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- OPTIMAL CONTROL OF STRUCTURE SUBJECT TO EARTHQUAKE
LOADING USING DYNAMIC PROGRAMMING

By Muisuto KAWAHARA* and Keiji FUKAZAWA**

The purpose of this paper is to present an investigation of the optimal control of
structure subject to earthquake loading. The control of structure in civil engineering
results in the tracking problem, so that this paper deals with the solution of the tracking
problem for the descrete-time linear quadratic control. The dynamic programming is used
for the solution algorithm. Several numerical examples paring the regulator control
and various approximating control methods lead to the conclusion that the structure can be

efficiently controlled by the methods presented in this paper.
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1. INTRODUCTION

In recent years, a number of researches to control the response of structures subject to earthquake
loading applying the artificial control force resisted to the external loading have been presented’~*,
Almost all of the optimal controls presented previously are based on the regulator control. Namely, the
control is carried out based on the differential equation of state which does not include the
non-homogeneous term resulting from the earthquake load. Contrary to this, the optimal control of
structure subject to earthquake loading should be treated as the tracking problem, which includes the
non-homogeneous term in the equation of state derived from the earthquake loading®-®.

The aim of this paper is to present an investigation of the optimal control of structure by the tracking
control based on the dynamic programming. In the optimal control of structure, the performance index to
estimate the efficiency of control should be introduced. For this index, the quadratic integral value of
structural response and control force is used, Because the structural response and control force can not be
small simultaneously, control force is determined as to minimize the performance index so that the
appropriate relation between structural response and control force can be found, For the solution
algorithm, the dynamic programming is effectively used,

In the tracking control system, it is neccessary to know all of the external load in advance to determine
the optimal control force. But, in case of earthquake, for example, it is almost impossible to obtain all of
the external load in advance, Since the optimal control force can not be determined before or on occassion
of the earthquake, this control system is inconvenient to use for an actual control. However, in other
words it can be said that the optimal control force in the tracking control system is the most effective
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control force because it utilizes all of the external loads. Therefore, the computed results obtained by the
tracking control are considered the standard results for comparative study with the results of other control
systems, Thus, the results can be considered as one of the important information in the field of
engineering. In this paper, the sub-tracking and instantaneous controls are also introduced for the purpose
of actual controls. Those control systems are based on the solution algorithm of the tracking control
obtained by the dynamic programming. The computed results obtained by the regulator control are also
represented for comparison. By numerical examples carried out in this paper. It is concluded that the
sub-tracking control knowing the earth quake load back to short time before the control instant results in
almost the same as that obtained by the tracking control.

2. CONTROL PROBLEM

In this paper, the linear quadratic control technique with fixed terminal time is applied to the control of
structure subject to an earthquake loading. The equation of motion of the controlled structure can be
described as follows.

[M]{y}.f.[C]{Q}.F[K] {y*:[V]{u}_[M]{EI¢ ..................................................................... ( 1 )
where [M], [C] and [K] denote mass, damping and stiffness matrices, respectively, [ V] is the matrix
which gives number and place of controllers, {y}and {u}express displacement and control force vectors, and
{E} is the vector which gives the direction of an earthquake, and { is earthquake acceleration. The mass
[M] and the stiffness [K] matrices can be derived by the conventional finite element method, For the
damping matrix [C], the appropriate assumption may be introduced in the later section, The performance
index is defined as follows.

BYAIFCIENES
J_Z[[z'/(t) #(t)

where i, denotes the terminal time, and S, T are the weighting matrices, The performance index J is

S

_Hu(t)}T T{u( t)}] Al oo ( 2 )

composed of quadratic integral values of the structural response and control force, which are contradictory
each other. Namely, according as the control force tends larger, the structural response may be smaller,
Both structural response and control force can not be small simultaneously, The optimal control of
structure is to find the appropriate relation between structural response and control force. Therefore, the
control problem in this paper is defined to find the vector {1} which minimizes the value of J in Eq. (2)
under the condition of Eq. (1) with the appropriate boundary and initial conditions, Because Eqs. (1)
and (2) are the control system, in which non-homogeneous term derived from the earthquake loading is
included, this type of control system is called as the tracking system,

3. MODAL ANALYSIS OF EQUATION OF MOTION

Eq. (1) can be transformed into the discrete form by the modal analysis, The circular natural frequency
@ can be determined by

@ [MIGISLR b e eeeerereses ettt (3)
The modal matrix [ Y], that is the assemble of the colum niatrix of the modal vector derived by Eq. (3), is
obtained and can be normalized as follows,

[Y]T[M][Y]‘—‘[I], [Y]T[K][Y]=szl .................................................................. (4), (5)
where the matrix [J] denotes the unit matrix, and expression[ ] means the diagonal matrix. Here, the
transformation is introduced as follows,

IA=TYG TSIV ITLY T weeeeereereeseeseeeee ettt (6), (7)
where {q}, and {x} represent the modal displacement and modal control force vector respectively.
Substituting Eqs. (6) and (7) into Eq. (1), premultiplying by [Y], and assumming that the damping
matrix [C] is

[Y]T[C][Y]zz hfw] ................................................................................................... (8)
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in which A is the damping constant, the decoupled equation of motion can be described in the following

form.

{q‘}+2 hfw] f(ﬂ'l-faﬁ] {q}=[Y]T[V][V]T[Y] {x}-—[Y]T[M] 7 Dl TR PN ( 9)
Let the total time [0, #,] to be analized be divided into a number of short time intervals A by time points,

one of which is expressed by k. In the short time interval Az, the earthquake acceleration may be assumed
as a linear function of time % :

A el R R N (10)
where g and b are given constants. Substituting Eq. (10) into Eq. (9), and integrating Eq. (9), the
modal coordinate and modal velocity at the k+1 th time stage g(k+1), ¢(k+1) are given in the following

form,

[l _[re ] riathl] + o oy [[ 2 |ovrniga,

1g(k+1) F, {a(k)} D,
E;
[E,,][Y] [M]{E}bk] .......................................................................... (11)

where

, 1
Fx—ﬁ exp (—hwt)cos(wv1—h t—op)

mexp( wt)cos (wv —(@rt 9)
G;:ﬁexp(—hwt)sin(wx/l—hz )
G;z_x/li—h’ exp (—hwt)sin(wv1—~H t—¢)

U S _ iy S
E,= wzmexp( hwt)cos (wv1—h? ¢ ¢E)+w2

1
Ey=————=-exp(—hot)cos(wv1—~h" I —(p:+
i P © w+ o)

N S _ 3T t_2h
D,= ST exp (—howt)cos (wV1—h® t— @+ PR
N S z 1
D”_wzﬁ—_}feXp( hot)cos(wv1—h t—(pp+ @) +w
L 2h—1 W h L VIR

=tan =g@r=tan =tan
& 2hvI—hnF 5 a-w ° R
in which g(k) and ¢(k) denote the modal coordinate and the modal velocity at the % th time stage

respectively,
4. OPTIMAL CONTROL OF STRUCTURE IN DISCRETE TIME

Regarding the calculated displacement and velocity vectors at the kth time stage as the initial vectors of
the k+1th time stage, the displacement and velocity vectors at the k+1th time stage can be rewritten in

the following equation,

X(k‘l‘ 1)=AX(k)+ BU(/SH‘ C(k), X(o)z [ {q(ogi] .......................................................... (12)
k=0,1,2,--,N—3,N—2,N—1

where

A=[§§: g] Clk)=— [[gjm [M]{E}a;ﬁ[iv][Y]T[M]iE}bk]
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B= [ o ][Y]T[V][V]’[Y] X(k)= [ :gggi]
Ulk)=Ix(k}

Eq. (12) is generally referred to as the discrete-time equation of state, and defined from Qth to N —1th
time stages. This equation is composed of the modal coordinate, modal velocity and modal control force.
The discrete-time performance index, which is a function of the modal coordinate, modal velocity and
modal control force, can be written as follows,

J=§{XT(]€+1)QX(1€+1)+ UT(k)RU(k)} ....................................................................... (13)

where
Q=Y'SY, R=V'Y'TYV

The optimal control of structure is redefined to find out the generalized optimal control force which
minimizes the performance index J of Eq. (13) under the constraint of Eq. (12). The generalized optimal
control force is specified in each vibration mode. The final optimal control force is determined by
superposing the generalized optimal control force in each vibration mode. If the optimal control force can
be obtained in the vibration mode, the modal coordinate and the modal velocity can be calculated by Eq.
(12). The original displacement and velocity are determined by superposing the modal coordinate and the
modal velocity respectively.

5. DYNAMIC PROGRAMMING

To determine the optimal force, the dynamic programming techique has been employed”. Total time of
the optimal control problem is divided into N time stage, i.e., from 0 to N—1. The performance index of
kth time stage j is defined as follows.

jk=[XT(k+1)QX(k+1)+ UT(k)RU(k)] ......................................... ST P (]4)
and, also J, is defined in the following form.
Jk=jk+jk+1+"‘+j-1 ............................................................................................... (15)

If k is put zero in Eq. (15), then J, is completely coincident with J in Eq. (13). At N —1th time stage, the
optimal control force U,,r(N —1) is determined as to minimize Jy_,. Then at N —2th time stage the optimal
control force U,p(IN—2) is also chosen as to minimize the index j,_ ,4min J,_,. This operation can be
carried out until Oth time stage, according to the routine of the dynamic programming shown in Fig. 1. Asa
result, all of the optimal control forces can be obtained. In each

M-1 th time stage

time stage optimal control force can be derived in the following

minimize

Vool T ==, 00

way.
(1) k=N-1
The performance index at N —1th time stage can be written i
as H-2 th time stage | _—
Jr=[X(N)@X(N)+ UTN—DRU(N —1)] -++++vvvccvese- (16) R
Using Eq. (15), one obtains that
I =Jn-1 e
The optimal control force U (N—1) is determined as to A ;
minimize J,_,. The optimal control force Upp{N —1) can be o t_hjt:_m"e ,:(J—}JMT—‘J& o Cien
written as;
Uorr(N —1)=—(R+B"QB)B"{QAX(N —1)+ QC(N —1} winir s
.............................................. (17) U

Substituting Eq. (17) into Eq. (16), min Jy_, can be obtained.
min Jy_, =X (N —-1D)w, X(N—1)+ X (N—-1)Y,C(N—1)
+CIN-1YIX(N—1)+C'(N—1)Z,C(N—1)
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where
w=ATQA—A"QB(R+B"QB)'B"QA
Y,=ATQ—A"QB(R+BTQB)'B"Q
Z,=Q—QB(R+B"QB) 'B'Q

After the transformation W,=Q and W,=w,+Q W,, Y,, Z, become :
Wi=Q+A"W,A— A"W,B(R+ B"W,B)"'B"W,A
Y.=A"W,— A"W,B(R+ B"W,B) 'B"W,
Z,=W,— W,B(R+ B"W,B)"'B"W,

(2) k=N-2
The performance index at N —2th time stage can be written as
Juer=[XTIN—1)QX(N —1)F UTN —2)RU(N —2)] ++rr+rrevrrerrrsarrarunrrsrumminiiituiiniiiiiin, (18)

Using Eq. (15), one obtains that
Ju2=Jn-2t jua
By the principle of optimality the optimal control force Uy (N —2) can be determined as to mini-mize
Ju-z e
Tnvea =D weaFIEIL Jy g e reee e e (19)
The optimal control force Uypr(N—2) can be expressed as :
Uopr(N —2)=—(R+ B"W,B)"' B'"{WiAX(N —2)+ W,C(N —2)+ Y,C(N —1)}
Substituting Eq. (19) into Eq. (18), min Jyv_, can be obtaind.
min Jy.=[X"(N —2)W, X(N —2)+ XN —2)Y,C(N —2)+ C"(N —2) YIX(N —2)
+CN—2)Z,C(N —2)+ X"(N —2)a,C(N —1)+ C"(N —1)a; C(N —2)
+C(N—2)8,C(N —1)}+ C(N—1)87C(N —2)+ C"(N —1).C(N —1)]

where
W,=Q+A"W,A—A"W,B(R+B"W,B)"'B™W,4 a,=A"Y,—A"W,B(R+B"W,B)"'B"Y,
Y,=A"W,—A"W,B(R+B"W,B)"'B"W, B.=Y,—W,B(R+B"W,B)"'B"Y,
Z,=W,— W,B(R+B"W,B)"'B™W, »=27,—Y,.B(R+B"W,B)'B"Y,

in which Y, is as follows :
Y, =A"W,—A"W,B(R+B"W,B)"'B"W,
Uper{N —2) can be transformed into the following form,
Uoer(N —2)=—(R+ B"W,B)'B"[W,AX(N —2)+ W,C(N —2)
+HA™— A"W,B(R+ B"W,B)"' B"IW,C(N —1)]
(3) k=N-3
The optimal control force Uypr(IN —3) can be obtaind as :
Uopr(N —3)=—(R+ B"W,B)"'B"[W,AX(N —3)+ W,C(N —3)
+{A"™—A"W,B(R+ B"W,B)"'B"|W,C(N —2)+{A"™— A"W,B(R+ B"W,B)'B"}
X{A"— A"WoB(R+ B"W,B)"' B"IW,C(N —1)]
(4) k=N-n
Similary, the general term of optimal control force at N —nth time stage can be expressed in the
following form,
UOPT(N_n)=_(R+BTWn—lB)‘lBT[Wn—1AX(N_n)
+ W, C(N—n)
+Y..W,..C {(N—(n—l))}
+ Yoo Yo sWaos C{N —(n—2))
+ Yo 2 Yo s Yuo Wn C {(N_(n_?’))}
+ Yo Yo s Yn i Vo sWosC {(N_(n_‘l))}

+ Yas Yn_3 Yot Yn_s Yn—a"' Y. Y, YoWoC(N—l)] .................... (20)
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W=Q
W,= Q+ATWn_lA—ATWn_lB(R_|_BTWn_lB)—lBTWn_1A S (21)
Yn=AT—ATWnB(R+BTWnB)'IBT ................................................................................ (22)

where Eq. (21) is generally referrred to as the discrete-time Ricatti equation.
6. SUB-TRACKING AND INSTANTANEOUS OPTIMAL CONTROLS OF STRUCTURE

Using equation (20), the control force at the first time stage can be expressed as follows,
UOPT(O)=_(R+BTWN—1B)_IBT’WN—IAX(O)

+ W1 C(0)

+ Yy Wy_.C(Q1)

+ YN—2 YN—3 WN—3C(2)

+ Yoo Yoos Yo W  C(3)

+ Y2 Yoos Yuou Yos WasC4)

4 Vo Yuos Vs Yaos Yicor o Vo Vi Yo Wy CUN — 1)} ovvvvnvmvnmeeninnieiiins (23)
As is detected out in Eq. (23), it is obvious that the earthquake load during all control time duration must
be known to determine the optimal control force at the first time stage U,p(0). Contrary to this, it is
almost impossible in the actual control problem of structure to control the structure on the condition that
the earthquake load of all control time duration must be known at the beginning of the control. Therefore,
it is strictly necessary to present the method in which the control of structure can be carried out knowing
that a part of earthquake load or an instantaneous earthquake load, at the time only on which the control
force will be applied. The control method in which only a part of earthquake load is required to be known in
advance is referred to as the sub-tracking control system in this paper. The optimal control force of the
sub-tracking method is derived from Eq. (23), neglecting the terms after the jth time stage, in which ¢
means the time stage until which the earthquake load should be known. The optimal control force of the
sub-tracking method can be written in the following form.

UOPT(0)=_(R+BTWN—lB)_lBT{WN—lAX(O)

+ Wy, C(0)

+ Yv-a Wiy_,C(1)

+ Yu2Yns WN_3C(2)

+ :

Voo Yo Vee Yassmo Yooy Wmgany Gl v veeomeesmse oo (24)
where W and Y are the matrices depending on the number of control stages N. In case of the optimal
control of structure of earthquake loading, it is almost impossible to know the number of control stages in
advance, In the same reason, W and Y can not be obtained in advance. However, according as the number
of control stages increase, W and Y can be considerd as constant matrices. Finally, the control force of
the sub-tracking control at kth time stage can be expressed in the following form.

Uoer(k)=—(R +BTWSTB)_IBT’W51AX(’$)+ WsrC(k)
+ YsrWsrC(k+1)
+ Y& WsrC(E+2)

+ Y WerCk+ L)l ................................................ (25)
k=0,1,2,---,N—3,N—2,N—1
where Wy, means the constant matrix, which is the last value of the backword computation, The optimal
control based on Eq. (25) can be carried out knowing the earthquake load until ;th time stage in advance. If
the earthqeuake sensor is located at the place far from the structure, it is practically possible that the
earthquake load before the jth time stage will be known. If i is put zero in Eq. (25), the instantaneous
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optimal control is obtained. Namely, the control force can be approximately determined using the measured
earthquake load at the first time stage only, i. e,

Uorr(k)= —(R+BTWSTB)_IBT{W31AX(IC)+ WSTC(k)} ......................................................... (26)
k=0,1,2,--,N—3,N—2, N1

7. FRAMED STRUCTURE USED IN THE NUMERICAL CALCULATION

The ten story framed structure, as shown in Fig. 2, is used in the following numerical calculations. The
column and beam characteristics of the structure are shown in Table 1. The consistent mass is used. The
control force is applied on the roof. The natural frequencies and the vibration modes of this structure are
shown in Fig. 3. The superposition is carried out for the first four modes, The earthquake subjecting to
this structure is the El-Centro earthquake which is shown in Fig. 4. The maximum earthquake acceleration
of this earthquake is 319 (gal).

8. TRACKING CONTROL

The numerical computations of control of structure by the tracking control system has been performed,
The response of structural displacement and the control force are calculated assuming the following
conditions, The weighting matrix S that is related with the response quantity in the performance index is
selected as a unit matrix. The values of the weighting matrix T which affects the value of control force in
the performance index is selected as (.1, 0.01 and 0.001.

The time histories of the controlled displacement of 5th, 7th, and 10th floors of the structure and
corresponding control forces varing T=0. 1, and Q. 001 are computed and illustrated inFigs. 5 and 6. Solid
line represents the controlled displacement. For comparison, uncontroled displacement conputed is shown
in the figures by dotted line, The control force applied to the structure is also shown in the figures.
Comparing these two figures, it is seen that the displacement of structure can be remarkably reduced
according as the control force increases. For example, the maximum displacement of the top floor can be
97 9% reduced in case of T=0. 001 comparing with that of the uncontrolled structure, Table 2 represents
the maximum displacement at each floor and the maximum control force computed varing T=0.1, 0. 01 and
0.001. The maximum displacement can be 6 % reduced according as the maximum in an average control

Table1 Column and beam characteristics of the structure. >
column beam
L0 Aen?)  I(ea®)  Alce?)  [(cn®)

* 1P— 4F 1500 3.125 x10* 100.0  0.833 x102
SF— 7F 1200 1.600 X107 100.0 0.833 x 107
8F—-10F 100.0  0.333 x10° 100.0  0.833 x 10
damping constant = 0.05
Young's modulous = 2. 1x10° (kg/cod)

{2.058x10 (N/cud )

unit weight per volume = 7.85x10 2(kg/':m:‘) 1 - HOOE - MODE 2 - MoDE 4 - MODE
[7.693x10% (N/caP) | NATURAL PERIOD  NATURAL PERIOD  NATURAL PERIOD  NATURAL PERIOOD

= 1. 14491(5) = 0.3418(5) 0.17421(S) = 0. 0993 (5)

(W) 0°0¢

Fig.3 Natural period and vibration modes.

x 10% (gal)
4.0

@’L
5SS
. BT T T T e T T G T T T T T T T o (se)
Fig.2 The ten story framed Time
structure, Fig.4 El-Centro Earthquake Accelation used in the tracking control.
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control system; T=0. 1.

20.00

L

0.00

DISPLACEHMENT {CHN)
=20.00
1

20.00

7F

0.00

DISPLACEHENT (CM)
~20. 00

20.00

5F

0. 00

-20. 00

o~ M& M I‘AM e WAAV/\ ﬂ!\v
R

(9.8N) .
CONTROL FORCE (K@) w10' DISPLACEMENT (CH)
50. 00

0.09

-50. 00

r T
e.00 t.00 2.\(30 3 nu 4 oa S. uu 6. nn 7. cu 6. uo s on 10.00
TIHE (5)

Fig.6 Displacement and control force in the tracking
control system; T=(. 001.
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Table 2 Maximum displacement of structure and maximum control
force in the tracking control system,

maximum displacement (cW) max

T k
1 2F 3F 4F 5F 6F 7F 8F 9F 10F [&,g}l]
0.63 1.24 1.92 2.64 3.34 4.00 4.66 530 58 285.6
0.27 0.49 0.76 1.04 1.28 1.54 2.02 2.36 2.5 552.9
0.11 0.19 0.27 0.37 0.44 0.44 0.2 0.47 0.5 .7

o]

o
oo
R8s
=D

0.
0.0
0. 00

force 100 (kg) increases. In these numerical examples, it is found that there exists an appropriate control
force such that the structural response can be reduced within the limited range.

9. COMPARATIVE STUDY

Comparison among the tracking control, sub-tracking control, instantaneous control and regulator
control systems are carried out, The regulator control system is the closed-loop control so that the control
force is regulated knowing only of the response of structure. Therefore, the control force of the regulator
method is derived by Eq. (26) neglecting the terms of earthquake acceleration. This control system is often
used in the conventional control analysis, For comparison, the results obtained by this method will be
shown. In the sub-tracking control system, it is assumed that the earthquake load must be known in
adavance until jth time stage, where { is a pre-assigned constant, which corresponds to the time AZ-{ in
an actual time. In the numerical computation presented in this paper, the time Af- i is assumed as (. 2. If
the value of ; is taken to be zero, the instantaneous control system can be obrained. Namely, the
instantaneous control system is the tracking system assumming that the non-homogeneous term dose not
affect the response except the value at the time that the control force is applied.

It is necessary to introduce an index for comparative studies to evaluate the effectiveness of the control
system. For this purpose, the quadratic integral value J, is introduced.

J¢=:§1XT(/E+1)QX(IC+1)} .......................................................................................... (27)

Namely, J, is the quadratic integral value of the structural response only. This value is not a function of
control force, If T varies, then the structural response obtained by each system varies. Therefore, T can
be chosen in the manner that the quadratic integral value J, is almost coincident with that of the tracking
control system with 7=0.1.

The time histories of the displacement at floors 5, 7 and 10 of the structure and control force in each
control system are illustrated in Figs, 7~9. Comparing the displacements and control forces in Fig. 5 with
those in Fig. 7, it is seen that the displacements are almost coincident whereas the control forces are
slightly different. Thus, the regulator control system is inefficient than the tracking control system.
Comparing the results in Fig.7 and those in Fig.8, almost the same characterstics can be found.
Comparing the results in Fig. 5 and those in Fig, 9, the structural displacement and control force in the
sub-tracking control system are almost the same as those by the tracking control system.

The maximum displacement of the structure, the maximum control force, parameter T and the quadratic
integral value are shown in Table 3. Looking at the maximum control forces by the regulator and the
instantaneous controls, the maximum value by the instantaneous control is 8.5 % lower than that by the
regulator control, Thus, the instantaneous control is more efficient than the regulator control. Comparing
the resulted maximum structural displacements obtained by the tracking and the sub-tracking controls,
almost the same value can be computed by both methods in spite that the maximum control forces are 7.8 %
different. Fig. 10 shows the diffrence of the control force between the tracking control and other control
systems. In this figure, the discrepancy of the control system by the sub-tracking control is 71 % smaller
than that by the regulator control. Considering the facts stated in sections 8 and 9, it is found that the
control force by the sub-tracking control knowing the earthquake load back to 20th time stage before the
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Fig.9 Displacement and control force in the sub-tracking control system.

Table 3 Maximum displacement, control force and values

T and J, in eachcontrol system.

maximam displacement (c®) max

J T p?
k T
1F 2F 3F 4F 5F 7F 10F [é.g)l]

tracking control 0.18 0.63 1.24 1.92 2.64 4.00 580 285.6  0.100 743372.9
regulator control 0.21 0.80 1.36 2.07 2.78 4.02 547 735.6  0.030 743066.5
instantaneous control  0.21 0.70 1.35 2.05 2.75 4.00 5.50 673.2 0.036 744247.1
sub-tracking control  0.18 0.62 1.19 1.82 2.45 3.61 5.3 310.0  0.085 743888.9

o Tt O AEGULATOR CONTROL
——— INSTATANEOUS OPTINAL CONTROL
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Fig. 10 Difference of control force between the tracking control and other control systems.

control instant is almost the same as that obtained by the tracking control.
10. CONCLUSIONS

The solution algorithm for the tracking problem of control of structure has been presented based on the
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dynamic programming. The outcomes derived by the numerical computations are as follows,
a) The displacement of structure can be remarkably reduced using the tracking control,
b) There exists an appropriate control force such that the structural response can be reduced within
the limited range,.
¢) Using the sub-stracking control,  almost the same control as the tracking control can be performed;
d) Even by the instantaneous .control, the smaller control force can be obtained than that computed

by the regulator control.
e) Regulator control is not recommendable because the control force obtained is 157 % larger than that
by the tracking control.
Considering the above outcomes, it is shown that the tracking control of structure can be effectively
performed by the dynamic programming.
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