群杭基礎構造物の動的解析法とその実務耐震設計法の開発

岡山大学 正 員 竹宮 宏和
岡山大学 学生員 〇田中 宏明
日本道路公団 正 員 角谷 務
日本技術開発 KK 正 員 佐伯 光昭

1. まえがき

本研究は、地盤と群杭基礎の動的相互作用解析を扱ったものである。これまで筆者らの開発した伝達マトリクス手法による解析システムでは、杭－地盤－杭の動的相互作用において地盤反力の算定段階で無限小の厚さの層を考え平面ひずみを適用した。今回の報告は、地盤反力の算定段階で、より厳密な3次元波動論解析を採用した群杭解析システムを開発したので、これと前解との比較を行った。そして、これらの結果を実際の橋梁構造物の合理的耐震設計に反映させるべき一試案を示すものである。

2. 定式化

地盤と群杭の動的相互作用場は、Navierの式に支配される混合境界条件問題である。弾性体としての杭には、物体力としての慣性力と周辺地盤からの反力としての表面力を作用する。よって、j杭の

\[\int_0^L \delta \varphi_j \mathrm{d}v_j = - \int_0^L \delta \varphi_j \mathrm{d}v_j = \int_0^L \int \delta \varphi_j \tau_j \mathrm{d}a_j \]

ここで、\(\varphi_j \)：応力、\(\epsilon_j \)：歪み、\(\tau_j \)：変位、\(\sigma_j \)：表面力を定義している。

地盤－群杭系の解析に際してサブストラクチャ化を行う。単に群杭を地盤から引く状態では、杭の存在を欠くに空洞を持つ地盤とストリップ化された群杭とする。ただし両系の間には、変位と応力の連続性が杭の周辺位置で保証される必要はない。空洞を持ち地盤の解析は困難であるため、サブストラクチャ化を図1のように、地盤においては杭部分を土で埋め戻し、つまり自然地盤とする。この地盤内杭部分に当たる土の挙動は、当然、杭としての挙動を課せられるのと、地盤杭としての取り扱いを要する。

したがって、ストリップ化された群杭の方は、原杭から杭群を差し引いたものとなる。

地盤－群杭系の支配方程式を導くに、境界要素法（境界法）の考え方に適用を試みる。杭は構造要素としてのまわりの挙動として捉えることができ、有限要素化して多自由度系に置換することができる。このとき、応力よりも断面力が意味を持つ。したがって、式（1）の代わりに、

\[- \omega^2 M_{jj} + K \varphi_j = F_j \]

杭周辺の応力により引かれる力を、直交座標上で評価する。

\[\begin{bmatrix} P_x \\ P_y \end{bmatrix} = \begin{bmatrix} 2 \pi \int_0^{2 \pi} t_x \cos \theta - t_y \sin \theta \\ 2 \pi \int_0^{2 \pi} t_x \sin \theta + t_y \cos \theta \end{bmatrix} r \mathrm{d} \theta \]

\[\begin{bmatrix} M_x \\ M_y \end{bmatrix} = \begin{bmatrix} 2 \pi \int_0^{2 \pi} t_x \sin \theta + t_y \cos \theta \\ 2 \pi \int_0^{2 \pi} t_x \cos \theta - t_y \sin \theta \end{bmatrix} \hat{r} \mathrm{d} \theta \]

杭の周辺の表面力を、フーリエ級数展開して表せば、

\[\tau_j = \sum_n \hat{u}(n \theta) \hat{\tau}_j \]

式（4）のフーリエ級数展開を導入すると、\(P_x, M_x \) には、n=1 の対称フーリエ項、\(P_y, M_y \) には、n=1 の逆対称フーリエ項、Pzには

-281-
表1 応答の評価

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(5)

\[u_{xyz} = J \hat{u}_{xyz} \#(n0) \]

となる。ただし、\(\hat{u}_{xyz} \)はフーリエ振幅、\(J \)は座標変換マトリックス、\#(n0)はフーリエ級数係数である。また、回転自由度の評価には次式を用いる。

\[\psi = \tan^{-1} \left(\frac{u_{x0} - u_{z0}}{2u_x} \right) \approx \frac{u_{x0} - u_{z0}}{2u_x} \]

(6)

加振振と応答振が一致する場合は、表1にまとめておく。以上から、全杭軸点に関するフレキシビリティ・マトリックス \(G \)が定義でき、その逆行列を求めることによって、動的地震剛性マトリックス \(K_{xz} \)を得る。

\[K_{xz} = G^{-1} \]

(7)

先に述べたサブストラクチャ化に従い、地盤-群杭系の動的剛性マトリックス \(K \)は、

\[K = K_{xz} + (K_{pile} - K_{soil}) \]

(8)

となる。ただし、\(K_{pile} \)は有限要素法で計算した杭群杭の動的剛性マトリックス、\(K_{soil} \)は地盤杭の同マトリックスである。最終的には、地盤・群杭系の動的剛性マトリックスを総合操作により杭位置で評価する。そして、構造されたフーリエ基底へ剛体結合条件から統合し、地盤-群杭系の動的剛性とする。

下部構造系に杭群基礎を有する構造物の厳密地震応答解析

図3の解析フローに従ってなされる。しかし、解析時間・費用を共に多くを要することから実務解析用には、図4の解析フローを提案する。図3から図4への移行に際して、重要な事項は以下に挙げる通りである。

(1) 群杭の動的解析を単杭解析で置き換える。動的群杭効果を以ってそれを修正している。

(2) 地盤との相互作用効果を表す振動数依存の複素地震剛性を定数化している。

(3) 上-下部構造系の連成振動を、下部構造系のパネ効果を含んだ形で固有モ
コード解析（図5）している。したがって、地盤との相互作用における減衰効果は固有モード減衰定数として導入している。
（IV）有効入力の代わりに、自然地盤の地表面応答を使用している。

3. 数値的検討

2、3の解析例を択って、本研究における各重要な検討を行った。解析地盤の選定は、軟かい地盤（卓越周期 Tg=1.31秒、ケース1）と硬い地盤（Tg=0.78秒、ケース2）の2種類とした。杭配置は4本杭と9本杭を計とした。（図6参照）

（1）地盤パネルの評価：下部構造系（地盤-群杭系）より得られたインピーダンス関数を図7に示す。図示から、動的複素剛性の実部は、地盤の卓越振動数以下の範囲で一定値を示しているので、同振動数で固定した。 （II）群杭効率：

動的群杭効率を図8に示す。図示より対象とする運動形態によるが、耐震設計上重要な低振動数領域では、1より大きい値を示し、静的解析による群杭効率が動的問題にも使用可能なことを示している。しかしこれより高い振動数による群杭効率は1より大きくなっている。（III）下部構造特性を考慮したときの固有モード減衰定数の評価：（1）の地盤パネルを含めて固有モードを採り、地盤インピーダンスの係数を固有モード座標上で求めた。その際、簡易法を採ることから固定モード間の連続を無視した。固有モード減衰定数としての値を表2にまとめておく。 （IV）時刻歴応答：基盤入力波として、100galに調整したELCENTロ波形から地表面応答（図9）を求め、それを入力波として、フーリエ重ね及び構脚の上部における変位・加速度応答を図10に示す。

表2 群杭効率

<table>
<thead>
<tr>
<th>MODE</th>
<th>4本杭</th>
<th>9本杭</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-ND</td>
<td>0.1504</td>
<td>0.0288</td>
</tr>
<tr>
<td>2-NR</td>
<td>0.1008</td>
<td>0.1287</td>
</tr>
<tr>
<td>3-ND</td>
<td>0.0478</td>
<td>0.0518</td>
</tr>
<tr>
<td>4-TH</td>
<td>0.0499</td>
<td>0.05</td>
</tr>
<tr>
<td>6-TH</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

4. 結論

本研究では、群杭基礎を有する構造構造物の耐震解析・設計において、上部と下部構造物の動的サブトラクツ法による厳密な解析法に取って代るべき合理的な近似解析法を示したが、その精度は充分に保証されることが、これまでのケーススタディから判っている。

図5 モード形状（4本杭、ケース1）
図8 群杭効率
図9 地表面応答（ケース1）

図10 フーチング重心（実験）、天端（点検）の応答（4本杭、ケース1）

参考文献