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SEISMIC RESPONSE ANALYSIS OF A COMMON
DUCT AND INTERNAL PIPES

Kunihiko FUCHIDA* Takashi AKTYOSHI**
and Kenzou TOKI***

Analysis of seismic response of common ducts and internal pipes is presented here. A
common duct is modeled as a uniform beam with a rectangular cross section and inter-
nal pipe as a rumped mass-spring system. First, based on the soil-common duct interac-
tion to seismic waves, the axial and lateral responses of the common duct are analyzed.
Then the internal pipe’s response is investigated depending on the response of the com-
mon duct. Numerical computations are done mainly on the strains of the common duct
and internal pipes. Results show that the common duct reduces the deformation of in-
ternal pipes, and the strain of the common duct concentrates at both ends in the case
of large difference of motion between both ends structures and ground.
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1. INTRODUCTION

Recently construction of common ducts is
stimulated in urban areas for the ease of mainte-
nance of internal lifelines’. Thus much efforts are
required for the investigations to reduce the
disasters of the lifeline facilities for earthquakes
and for the establishment of the reasonable
guidelines for the aseismic design of common
ducts”.

So far with respect to the buried tubular
structures, pipelines®™ and tunnels®™® have been
investigated extensively. Especially analyses con-
cerning buried pipelines for earthquakes seem to
have put emphasis on the effect of propagation of
earthquakes because of the thin structures.

In this paper we propose an analytical method of
seismic response of the common ducts and internal
pipes. The method to analyze the common ducts is
based on our previous study "*™* which treats the
interaction between the soil and the buried pipes as
that of uniform and continuous tubular structures.
On the other hand, the internal pipes are analyzed
as discretized methods since the input from the
common duct is not uniform for those. Thus this
gives rise for internal pipes to be analyzed
independently of the common ducts for an
earthquake propagating in an oblique direction.

2. GENERAL FORMULATION

In this study the following assumptions are
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adopted :
(1) Soil is linear, homogeneous and isotropic
infinite medium.
(2) Common duct is assumed to be a beam model
with a rectangular cross section, with both ends
connected to structures.
(3) Earthquakes propagate within a horizontal
plane.
(4) The soil and the common duct are mutually
interactive through the frictional interface'™.
(5) The friction at the interface is assumed to be
of Coulomb mechanism and linearized in terms of
the slip displacement and the velocity amplitude
(procedures are shown in the references™ ™).
(6) Axial vibration and lateral one are indepen-
dent each other.
2.1 Axial vibration of a common duct

When an earthquake P-wave propagates hori-
zontally toward a common duct as shown in Fig.1,
the governing equation for an axially vibrating
common duct is written by ;

Bzvzl
‘o
where v,;=axial displacement of the common duct,
me, E., Ac=unit length mass, Young’s modulus
and cross sectional area of the common duct, w,=
displacement amplitude of incident P-wave, p,;=
ga—ka + vai=exerting axial force of soil to the
unit length common duct in which ¢, is deduced
from the reference 11 (p.26 Formulation of
slippage) ;
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Fig.1 Geometry of a common duct
model (Plan view)
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Ts=slip stress, Sp=slip displacement amplitude,
M= —mw*+ EAck} cos® ¢, ka=ilypk; s ¢, p=
incident angle of P-wave to the axis.of the common
duct, lp = circumference length of the common
duct, k; (=w/v) =wave number of P-wave, w=

circular frequency, v;=+ (A+2 ) /p =velocity of

P-wave, A, y=Lame’s constants, p=mass density

of soil. When slip occurs between common duct
and soil, p, in eq. (1) becomes small.

Under steady-harmonic excitation, the solution
of equation (1) is represented by the sum of the
special solution v} and the general solution v of
the equation. Thus eliminating the time factor ¢’

the solution takes the form
va=vd + v =H. () wycos ¢ - e~ s ?
+A1e”1z+Aze”” ........................... ( 2 )

where H, (Q) =axial frequency response function
of the common duct';

ka1
ka—mw?+E Akf cos®p

A;,A;=unknown coefficients,

M=« (kzl_mwz)/EcAc =—Va.

Now consider the following boundary conditions
for the decision of unknown coefficients A4;,4, of
equation (2);

H, (w)=

2=20;V2=GX (w) w; cos ¢ e~ °°S¢} e (4)
2=2,04= z({) ((l)) W, Cos ¢ e-thzl cos ¢

where G (w), G (w)=axial frequency response

functions of structures at both ends 2=z, and z
respectively.

Substituting equation (2) into equation (4),
unknown coefficients A, A, are derived as follows ;

1

et (21—20) __ e (21—20)
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.................................... ( 5 )
2.2 Lateral vibration of a common duct
Same procedures as the reference 11) will be
applicable to the governing equation of a laterally
vibrating common duct;

64'011 azv.rl i av.rl
Ecl ozt tome o8 +6z (Nl 0z )

=Kz (wysin 0} glor-kizcos &y 1y, ( 6)

where v, =lateral displacement of the common
duct, I.=geometrical moment of inertia of the
common duct, Ny=axial force which is assumed to
be independent of axial vibration(l), kn =
pALw*hiK =1ateral spring coefficient of ground for
P-wave, A;=cross sectional area for common duct
to occupy the soil space, h2=1— (vs/v))* cos® @, vs
=/ 0 =velocity of S-wave, K,=e'%% ¢q,=
(w/v) hs, B=width of cross section of common
duct.

Now let Ny=E:Ac Warlze—Vzlz=20) /1. Then the
solution of equation (6) is represented by the sum
of the special solution vy and the general
solution v3 of equation (7) in the same way as the
axial case for steady harmonic excitation ;

V=0 02 =Hp (w)w sin ¢ ¢~17 5 ¢ B,e?

+Bzelzz+Bse-—hz+B4e—hz ............. ( 7 )

where, H,1 (@) =lateral frequency response func-
tion of the common duct;

kn
E Lkt cos*d—mw?*— Nik} cos’p+kan

H; ()=

B, B,, B;, By=unknown constant,

_ N1 \/ N1 z_kzl—mwz
1“\/ 2EL T <2E¢Ic) EL °

]=\/_ Ny _/( Ny ) _ ko

z 2E. 2E ElI
LR ALERISLERRID (9)

Boundary conditions at both ends z=2,, z; of the

common duct are set for lateral displacements and
bending moments;

L

50 (32s)



Structural Eng. /Earthquake Eng. Vol. 8, No.1, 31s38s, April 1991

Japan Society of Civil Engineers (Proc. of JSCE No.428/1—15)

2=z vu=GY (w) w, sin ¢ - g~k cos ¢
=k (%),
2
=k (G8),,
2=z Un=G (@) w cos - g thmicos 9
=k (52),,
= _Eclc (%)z=21 ............... (10)

where, G (), G (w)=lateral frequency re-
sponse functions of the structure at the both ends z
=2, 2; respectively, k,=rotational spring coeffi-
cient at the connections between the common duct
and the structures.

Adopting a similar process as in the previous
section, the unknown coefficient B;, B;, B;, B,
may be obtained as functions of displacement
amplitude w;, of input waves. Then the lateral
displacement v;, of equation (7) leads to the result ;

V= sin¢ [H.z'l (w) etk cos¢+f1 (z)]

where w; sing f; (z) = Bie*” + By’ + Bye ™ +
Bye =,

For the case of the plane S-wave with the same
incident angle as P-wave, axial and lateral displace-
ments of common duct can be derived by replacing
wi cos ¢, wy sin @ and k;=w /v, with w;sin ¢, —w,
cos ¢ and ks=w/v; respectively in equations (7)
and (11);

V2=0F + 03 =H., (0) wssin ¢ - e~ ¢

+Ale”‘z+Azem ........................... (12)
Uza=(— w3 cos @) [Hyz (w) e7*50+ 1, (2)]
.......................................... (13)

where w, =displacement amplitude of S-wave, v;=
velocity of S-wave, H,; (w), H,; (w)=axial and
lateral frequency response functions of the con-
tinuous common duct respectively.
2.3 Strain of a common duct

The axial strain &, and bending strain &,; of the
" common duct for P-wave can be easily derived
from the equations (7) and (11);

ealz%zzﬂ (@) Wy ++vremeerenreeaneeenns (14)
2
en= _g %=Zu (@) Wy +oevvereeevnnens (15)

where B=width of the common duct, Z, (@), Z;;
(w)=frequency response functions of axial and

common duct

springs for faslening

Fig.2 Geometry of discretized internal pipes in a
common duct [the case for axial vibration]

bending strains of the common duct for P-wave,
respectively, which lead to;

Zn (w)=—ik; cos?P Hy (w) e~thizcos s

V1 cos @
et (z1—20) e~V (z1—20)

. [_ [Gz((ll) (a)) _Hzl ((D)] e~ ikizo oos¢ev1(z—zz)

HIGY (@) —Ha (@)] ¢ owtpie=so)

—Vi1cos @
et (z1—2z0) _ e—m(zt—zo)

. {[Gé?) (w) _IL1 (w)] e—ikxzo cos¢em(zt—z)

—[GY (w)—H, ((b)] e—iktztcos«ﬁevx(zo—z)}

Zy ()= ——g sin ¢

. [_Hxl (w) k? cospe ik cm s £ (Z)]

.......................................... (17)
Therefore the total strain ¢; of common duct for
P-wave is represented by adding the axial strain &4,
in equation (14) to the bending one &; in equation
(15) 5
81=€a1+€b1221(w) wleiwt .................... (18)

where Z, (w) =Z; (0) +Zy (w).
In the same way the total strain ¢, of the common
duct for S-wave is written by ;

€=t 2= (@) Wy@'® +orvvrvrrererrnnss (19)

where ¢42, €52=axial and bending strains for S-wave
respectively, Z; (w)=Zs: (w)+ Zp (), Zaz (),
Zy» (w) =frequency response functions (FRF) of
axial and bending strains of the common duct for S-
wave, respectively.
2.4 Analysis of internal pipes

Let the internal pipes be uniformly discretized to
masses and springs, and be elastically fastening to
the common duct as in Fig.2. Then the solution of
this system may be obtained by the sum of the static
response {zr} and the dynamic response (devia-

]
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tion) {Y ({w)} of the pipes.
Static displacement {zr} can be written by

{zT} = [I{Z]"1 [Koz] {vz} ....................... (20)

where, referring to the Fig.2, [K,] = stiffness
matrix for pipes composed of elastic springs k» and
k, which fastens pipes to the common duct, [K,.]=
stiffness matrix with elastic springs k,, {v} =
displacement vector of common duct.

Thus, neglecting the interaction between the
common duct and internal pipes, the governing
equation of the internal pipe is written by

M1 (3 + K] gy =— (M) [K.17' [K,.) (o)

.......................................... (21)
where, [M] = mass matrix, and {y} = dynamic
displacement vector of the internal pipes.

Using Fourier transform of equation (21),
frequency response {Y (iw)} of the pipe displace-
ment is obtained ;

{Y o)} =o* [K,— o*M] ™
* [M [Kz] - [Koz] {Vz (iw)}
.......................................... (22)
Total response displacement {Z (iw)} of the pipe
is finally given by adding the static displacement
zr (1) in equation (20) to the dynamic displacement
Y (iw) in equation (22) ;
(Z () = [ K (K +a? K- oM
[ [ KD} (7 (o))
.......................................... (23)

Thus the strains of the internal pipes are easily
derived from equation (23);

{epa (i)} = {[Kz]-l Kol + 0 [K, — w?M] ™!
- M1 (K] (Kol
-%{VZ (G)} -+veveemrmeeeerens (24)

fem )} =—2 { (K17 Kol + (K~ 0?30

- 1M1 K" (K

0* .
AL AN (7)) ST, (25)
0z

where &4 (iw), &4 (iw) =axial and bending strains
of the internal pipes.

Let Fourier transforms of input displacements of
earthquakes be replaced wy, w. in eqs. (18) and
(19), the frequency responses of common duct are
obtained by using the equivalent method presented
previously™ ™. In the same way, the responses of

Table 1 Boundary parameter
g of end structure
Axial (ga) Lateral (g)
Case 1 1.0 1.0
Case 2 0.5 1.0
Case 3 1.0 0.5

internal pipes are obtained from eqs. (24) and (25).
Taking inverse Fourier transform of these equa-
tions, the strains of the common duct and. the
internal pipes can be obtained in time.

3. NUMERICAL RESULTS

3.1 Standard value of parameters

Numerical computations are conducted for the
maximum response strain of common ducts and
internal pipes for earthquakes. The standard values
of the parameters of earthquakes, common duct,
internal pipes and soils used for computations are
as follows;incident angle of the input waves to the
axis of common duct:¢p =45°, the shear wave
velocity of soil : vs=100 m/s, ratio of P-to S-wave
velocity : v;/v,=2.0, ratio of frictional slip stress to
shear modulus of soil : 7,=7;/¢=10"2~10"% (for
example'”, 7,=10"* in the case of 7,=0.1 kgf/cm?,
£ = 1000 kgf/cm®), a referential length of the
common duct : D=B=h=4.0 m (width B, height
k), nondimensional geometrical moment of inertia
1 I/(A; - (D/2)%) =0.67, total length of the com-
mon duct : I=100~500 m, equivalent wave veloc-
ity of the common duct: v, =1000m/s, non-
dimensional mass ratio : m =m/pBh=0.5 (p=
mass density of soil), ratio of rotational spring
constant to bending stiffness at the connection
between the common duct and structures : k,/E I,
=1.0 (m™), axial spring constant of the pipe : k.
= EpAp/lp=3 X 10" tonf/m (Young’s modulus of
pipe : Er=1.5X10" tonf/my’, cross sectional area of
pipe : Ap=0.01 m’, pipe length : /,=5 m), bending
spring constant of the pipe : kp,=3X 10’ tonf/m,
spring constant between internal pipe and common
duct : k¥=3X10* tonf/m. NS and EW components
of Fl Centro earthquakes (1940) are used as the
input P-and S-waves respectively with the maxi-
mum amplitude of 100 gal.

In this paper the boundary conditions are
defined by frequency response functions of the
structures at both ends G&’ (@), G4’ (w) in egs.
(4) and (10). Now define frequency-independent
boundary parameter g,= G}’ (w), =G5’ (@) in
wihch g, and g, are the axial and lateral cases
respectively. Thus 1—g, or 1—g; mean the degree
of difference of motion between the structures at
both ends of the common duct and the ground.

In the analysis three cases of boundary para-
meter g are assumed as shown in table 1. Case 1 (g
=1) means that both ends of common duct follow

L
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completely the surrounding ground movement.
However in Case 2 and 3 (¢=0.5), implies that
50% of difference of motion between the structure
and the ground may be occured in the axial or
lateral-directional-vibration.
3.2 Strain of the common duct

Fig.3 gives the graphs of axial distribution of
maximum response strains of the common duct of
the length /=500m in which (a), (b) and (c)
represent Case 1, Case 2 and Case 3 in Tabel 1,
respectively. Fig.3 (a) shows that the strain of the
common duct distributes almost uniformly along
the axis for 7,=107° (:solid line), but decreases for
small 7, of 7,=107° (:broken line). This is due to
the relaxation of axial strain by slippage. For Fig.3
(b) and (c) which are the cases of 50% difference (1
—¢) between the structure and the ground in the
direction of axial or lateral respectively, the
difference (1—g) increases strains at both ends but
slippage ( : broken lines) also decreases the strain
of the common duct. For the sake of comparison,
the strain of the common duct computed by the

conventional guidelines for seismic design of
common duct is also shown in Fig.3 as a dotted
line. At present the aseismic design of a common
duct depends on the guideline for the seismic
design of pipelines. Therefore, following the
conventional design procedure for the common
duct considered, the strain may be computed for
the natural period of surface layer of 1.0 sec and
the input amplitude of 100 gal. This natural period
1.0sec is closed to predominent period of El
Centro earthquake. It is noted that the response
strain by the guidelines are comparable for the
strain by proposed method under the slip condi-
tions (7s=10"% and, the strain by proposed
method at both ends are larger than the guidelines
for the case of large differense (1—g) as in Fig.3
(b), (c) (Cases 2, 3).

Fig.4 also shows the distribution of the strain of
relatively short-length common duct (/=100 m).
General trend of distribution as in Fig.4 is similar
to-that in Fig.3, implying that the length is not a key
parameter for the design of a common duct.
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For another comparison the strains computed by
the proposed method and the guidelines are plotted
against the natural period of the surface layer, in
Fig.5. As the natural period increases, the strain
given by the guidelines increases. In the diagram
the strains of the common duct by the proposed
method are also plotted for various S-wave
velocities, vs and three cases of boundary para-
meter, g. These values are larger than the values
computed as for guidelines at the natural period of
0.85 sec, and that in the case 2 of large difference 1
— ¢g(50%) at end structures extremely exceeds that
of the latter. In the guideline the common duct is
assumed to extend infinitely, but in the proposed
method its length to be finite. Thus it may be
difficult to compare the proposed method with the
guideline directly.

Fig.6 shows maximum strain of the common duct
at both ends (z//=0.0 and 1.0) and the center (z/!,
=0.5) versus the referential length D (=width B=
height &) of the cross section of the common duct.

‘The strain concentration at both ends of the
common duct decreases with increasing D or the
cross-sectional area. This is a scale effect that a
large-scaled rigid structure induces an input energy
loss. As shown in the case of Figs. 3 and 4, slippage
for small 7, releases the concentrated strains at the
ends of the common duct. However, small-cross-
sectional common duct (small D) induces high
strain concentration at the ends, especially for the
case of a large axial differense 1—g (:Case 2).

Since the solution in this study such as eq.(11)
includes the cordinate 2, the response is dependent
on 2. Then the response of common duct has the
error due to the imperfect solution. Fig.7 shows the
existing range (:hatched) of the response strain of
the common duct with changing z, from —/2 to
/2, and (a), (b) and (c) in Fig.7 denote same

correspondences as in .Figs.3, 4. The degree of
dependence of the strain on the cordinate z, is
small at the middle part (0.1<z//<0.9) of the
duct, but large at the ends of the duct especially for
Case 2.

3.3 Strain of internal pipes

Fig.8 shows the distribution of response strain of
the common duct and internal pipes under the soil
condition T;=10"° by broken and solid lines
respectively, in which (a), (b) and (c) correspond to
Cases 1, 2 and 3 respectively. By and large the
strain distribution of the pipe are similar to and far
less than that of the common duct. Thus the pipes
are protected properly from seismic forces by the
common duct. For the case of no difference 1—g¢g
between soil-structure [Fig.8 (a)], the strains of
pipes fastened to the common duct distribute
uniformly. Even for the case of large difference 1—
g [Fig.8 (b) and (c)], the strain concentration of
the pipe is not so remarkable as the common duct
at both ends.

Fig.9 shows the effect of the stiffness of fasting
springs k, on the maximum response strain of pipes
in the common duct in which (a), (b) and (c)
denote the same boundary condition as in Fig.3 and
4. For any case, tight fastening (k,=k¥ X 10 ;k¥=
reference spring constant for fastening) increases
the pipe strain due to little input loss from the
common duct. Therefore loose fasting of inner
pipes to the common duct is desirable for the
protection against the excitation by the common
duct.

Fig.10 is the plots of maximum pipe strain at
both ends of the common duct (z//=0.0 and 1.0)
versus ratio of fastening spring constant k, to the
standard one k¥. As for the case of Fig.9, it can be
noted that loose fastening of internal pipes to the
common duct is effective for lowering the strains.

L
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4. CONCLUSIONS

In this paper the seismic responses of a common
duct and internal pipes are analyzed approximately
by considering the common duct as a uniform beam
and the internal pipe as rumped masses and
springs. The strain behavior of the common duct
and the internal pipes subjected to seismic waves
are mainly investigated due to the higher priority
for the design of underground linear structures.
Results obtained are summarized as follows:

(1) Strain concentration which arises at the joints
between structures and common duct is induced
strongly by the axial differense between the ground
and the structures at both ends of the common
duct.

(2) Slippage affects for lowering the strain of the
common duct and the internal pipes.

(3) Large-scaled cross section is advantageous for
lowering the strain of the common duct but the
length is not a key parameter for small strain.
(4) Loose-fastening of inner pipes to the common
duct induces not only lowering the strain of pipes
but also releasing the concentrated strains at the
duct-structure joints.
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