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IDENTIFICATION OF STRUCTURAL PARAMETERS AND INPUT
GROUND MOTION FROM RESPONSE TIME HISTORIES

By Kenzo TOKI* Tadanobu SATO** and Junji KIYONO***

We report a procedure by which structural parameters and input ground motion are
identified from measured responses only. We have assumed that the coda of the response
time history represents the free vibration response of the structural system. Because the
coda is not effected by the input ground motion, we can first identify such structural
parameters as the masses, damping coefficients and spring constants from this part of the
record, Input ground motion then is estimated from the full record and the identified
parameters, The identification and estimation are made with the Kalman filter, To verify
the effectiveness of this procedure, we have simulated the responses of a linear,
three-degree-of-freedom system for different earthquake inputs and made estimations using
the simulated responses as observed records. The estimated accelerograms, the
identification of which usually more difficult than the identifications of velocitigrams and
displacementgrams, are in good agreement with the recorded ones for the actual
earthquakes.
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1. INTRODUCTION

The relation of input motion to the output motion of a structural system is illustrated in Fig. 1. The input
motion may be the ground motion induced by an earthquake, microtremor, mechanical vibration, etc.,
whereas the output motion is the response of a structural system due to that input, A procedure presented
herein identifies, first, such structural parameters as the natural frequency and damping constant, and
then estimates input motion using only the seismic response time series. Kalman filter analysis, a method
that updates the estimated value at each time step by incorporating new observation data, is used in our
procedure,

Many techniques have been proposed for identifying the structural parameters in the field of earthquake
engineering. Toki and Sato? developed a procedure for identifying structural parameters that uses an
AR-MA process. This procedure has proved useful for detecting the dynamic parameters of structural
systems; but, as the input motion is assumed to be a white noise, it can not be used when input
characteristics are uncertain, Hoshiya and Saito?® used an extended Kalman filter to solve the
identification problem for a dynamic structural system. They proposed a weighted global iteration
procedure to obtain fast convergency to the optimum solution and for the stability of that solution; in
addition, the sensitivity of the initial condition to the convergency was studied. Hoshiya and Maruyama®
also developed a method by which to identify the parameters of a versatile hysteretic model by use of an
extended Kalman filter. In the geomechanics field, Murakami and Hasegawa® have proposed a new back
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analysis method which uses Kalman Filter-Finite Ele-
ments and determines the optimal location of observation
nodal points. All these procedures require both input and

output data. Our method differs in that the system
parameters are identified from output data alone. Fig.1 Relation between input and output motion,

To the best of authors’ knowledge, there have been few
earthquake engineering studies®? whose purposes were to estimate input motion from the structural
response,

This is because the input motion is known when analyzing seismic response, and earthquake engineers
usually are interested in estimating the response of a structure. But it is necessary to identify the real
input motion to a structure or its foundation, because the motion of the base of structure is different from
the motion of free field. We have used the Kalman error filter, developed by Ott and Meder®, to estimate
input motion from the structural response and structural parameters. We have extended this method so
that the input motion can be calculated from the estimation error obtained in the Kalman filter algorithm,
The model used for calculation has three masses and three degrees of freedom. Its responses are assumed

to be recorded in each mass,
2. IDENTIFICATION OF STRUCTURAL PARAMETERS

(1) Identification by the Kalman filter

When a system consists of elements, each of which is expressed by a governing equation (such as
Newton’s for a kinematic system), that equation is entirely described by the differential equation and the
initial condition?,

Consider the signal generation and observation processes written by the linear stochastic differential

equation

w=[A]{X(t)H—[B]{w(t)}"------~---~~-~~~~-~~~~-~--~-~-~~-4 ......................................... (1)
and

N =LHUX (EAD(F)] oo veeeemeeee e - (2)

in which vectors {X}, {w}, {y} and {¢} are the stochastic process, and matrices {A],[B] and [H] are

deterministic. By solving Eq. (1), both equations can be written as a discrete linear system;
IXA=T Do X LG T W oo (3)
IY:}Z[H]EX:}‘HVJ ...................................................................................................... ( 4 )

in which {X,} is the n-dimensional state estimate vector at { ;{Y,} the p-dimensional observation vector at
t ; {W}and {V} the m- and p-dimensional Gaussian white noise with E{W.W{l=Qd, and E{V,V{I=Rd,
when E represents the expectation and & Kronecker’s delta; [$] the state transition matrix with the
dimensions n X n ; [ H] the measurement matrix with the dimensions pX 7 ; and [ G] the system noise matrix
with the dimensions nXm.

If we transform the governing differential equations to Eqs. (3) and (4 ) by the appropriate modeling,
the identification problem can be solved by use of the Kalman filter algorithm shown in Table 1.

A 3-story structural model is shown in Fig. 2, It is a system with three degrees of freedom, and we
assume that the displacement or velocity response time histories are obtained at each mass. When the
structure is represented as a lumped mass model which has springs and dashpots, its motion is governed by
the differential equation.

[MUXFLCHUE A LR X = =Mzl veeeevveemmreemem e (5)
in which | X,} represents the response of the structure, {i}} the input ground acceleration, [M] the mass, [C]
the damping coefficient, and [K] the stiffness matrix. [M] [C] and [K] are given by
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Table1 Kalman filter algorithm. X3
@ Store the filter state
X(k 1 k), PCkEKD X2
@ Compute the predicted state
XCkt1 1HO=® (k1 1 KXk 1 k)
@ Compute the predicted error covariance matrix X1
PCk1 1 K)=d (ki LIOPCk T K) @ T (k1 | K+ T GO+ DT T (KO
@ Compute the Kalman gain matrix
KCk+1)=PCk+1 | KOMT (k1D IMCkH1DPCk1 1 KOMT(k+1)4RCk+1) ]!
® Process the observation i
XChkt1 1 RHD=XCktE | IOHKCH DDy 1 -MCkHDXCk#L 1 O] i AR
® Compute the new error covariance matrix e
PCkt1 | kD=L -KCHDMCk+D TPkt 1 KD Fig.2 Structural model.
@ Set k=k+l, and return to step @.
m;, 0 0 citec, —c. 0
M]=| 0 m., 0 | [Cl=] —c. CxtCs —Cs|,
0 0 ms 0 —C3 Cs
k1+ kz - kz O
[K1=| ks Kab K g feeeeermeree i (6)
O _kz - kz
The state variables corresponding to Egs. (3), (4) are
fXEZHXJ{Xz}{XaHXJ}T .................................................................................................. (7)
in which ‘
{X1}={x1 foo xaiT ........................................................................................................ (8)
{Xz}z{jcl T2 .’i‘sz ........................................................................................................ (9)
}X3}={k1/m, ki/m, ki/ms ko/m, ka/’mslT .................................................................. (10)
fX4}=fC1/m1 Co/ M Cs/WL3}T ....................................................................................... (11)
The first differentiation of the state variables is written from Eqs. (5) and (7);
{Xl} X,
) |~V TN =DM KM=l 2
X3 {o}
x4 tol

The structural parameters can now be identified according to the method proposed by Hoshiya and Saito®.
The parameters which must be identified are the stiffness {X;} and damping {X,} terms. The values for each
mass also are unknown, but the number of variables contained in the state variable { X} can be condensed by
use of the relation? ;

¢ _lemlby/m) oo _(e/ma/ms) (13)
m. - kl/m1 ’ ms - k1/7n1
The continuous differential equation, Eq. (12), is rewritten as follows;
DXl 1 e
K (14)

By use of the following relation, we can descretize the continuous equation and get the state transition
matrix'®

[A“]zg_:z ............................................................................................................... (15)
[@]=I+At'[A]+A2§2°[A]2 ........................................................................................ (16)

in which {f} is a vector function and A} the time interval.
Even when ground motion stops after an earthquake, a structure continues to oscillate because of free
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vibration, Because the right side of Eq. (5) becomes zero during free vibration, the equation of motion is

IMUX L CUX BT Gm=0] cevreeeeee oo 17)

Therefore, we can identify the system parameters by eliminating the input term incorporated in the state
variable. The right side of Eq. (12) is replaced by
10!
=M [ChXt—[M] KX}
{0}
{0}
The components of the observation matrix vary depending on the type of record selected, Displacement

or velocity records may be used as observation data. We have selected displacement records, for which the
observation matrix is

1 0 0 Q-eeees 00
H=l0 1 0 Q-+---- IO TR R PO (19)
0O 0 1 Q-reeee- 00

(2) Analysis procedure and results

In solving for the unknown parameters included in the state variables, we adopted a weighted global
iteration procedure® to obtain a stable solution regardless of the initial conditions. This procedure
accelerates the convergence speed by multiplying the estimated error covariance with weight and renews
the initial condition with global iteration. To decide the number of global iterations we investigated the
process of convergence. The model is the same as in Fig. 2 ; its structural parameters are given in Table 2.
The input time history is shown in Fig. 3,

The input motion is simulated by multiplying the white noise by an evolutionary function, The spectrum
of this wave has the characteristics of white noise. The response time histories for each story are shown in
Fig.4(a), (b), (c). These waves are added with the white noise of the intensity of 1 % of mean square
value of the response which observed at the first story. The input motion is identified by regarding the
calculated displacement responses as observed records. The process of convergence {k;/m}(i=1,2,3)
was checked to confirm the stability of the solution. These parameters are identified using response time
history 2 seconds from 12 sec to 10 sec. This process, given in Fig,5, shows that stable solution are
obtained in a few global iterations. But the parameters don’t converge to the exact value. This is because
the convergence is affected by the beginning time of filteration, filtering period and the ratio of signal and

Table 2 Parameters of the structural model. B a-
i}
o
mass 1 mass 2 mass 3 E v Y
o
nass:m; ":u 00 | 4.00 | 8.00 | 12.00
(tosecz/my | 10 1o 1o TINE (SEC)
(a) mass 1
damping T 2,
coeff. :s; 40 40 30 Eo' A
. A N
(t s?c/m) g LANAVATAY LA
spring )
const. :d; 3000 {20001}11000 10.00' ll.luu T a.'oo T 12:00
(t/m) TIME (SEC)
{b}) mass 2
-0 T 8
B o = e
53 e
[8] o w
o < V V
<3 < —
. 0.00  4.00 8. 00 12.00
b T T T T T { TIME (SEC)
0.00 4. 00 8.00 12.00 (c) mass 3
TIME (SEC)
Fig.3 Input ground acceleration, Fig.4 Response displacement at each story of the structure,
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noise level, In this case, the lower story has smaller ratio of the response and the noise. We used the
weight W=20, the resulting number of global iteration being 4~6. The covariance of the observation
error, R, was chosen to be between 107° and 1072

It is difficult to determine the exact time at which the input motion becomes zero from the response time
history. To surmount this, we used the free vibration part of the response time history as the input to the
Kalman filter and filtered it inversely for the time axis. Fig.6(a) and (b) show the identified results
obtained by filtering the record for the portion from ¢, to . ; i, representing the beginning and i, the end
of filteration. Fig.6(a) corresponds to the parameter of stiffness |k/m} and (b) to damping {c/m}.
Their abscissas are t.. The line parallel to the i, axis expresses the exact value. The results are not
effected strongly by the choice of the beginning time, %,. In this case, the range of time, f, which gives
reliable values for the identified parameters is 12~6 sec. We even can identify unknown parameters from a
rough estimate of , which represents a response amplitude of close to zero. A filtering period of only a
few seconds is sufficient.

The input time history from 12 sec back to () sec is shown at the bottoms of Fig.6(a) and (b). In
comparison with the upper three values, the deviation of the estimated from the exact value becomes large
about the time when the effect of the input motion is included in the response time history.

Because noise information is needed when using the Kalman filter, an estimation of the value of noise
convariance must be made in advance. The accuracy of this identification was examined by using the initial
value that coincides with the exact value (Fig.7). The parameter examined is damping, c¢,/m,. In this
case, the results of identification do not deviate from the exact value. Filtering starts from 12 sec and
continues inversely on the time axis. The observation error covariance, R, representing the covariance of
noise added to the observation value in Eq. (2) or Eq. (4), must be very small in the time range in which
the effect of the input motion can be ignored. The identified results, however, gradually diverge from the
exact value as filtering proceeds. If we make the value of R larger, the identified results again coincide

X
m o | 7sec 010sec 7
.
500 *158 3 6 o x
300 K J I R
LS 400 . M [ 4, 0 . X
my 5 oot 2 g N ¥
K m + 2 ag 2 3 . § & o
200 : 22 200 . x 8 o 3
f/ m x
:.P/r—- 2 100 : °° 2 initd {o 7sec o]0sec
F4 b—initial value te 1 '""3”1” hex 8 ell
y t
1001 # oo o LS 2o 8 6 & vatue le9 sz e
& m3 12 10 8 6 4
5 X
n 7 °
0 7 o10sec 6 ° °
123 4 56 7 8910 N NPT °
400 29 a2 ¢’ . « x
NUMBER OF GLOBAL ITERATION 24 ° o
K, 300 ° m, TEE R T.
. - ° .
Fig.5 Convergence process of {k/m} for the number of m 200 ——y—g—4—#—% x 3 °
lobal iterations. 100 “ 2 N
8 l—initial value LI te 1he initial ¢ 3§Sec E}(]Jsec
| P2 [ I T ¥ valee Plag  Lj2 te
127 10 8 6 [
7
4.5+ P 102
o—o 1076 6
R{o—a 1074 C35
- 400 © 7sec ©10sec — 4
Cy o—o 1072 thlx 8 eq) my 5 ®
—_ K3300 s g a2 3._A_‘..._e_ﬁ_3———
my 13200 2 °
initial . §o7sec ol0sec
100 s 11— " value 028 : t
T initial value e o9 - e
4.07 1z 10 & 3 3 12 10 8 3 ]
t E, el 2 il
2 g
12 10 8 6 4 T 8 3 ¥ 2 1o 8§ 3 3
TIME (sec) TIHE (SECH T1IHE (SEC)
s . cps s . i b)damping {¢/m}
Fig.7 Transition of identification results for various (a)stiffness {k/m} (b)damping {c/m}
observation error covariance Rs. Fig.6 Relation between the identification results and i,, Z..

AN7s



248 K. Toki, T, SATO and J. KivoNno

with the exact value. But even when a large value is assumed for R, the initial value can not be maintained
beyond 6 sec. This is because the input motion affects the response time history even if the input amplitude
is small ; but, we can bury this small amplitude in the inherent noise. When the amplitude of the input motion
is so small as to be negligible, we can assign a very small value to R. When the inverse filtering time passes
10 sec and the input motion can no longer be ignored, we can choose a larger value for R and eliminate the
effect of that motion. By making the value of R large, we can keep the identified values constant only up to
6 sec without deviation from the initial values. This explains why the identified values become unreliable
from 6 sec (Fig.6).

3. ESTIMATION OF INPUT MOTION

(1) Equation for the error filter

Once the structural parameters have been identified from the response aloneé, we can calculate the input
time history by using both the identified parameters and responses”.

Consider the following system ;

{X(t)}=[A]{X(t)}+{u(t)} ............................................................................................. (20)

{y(t)}=[H]{X(t)}+{v(t)} ................................................. e e euea ettt eaeaas ( 21)
Assuming that {X (%)} and {u(%)| are step functions and multiplying Eq. (20) by e %, we get

{Xt}z[¢t|t—1]{Xt—1l+{ht—1} .......................................................................................... (22)

(Y= LH XA Vi oveeveeseesesemses ettt 23)
{hy in Eq. (22) is given by

{ht—l}=£4t[¢(t9 T U (T T v reerrerrr e (24)
As y(i) is the step function, the numerical integration of Eq. (24) becomes

o R L @IIUL AL v vovveversemmessessess etttk (25)

Eq. (22) is rewritten

e X[ e T Kp_s} +oveeeeereesemseemesseme ettt (26)

Because the exact value of {X,} is unknown, we replace {X,} and [ &,, ,]{X, .} with {X(#| #)} and {X (2] z—1)}
(see Table1). Eq. (26) is rewritten

{ht—llz{X(tl t)}—{X(tI t—l)f ....................................................................................... (27)
We can obtain the input motion y(%) by substituting Eq. (27) into Eq. (25).
{u}Z%[Q}—I“X(tI t)}—{X(tl t—l)}} ............................................................................ (28)

(2) Method of analysis
The equation of motion for the model shown in Fig. 2 is represented by Eq. (5). The matrices [M] [C],
and [K] are given by Eq. (6). Transforming the upper two rows of Eq,_ (12), the state equation becomes

1X0} =[ 0 I ]ixl}
X, [ =IMI'[K] —[MI'[C]]|iXd

In section two, the input term, —{i;}, was incorporated in the state transition matrix with the unknown

{0}
— it}

parameter, Here the independent term has been set up as the input term. The observation equation is given

by

1y;=[31{’x“

(X

If the equation of motion is expressed as Eq. (29) and calculations are done with the Kalman filter

_H V} ...................................................................................................... (30)

algorithm shown in Table 1, the input motion is obtained from Egs. (28).
(3) Analytical results
The structural parameters used to estimate the input motion are shown in Table 3, the exact values being
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Table 3 Structural parameters used to estimate the input motion.
exact value

K1 Ks K1 K3
mi m2 ms3 mz ms3

€ Co2 Cs
m me ms

exact value 300. 300. 300. 200. 100. 4.00 4.00 3.00

case 1

(tzot0secy | 29| 27| w9 | 99. | 8.5 | .78 [ 31 §4 case 1
go
case 2 2
(10~ 8s¢9) 306. 284. 298. 191. 98. 5.82 | 4.18 | 3.40 ©
4-
Table 4 Identified structural parameters. 0 2 4 6 8 10
K 4 case 2
il alelnlalelc 3
m1 m2 m3 m2 m3 m1 m2 m3 g0
v 4
El Centro 270.| 311.| 308.| 200. 99.1 3.97] 3.99] 3.03 0 4 6 8 10
(60~55sec) Time (sec)
(sﬁifsésec) 264.| 305. | 307.| 199.| 100. | 3.55| 4.01] 3.01 Fig.8 Estimated input motion.
—_— [=3
= £ oS- —°
= o = = o
) Z 3)1 E S g.' g m'-
8'-'2:- 8 s Vi (of—bg % vl
< x3 v . . i %8 a8
=1 'o.00 | 20.00 | u0los | 60.00 E "u 0 oTe T e
'0.00 | 20.00 | 40.00 | 60.00 TIME (SEC) o 00 | 20 00 wor oo 1 . 0.00 40. 00 60. 00
— TIME (SEC) o () mass 1 Tine ey 0o Tine (seC)
o (a) T 5, S (2) =8
W &8 wo 527
= Z D_'%MM"‘«_-— iz g MM&’MWW
as 2.
E)b & ZE as
— B T T T T T 1 O <&
= 0.00  20.00  80.80  §0.00 —O 'o.00 | 20.00 ' wo.oo | s0.00
. TIME (SEC) S TIMNE (SEC)
oo - (b) mass 2 a © {b) mass 2
& i3 = T8
R o £ 3
Cu P é
o > o
== T “ — <
d e TS ¢ F
0.00 20.00 40.00 60.00 0. 00 20.00 40.00 60.00
FREQUENCY (HZ) TIME (SEC) FREQUENCY (HZ) TINE (SEC)
(b) {c) mass 3 ) {c) mass 3
Fig.9 Input accelerogram and Fig.10 Response displacement Fig.11 Input accelerogram Fig.12 Response displacement
9 P g g P . A
its Fourier spectrum at each mass and its Fourier at each mass (Taft).
(El Centro). (El Centro). spectrum (Taft).

given in the first row, The parameters in cases | and 2 are the identified results obtained by use of the
response time history shown in Fig, 4. Case ] corresponds to results obtained by filt\ering the record from
12 to 10 sec, and case 2 from 10 to § sec. The maximum error for the identified parameters is about 10 %5,
The input motions estimated with these parameters are shown in Fig, 8, the similarity of the waveforms is
such that individual waves can not be distinguished at a glance. A comparison of the times corresponding to
peak acceleration, the shapes of the waveforms, and the duration of each shows that any differences are
negligible.

The El Centro (1940) and Taft (1952) records were used as input accelerations in the model shown in
Fig. 2. We identified the structural parameters and estimated the input motion from the obtained responses
alone. The structural parameters identified are shown in Table 4 ; the input motion was estimated with
these parameters. The input accelerogram of the El Centro record and it’s Fourier spectrum are shown in
Fig-9(a), (b). The response at each mass is shown in Fig. 10(a), (b), (¢). The accelerogram and
Fourier spectrum of the Taft record correspond to Fig. 11 (a), (b) and the responses to Fig.12(a),
(b), (c).

The estimated input motions and Fourier spectra are shown in Figs, 13 and 14. Structural parameters
were identified using a portion of response time history for 5 seconds ; from 60 to 55 sec. A comparison
with the original time histories shows that the results are in good agreement for the evolution of the
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Table5 Peak accelerations and the times T 8 3 3
. L § 2 k3
corresponding to the original and e N
estimated waves, 2w 2 7s
= =4
- T T T 1 R T T T T T 1
Recorded Estimated 'o.00 | 20.00 = 40-00 | 60.00 .00  20.00  40.00  60.00
Motion Accelerogran TIME (SEC) TIF)E (SEC)
S (@)
Peak Acc. W
341.7 328.1 9
(gal) =
El Centro OB
Time of -2
Occurrence 2.41 2.41
(sec) 0—"23
=
Peak Acc. fas =
152.7 145.3 o
(gal) oY%
Taft bt ¢
Time of 10" 0 i 1
Occ(t;;r(‘;nce 9.12 9.12 FREQUENCY (HZ) FREQUENCY (HZ}
{b) (b}
Fig.13 [Estimated input motion and Fig.14 Estimated input motion
g g P
its Fourier spectrum and its Fourier spectrum
(El Centro). (Taft).

waveform, the time corresponding to the peak acceleration, and the duration. But, beyond 10 Hz, high
frequency spectral components show some discrepancy., The explanation is that the noise contained in the
response signal is assumed to be Gaussian white noise and its spectral level is flat. The Kalman filter
eliminates noise from the contaminated signal in the time domain. If we reduce the white noise component in
the spectrum logarithmically, the relatively small amplitude component (beyond 10 Hz in Figs. 13 and 14)
must decrease markedly.

The peak acceleration values and corresponding times for the original and estimated waves are given in
Table 5 for the El Centro and Taft records. The differences in peak acceleration are 4 % (El Centro) and
5 % (Taft) of the values for the original waves ; unremarkable differences. Although the peak acceleration
is somewhat underestimated, the corresponding times for acceleration coincide. The decrease in the high
frequency component therefore has very little effect on the identification of the input motion,

4. CONCLUSIONS

Our results can be summarized as follows :

(1) Structural parameters can be identified merely from the coda part of the response time history
without information on the input motion, Truncation of a portion of the coda has a negligible effect on the
results,

(2) The free vibration part of the response is filtered after the input motion becomes zero. But, when
the amplitude of the input motion is relatively small, the effect of this motion can be eliminated by chosing
the error convariance, R, larger.

(3) We extended the use of the Kalman error filter for the one-degree-of-freedom system proposed by
Ott and Meder to a multi-degree-of-freedom system and investigated the efficiency of the latter procedure
for estimating the input motion from the structural response and the identified structural parameters, In
our procedure, even when the identified structural parameters deviate by about 10 25, the effect on the
estimated input motion is negligible,

(4) The input accelerogram obtained from the error filter shows a decrease in amplitude for
frequency beyond 10 Hz. But even for the accelerogram, for which identification usually is more difficult
than that of velocity and displacement, the difference in peak values is only about 4~5 %.

(5) The serial procedure described makes it possible both to identify structural parameters and to
estimate the input motion from the seismic response of a structure alone.
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