1. まとめ

本報告は、III-36「仮想実験の液状化による被害予測と対策」で紹介した液状化対策工事において実施した施工管理の手法と結果について述べるものである。

2. 施工管理概要

本工事は液状化対策として、グラベルコンパクションパイル工法（G・C・P）、振動棒強固め工法（V・R）の２工法を用いて地盤改良を実施したものであり、今後の液状化対策工事に今回の成果を反映させる意味から、補強めによる改良効果及び既設構造物への影響を種々の面からチェックすることを目的とし、最初の施工区間において以下の項目について施工管理を実施した。尚、本区間における地盤改良及び計測位置は下図に示すとおりである。

<table>
<thead>
<tr>
<th>施工管理項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>改善前後のN値試験</td>
<td>改善前後のN値を計測し、N値の増分量及び目標N値に達しているかを確認する。（これについては、一般の施工区域においても適用した。）</td>
</tr>
<tr>
<td>P・S検測</td>
<td>改善前後のP値及B値を計測し、速度の増分量により改良効果を確認する。</td>
</tr>
<tr>
<td>密度及相対密度</td>
<td>改善前後の密度及相対密度を計測し、各々の変化量により改良効果を確認する。</td>
</tr>
<tr>
<td>振動三軸試験</td>
<td>改善前後でサンドサンプリングを行い、振動三軸試験により液状化強度の増分量を確認する。</td>
</tr>
<tr>
<td>加速度及び間隔水圧</td>
<td>改善前後の地盤において起振機による加速度及び間隔水圧の上昇を計測し、間隔水圧の上昇がどれだけ低減されたかを確認する。</td>
</tr>
</tbody>
</table>

-254-
3. 施工管理の結果

(1) 改良効果の確認

1) N 値

<table>
<thead>
<tr>
<th>施工管理項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>鋼管頭部の動的変位</td>
<td>鋼管頭部の動的変位を設置し加速度を計測することによって打設時に伴う変位を計測する。</td>
</tr>
<tr>
<td>鋼管頭部の静的変位</td>
<td>鋼管頭部の静的変位を圧縮側面測定し、鋼管頭部の静的変位を計測する。</td>
</tr>
<tr>
<td>鋼管側面歪み</td>
<td>鋼管側面歪みを計測し、鋼管側面の変位量を計測し、応力増分量に換算する。</td>
</tr>
<tr>
<td>視れ工側面歪み</td>
<td>視れ工側面歪みを計測し、視れ工側面の変位量を計測し、応力増分量に換算する。</td>
</tr>
<tr>
<td>タイロッド側面歪み</td>
<td>タイロッド側面歪みを計測し、視れ工側面の変位量を計測し、応力増分量に換算する。</td>
</tr>
<tr>
<td>加速度及び間隙水圧</td>
<td>鋼管頭部の動的変位を計測し、視れ工の加速度及び間隙水圧を計測することによって打設時の変位を計測する。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>施工管理項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>鋼管頭部の動的変位</td>
<td>鋼管頭部の動的変位を設置し加速度を計測することによって打設時に伴う変位を計測する。</td>
</tr>
<tr>
<td>鋼管頭部の静的変位</td>
<td>鋼管頭部の静的変位を圧縮側面測定し、鋼管頭部の静的変位を計測する。</td>
</tr>
<tr>
<td>鋼管側面歪み</td>
<td>鋼管側面歪みを計測し、鋼管側面の変位量を計測し、応力増分量に換算する。</td>
</tr>
<tr>
<td>視れ工側面歪み</td>
<td>視れ工側面歪みを計測し、視れ工側面の変位量を計測し、応力増分量に換算する。</td>
</tr>
<tr>
<td>タイロッド側面歪み</td>
<td>タイロッド側面歪みを計測し、視れ工側面の変位量を計測し、応力増分量に換算する。</td>
</tr>
<tr>
<td>加速度及び間隙水圧</td>
<td>鋼管頭部の動的変位を計測し、視れ工の加速度及び間隙水圧を計測することによって打設時の変位を計測する。</td>
</tr>
</tbody>
</table>

3. 施工管理の結果

(1) 改良効果の確認

1) N 値

<table>
<thead>
<tr>
<th>施工管理項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>鋼管頭部の動的変位</td>
<td>鋼管頭部の動的変位を設置し加速度を計測することによって打設時に伴う変位を計測する。</td>
</tr>
<tr>
<td>鋼管頭部の静的変位</td>
<td>鋼管頭部の静的変位を圧縮側面測定し、鋼管頭部の静的変位を計測する。</td>
</tr>
<tr>
<td>鋼管側面歪み</td>
<td>鋼管側面歪みを計測し、鋼管側面の変位量を計測し、応力増分量に換算する。</td>
</tr>
<tr>
<td>視れ工側面歪み</td>
<td>視れ工側面歪みを計測し、視れ工側面の変位量を計測し、応力増分量に換算する。</td>
</tr>
<tr>
<td>タイロッド側面歪み</td>
<td>タイロッド側面歪みを計測し、視れ工側面の変位量を計測し、応力増分量に換算する。</td>
</tr>
<tr>
<td>加速度及び間隙水圧</td>
<td>鋼管頭部の動的変位を計測し、視れ工の加速度及び間隙水圧を計測することによって打設時の変位を計測する。</td>
</tr>
</tbody>
</table>

2) P・S 検査

改良管直径の範囲においては、施工前で Vp = 170m/s, Vs = 110m/sの施工後で Vp = 550m/s, Vs = 220m/sであった。

全体的に Vp 速度、Vs 速度とも施工後に増加している傾向がある。

3) 密度及び相対密度

密度は、相対密度は、0.66 - 0.145g/cm³, 相対密度は、15.3 - 48.1% 増加した。

各々の試験結果は、下表に示すとおりである。

<table>
<thead>
<tr>
<th>施工前</th>
<th>施工後</th>
<th>改良前後の増分</th>
</tr>
</thead>
<tbody>
<tr>
<td>試料</td>
<td>対照密度</td>
<td>対照密度</td>
</tr>
<tr>
<td>G NO2 1</td>
<td>1.249</td>
<td>52.7</td>
</tr>
<tr>
<td>2</td>
<td>1.237</td>
<td>21.8</td>
</tr>
<tr>
<td>3</td>
<td>1.247</td>
<td>63.6</td>
</tr>
<tr>
<td>V NO2 1</td>
<td>1.297</td>
<td>50.2</td>
</tr>
</tbody>
</table>

D r は、各試料の Ω d の平均値とそれぞれの Ω d max, Ω d min によって計算した。

- 255 -
4）振動三軸試験・・・改良崩後の液状化強度、Rを考えた場合、G・C・P工区では、0.125から0.22へ向上し、V・R工区では、0.138から0.257へ向上した。

5）加速度及び間隙水圧

G・C・P打設時の加速度と間隙水圧の経時変化的記録から像が観察された。
① 加速度は、改良後で改良後を比較すると改良後に最大加速度で2倍程度の値となる。
② 改良後は、改良前と比較して間隙水圧の上昇は極めて小さくなり、改良効果が明らかに認められる。
③ 間隙水圧の上昇は加速度が生じよりやや遅れて進行する。

V・R打設時の加速度、間隙水圧の経時変化の記録から像が観察された。
① 加速度は、G・C・P打設の場合と同様、改良後の方が大きな値（約1.5倍）となる。
② 過剰間隙水圧の発生を確認したが、改良前と改良後では明確な変化は認められない。

また、加速度及び間隙水圧との関係は、同じ加速度比に対して改良後の方が間隙水圧の上昇が低く、改良効果が前者のあったことがわかった。

(2) 房総構造物への影響

1）鋼管上部の動的変位・・・振動機の振動による動的変位は、杭1本につき、最大で0.10mm程度でほとんど鋼管矢板に影響しなかった。

2）鋼管上部の静的変位・・・砂石の固結土への圧入に伴う静的変位は、最大でG・C・P工区で6.10mm、平均4mm程度であった。

3）鋼管側面歪み・・・全体的に鋼管側面歪みは、振動源の鋼管からの水平距離が近くなるに従い、増大する傾向が認められる。最大歪みは、許容応力度に比べて0.15%程度となっている。

4）杭打設時の歪みは、極めて小さな値となっていることから、地盤改良工事の施工による影響は殆どないと考えられる。

5）タイロッド・・・タイロッドの歪みは、振動源の鋼管からの水平距離が近くなるに従い、増大する傾向が全体的に認められ、水平距離が10m以内になると最大歪みは急激に増大する。最大歪みを引張応力に換算すると許容応力度の25倍程度となる。

6）加速度及び間隙水圧・・・振動源の鋼管からの水平距離と間隙水圧の関係では、5m以内においては、G・C・P工区、V・R工区共に間隙水圧の急激な上昇がみられるが10m以上離れると間隙水圧の増加はみられない。また、V・R工区共に、改良後の間隙水圧の低下がみられる。

振動源の鋼管からの水平距離と加速度の関係では、G・C・P工区、V・R工区共に、5m以内になると、加速度の増大する傾向がみられるが、10m以上離れると、50cm以下に減少している。

4. まとめ

（1）関東における液状化対策工事は、実施例が少なく、設計・観測・解析時に、既存データをあまり活用することができない。今回の対策工事で、今後の液状化対策の設計にとって有用なデータを得ることができた。更に土質条件、施工条件、改良歴代等の要因についての施工データの蓄積に努める必要があると考えられる。

（2）既設構造物の液状化対策工事においては、改良効果及び既設構造物への影響をいかに管理するかということが重要な課題である。

N等の土質定数は杭打設後しか測定できず、迅速性が期待できない面があり、また、間隙水圧計及び加速度計はコスト高となる。このため、今後、杭打設中に容易に計測ができる、しかも即時に計測値を評価できる効果的な施工管理の検討が必要であると考えられる。