動、③棟脚の曲げ振動、に分離して現われる。各モードの周期を表-5に示す。地震波の卓越振動数との関係からみて地震応答に卓越するのは①と②のモード群である。

（4）地震応答解析の結果　軸橋を軸橋番号、軸橋を応答値にとって示したもののが図-3と図-4である。また、図-5は代表的な軸橋の加速度応答値である。図中の低減衰とは、剛性は免震支承と同じであるが減衰を5%と小さく設定した支承パネを用いた場合である。

軸橋方向に注目すると、同位相入力の場合は桁部が並進モードで振動するが、位相差入力の場合は桁部はほとんど振動しないことがわかる。また、位相差入力により、桁端部の支承の相対変位がやや増加し、桁に軸力が発生する。ただし、この軸力は桁断面応力度として100kg/cm²（P桁桁の場合は17kg/cm²）程度であり、設計上問題となる値ではない。支承の減衰率はこれ等の傾向にほとんど影響しないこともわかる。

軸橋直角方向の応答には位相差入力による著しい影響は現われない。桁の曲げモーメントが大きくなるが、応力度にして50kg/cm²（P桁桁の場合は10kg/cm²）程度である。一方、支承の減衰は大きく免震支承の減衰（表-4参照）により応答は60%に低減されている。また、伝播速度500m/secにおいて、伝播方向の端支点で桁が比較的大きく振動する現象が認められる。桁部に地震波の伝播と同調する波動が発生し、端部に振動エネルギーが集中するためと考えられる。

4. まとめ

以上の検討により、免震支承の採用により連続桁長1ｋｍの多径間橋の設計が可能であり、入力地震波の位相を考慮すれば桁橋方向の応答の大幅な減少が期待できること、等を明らかにした。

なお、本報告は建設省土木研究所と民間28社の宮民連帯共同研究「道路構の免震構造システムの開発」の一環として行われたものである。

表-4 主要物性値	拠	桁脚	
	P1,P17	P2〜P6	
断面二次モーメント (m²)	0.83	6.75	7.80
オーネ際に関与	10.84	27.0	45.0
断面積 (m²)	0.729	9.0	15.0
減衰定数 (%)	2.0	5.0	5.0
免震	1,258	2,600	
支承	21.4	26.8	
低減衰支承	5.0	5.0	

| 表-5 モード特性と固有周期 |
|---------------|-----|-----|
| | 拠 | 直角 |
| 1桁並進モード | 1.38秒 | 1.37秒 |
| 2桁変形モード | 0.6秒以下 | 1.4秒以下 |
| 3桁脚曲げモード | 0.25秒以下 | 0.2秒以下 |
図-3 橋軸方向加振

図-4 橋軸直角方向加振

図-5 応答加速度

参考文献 土木研究所他28社：「道路橋の免震構造システムの開発に関する共同研究報告書（その2）」、土木研究所共同研究報告書平成3年3月

－520－