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A SIMPLIFIED ANALYSIS AND OPTIMALITY ON THE STEEL
COLUMN BEHAVIOR WITH LOCAL BUCKLING

By Akio HASEGAWA*, Hidenori ABO**  Mohamed MAUROOQOF***
and Fumio NISHINO****

A simplified analysis is given for the interactive steel column behavior with local
buckling. The analysis utilizes the explicit solution of the elastic beam-column of
Perry-Robertson type, newly incorporating the effective width concept of component
plates. The results are proved to predict the available tests well with engineering
accuracy. Optimality is examined from the views not only of ultimate strength but also of
energy absorption to benefit on the earthquake-resistant design. The results indicate that
allowing the occurrence of local buckling may not give the advantage much for the design of
steel columns in ordinary civil engineering structures,

Keyword : interactive column strength, local buckling, effective width, optimization,
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1. INTRODUCTION

It has been common practice for the design of steel compression members that the occurrence of local
buckling is restricted by the width-thickness ratio requirements of plate components, enabling the safety to
be assured only against the overall column strength. There is a new trend, however, that the efficient
design only be made possible by incorporating the interactive behavior of steel columns between overall and
local bucklings, as exemplified by the appendix C of the AISC specification”, which is based on the AISI
specification?, and the recent JRA specification”. Although the reason for this trend seems to pursuit
more economical design by enlarging the freedom of design for the determination of geometries of
structural components?, the previous optimization study” indicates that the inclusion of local buckling does
not necessarily lead to efficient design, as far as the existing JRA and AISC interactive formulae are used.
However, it is also said that both JRA and AISC formulae have been obtained on intuitive basis without any
theoretical rationale.

This paper presents a simplified analysis of steel column strength, focusing on the interactive behavior
with local buckling. The present analysis utilizes basically the explicit solution of elastic beam-columns
called sometimes Perry-Robertson formula, incorporating collectively the influences of all the initial
imperfections including residual stresses by the so-called ‘equivalent initial deflection’ as hinted before by
Rondal and Maquoi® and the influences of local buckling by the effective width concept for buckled plate

* Member of JSCE, Dr. Eng. Associate Professor, Division of Structural Engineering and Construction, Asian Institute of
Technology (G.P.0O. Box 2754, Bangkok 10501, Thailand), on leave from Univ. of Tokyo
** Member of JSCE, M. Eng., Tokyo Electric Power Company (Chiyoda-ku, Tokyo), formerly graduate student of Univ. of
Tokyo
*** Dr. Eng., formerly Graduate Student, Department of Civil Engineering, University of Tokye (Bunkyo-ku, Tokyo)
**** Member of JSCE, Ph. D., Professor, Department of Civil Engineering, University of Tokyo, (Bunkyo-ku, Tokyo)

363s



196 A, HAsecawa, H, ABo, M, MAUROOF and F, NIsHINO

components. The results are compared with the experimental data available and the aforementioned
existing design formulae, Further, the optimality of steel compression members with local buckling is
examined based on the present analysis, from the views not only of ultimate strength but also of energy
absorption to benefit on the earthquake-resistant design.

2. SIMPLIFIED ANALYSIS

It seems complicated at present to evaluate the locally buckled column behavior with all the imperfections
in inelastic finite displacements from the very rigorous theoretical standpoint”. The use of effective width
concept for buckled plate components can reduce the problem to the inelastic finite displacement column
analysis which is rather tractable for numerical computations®-® but still involves the tedious and
cumbersome procedures with considerable nonlinearities.

To avoid those complexities for practical purposes, a simplified analysis is performed for the interactive
column strength with local buckling, simply utilizing the well-known Perry Robertson formula® which is
obtainable explicity from the initial-yield condition of elastic beam-columns. The influence of local
buckling is reflected by the effective section comprizing effective widths of buckled plate components, and
that of all the initial imperfections including residual stresses is covered by the concept of ‘equivalent
initial deflections’.

(1) Column analysis without local bucking

According to the beam-column theory, the maximum compressive stress gp,, of a simply supported
column is given by

P B
omax =4+ P ] (1)

in which P=axial compressive force, A=cross sectional area, J=moment of inertia, c=distance
between neutral axis and compressive fiber end, §=equivalent initial deflection defined later, P,=Euler
buckling load(=#2EI/L?, L=length of column, and E=Young’s modulus. Column strength P, is
determined simply by the condition that gy, reaches the yield stress g, of steel as

P, Py oc

o'max—__oy:?‘*__l:_}‘)u—/?;h‘l‘ ..................................................................................... (2)
Solving Eq. (2) with respect to P, leads to
1 nEl (. Acd)_ mEL (L Ao\ EL )
Po=y Ao+ L (1+4£%) \/[ay+ T (1+4£2)] " o (3)

which is well-known as the Perry-Roberston formula.

In order to reflect both the inelastic behavior after the initial yielding and the influences of all the
imperfections present in actual steel columns in this very simplified formula, the initial deflection is
replaced by the equivalent initial deflection in Eq. (3 ), the values of which are to be determined from the
experimental and/or theoretically exact data regarding the ultimate column strength P, without local
buckling available in the literature.

(2) Column analysis with local buckling

A similar treatment as for the column analysis without local buckling is made possible for the inclusion of
the influence of local buckling by introducing the reduction of the original cross sectional shapes through
the effective width concept of locally buckled plate components. For the simplicity of analysis, it is
assumed that the effective area of mid-section is used throughout the column length and the neutral axis of
the effective section does not shift from the original position, From this premise, the interactive column
strength P, with local buckling can be given in a similar way as Eq. (3) by

I L LTS L [ g
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in which A, and [, are effective cross sectional Iy .

area and effective moment of inertia respectively, m
Since the effective area is evaluated by the effec- T

tive widths of buckled plates which are functions . ]h

of the stresses arizing in the mid-section, de-

pending on the axial compressive force P, an in- t
P

teractive procedure of successive substitutions is
Fig.1 A Centrally Loaded Box Column.

needed to solve Eq. (4).
3. COMPARISON OF TESTS WITH Table1 Test Data!? and Present Analysis.

SlMPLIFIED ANALYSIS Spec imen ig Al Puex < 1 ) Puth Puth
Py L /e Py Puex
(1) Test data
Test data of concern are available from $-35-22 | 0.640!0.686 | 0.852| 0.002720.852 | 1.000
Reference!” | which includes the experiments of $-35-33 | 0.647) 1.014 | 0.722| o0.00272 ] 0.680 |0.942
the built-up box shaped columns of the HT 80 S-35-38 | 0.648{1.177 | 0.621| 0.00272 | 0.592 | 0.955
l d h . F F h d 5-35-44 0.648 | 1.36¢ 0.544 0.00272{0.514 0. 947
steel grade as shown in Fig. 1. From the test data $-50-22 | 0.948|0.683 | 0.740| 0.00163|0.740 | 1.000
excepting those for the stub columns and eccen- s-50-27 | 0.918| 0.840 | 0.672| 0.00163 | ¢.745 | 1.109
tricically loaded columns, the plate slenderness j, $-50-33 | 0.927|1.026 | 0.670| 0.00163 | 0.658 | 0.982
of compression flanges and the column slender- R-50-22 | 0.913 0.686 | 0.743| 0.00173 | 0.743 | 1.000
. R-50-27 | 0.924 | 0.840 | 0.731| 0.00173 [ 0.737 | 1.008
ness A, (see Eqgs. (5) and (11) for definitions) R-50-33 | 0.920|1.026 | 0.709| 0.00173]0.694 |0.979
are given in Table 1 as well as their experimental R-50-38 | 0.923 1 1.180 | 0.8639] 0.00173 | 0.641 | 1.003
ultimate strengths. The names of specimens indi- R-50-44 | 0.925]1.363 | 0.579| 0.00173 | 0.558 | 0.964
| B~

cate S and R for square and rectangular sections R-65-22 | 1.1860.683 | 0.593| 0.00122|0.593 | 1.000
. . R-65-27 | 1.201|0.840 | 0.637| 0.00122 | 0.564 | 0.885

respectively followed consecutively by the values
) R-65-33 | 1.20311.026 | 0.585| 0.00122 |0.517 | 0.884

of column slenderness ratio I/ and flange width

thickness ratio /. Yield stress g,=741 MPa,

Young’s modulus £ =215000 MPa, and Poisson’s ratio y=(.24 have been obtained from the tensile
coupon tests. The welding residual stresses followed the well-known distributions, and the measured
initial deflection was nearly half the sine wave with the average of the maximum magnitude being 2. 6/
10 000 of the column length. The local ultimate strength of plate components has been reported to be
well approximated by

Tul 0TS o
., py <1.0 (5)
with

A _1 /al2 (1—v% b
T Ek t

in which k is buckling coefficient of plate component.

(2) Simplified analysis for test specimens

Eq. (4) is used to predict the theoretical interactive strength of specimen columns, incorporating the
appropriate evaluationsof the equivalent initial deflection and the effective width. The equivalent initial
deflection is determined from the results of test columns of »/t=22 whose ultimate strength is governed
only by the overall buckling. On the other hand, the effective width of plate components is evaluated from
the results of stub columns of L/ r=10 whose ultimate stgrength is governed only by the local buckling.

a) Equivalent Initial Deflection

By definition, equivalent initial deflection depends on all the compound factors which influence the
overall column strength such as residual stresses, geometrical initial deflections and eccentricities,
slenderness ratios and others. Noting that the residual stresses and geometical crookedness did not vary
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each other in the test specimens, the equivalent initial deflection (§/L), now is considered a function only
of slenderness ratio, and is determined from Eq. (2) as
P, P.\ o

(5/L)e:<1-m) (1_?6) cP:L ............................................................................... (6)
Substituting the test results of P, and others for the columns of b/t=22 into Eq. (6) yields the
equivalent initial deflections of concern as given by Table 1.

b) Effective Width

The effective width of a purely compressed simply supported plate is introduced under an arbitrary

stress ¢ between buckling and ultimate states of plate components as

e Cm b
be=Cr lz(l_yz)\/jtsb (7)

which corresponds to

oer _ C? kn’ E t? ou_ C
Tszfzcsz'ﬁsl'o' 7y_—__A_lSl_O ..................................................... (8’3, b)
for the buckling and ultimate stress evaluations respectively”?. The effective width of Eq. (7) is a
modified version from the original von Karman formula, in which the reduction factor C (<1) is introduced
in order to reflect the initial imperfections present in actual steel plates, and further the yield stress g, is
replaced to an arbitrary stress o in Eq. (7) to account for the situation of plate components below the
ultimate level.

Through the substitution of C==0.75 from Eq. (5) and y=0. 24 relevant to the reported test results

combined with £=4.0, the effective width of Eq. (7) is expressed as

For the ease of computations, the effective width of a purely compressed plate presented above is
applied also for the web of a box column which is actually subject to bending and compression. The average

compressive stress of the web is used for the evaluation of effective width Eq. (7)), and moreover half the

B

effective width is equally allocated to both sides of edges. Therefore, the effective widths of a box section
as shown in Fig.2 are given as

k /| E
= B e < b,
ben=Cr 20— s th<b, Y o Jew

3 E ’ =ulll
ben=Cry [~ o [T bp Kby | oo 10) oo l s
1202V 0n | j :I,,
TnEb " ——j Ea
bew=Crey = [ E <0, | E L
12(1—v%) Ow i - -l JlEer
te2
¢) Prediction and Comparison of Tests : E :I
Prediction of the interactive column strength with local " Ll\ -1
buckling for test specimens is made possible through le e
Eq. (4), using the equivalent initial deflection as Fig.2 Effective Area of A Box Column.

tabulated in Table 1 and the effective width evaluation of
Eq. (10) with C=0.75. Table 1 includes the theoretical predictions of P,;, non-dimensionalized by P,=
og,A and the ratio with experimental results P,,,/P,.;. It is found from the table that the present

simplified analysis, as a whole, gives a safer approximation with engineering accuracy for the interactive
strength of concern,

4. SIMPLIFIED ANALYSIS AND EXISTING DESIGN FORMULAE

In the previous chapter, the theoretical results have been obtained on the basis of the equivalent initial
366s
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deflection and the effective width determined from the test data in order only to compare with the
experimental ultimate strengths. Having confirmed that the theory has been well correlated with the test of
Reference'” the theoretical strength now is evaluated for the design purpose based on the initial deflection
and the effective width relevant to the design values adopted in current practice, and then is compared with
the existing design formulae from the JRA and AISC specifications. Yield stress ¢,=235 MPa is used
hereinafter in the simplified analysis, unless otherwise stated.

The following design formulae are adopted in this paper for the overall column strength g,, the local
buckling stress ¢, and ultimate stress g,, of plate components, the first two of which are relevant to the
JRA specification, as

1.0 (0.0< A, <0.2)
%: 1.0—0.545(Ag—0.2) {0.2<C AgmS10) e rererererermrenmimeenin ettt 11)
* 1100773+ 2 (1.0< A)
with
_1 Jou L
Ag= VE r

for the overall column strength without local buckling?, in which r is the radius of gyration with respect to
the weak axis,
Ge _ 1.0 OO AT (12)
oy 104974 (0.7<A)

for the locoal buckling stress® and

1.0 0.0<A=0.7)
0.7/h 0.7<A)
for the ultimate stress of plate components. Based on the above independent column and plate formulae, the
interactive column strengths with local buckling are given as follows in conjunction of the JRA and AISC
interactive formulae and the present simplified analysis.

(1) JRA interactive formula

JRA specification stipulates the interactive strength denoted by g,, as

Gug™ GgOy] Gy e+ e eemeae e e e e ettt 14)
in which ¢, and g, are the relevant independent overall and local strengths of columns. The appropriate
selection of the local strength depends on whether the local buckling stress or ultimate stress of component
plates influences more on the interactive column strength. The current JRA specification adopts the local

buckling stress g, only for a safer approximation, Here in this paper, both cases are considered as

Oy
Oy

Gust ™ Ggue/ G+ v nr e s s e e e et et ettt ae e, (15)
with the adoption of local buckling stress ¢, for the local strength and
am———dgam/ay ........................................................................................................... (16)

with the ultimate stress g,, of plate components.

(2) AISC interactive formula

AISC specification stipulates the interactive strength denoted by Ous S

Gun ==L 0gdogmy 7 ms e e e e e 17
which indicates that yield stress ¢, appeared in the formula of gy is replaced simply by the local strength g,.
Although an alternative selection of g, and g, is possible in a similar way as for the JRA formula, only the
case of g,, is considered here as

OunT= L Oaloymopy =+t H et et e (18)

(3) Simplified analysis relevant to design formulae

The equivalent initial deflection and the effective width for the simplified analysis are determined
consistent with the basic independent design formulae as given in Eqs. (11-13). The square box shaped
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columns of equal thickness are assumed for computa-
tions,

The ultimate column strengths without local buckling
obtainable from the beam-column Eq. (3) for the
initial deflections of &/ L=0. 001-0.005 are shown in
Fig. 3 in comparison with the overall column strength
formula of Eq. (11). Noting from the figure that the
beam-column curve of §&/1,=0. 003 is most fitted with
the design curve of Eq. (11), the equivalent initial
deflection is taken as (§/L).=0.003. As for the
effective width, Eq. (10) is used with the reduction
factor C equal to (. 7 consistent with the local ultimate
stress formula of Eq. (13).

The results of simplified analysis using Eq. (4)
with those parameters determined above are shown for
the plate slenderness of A,==(0.7, 0.9 and 1.1 in Fig. 4
which also includes the results of JRA and AISC
interactive formulae. It is observed from the figure
that the AISC formula ) most coincides with the
simplified analysis () with some deviations in the
inelastic range of A,=0.5-1.0. The JRA counterpart
(@ is located at a considerably safer side from the AISC
formula and is deviated more from the simplified
analysis. In contrast to the formulae (2) and (3) both of
which are based on the ultimate stress of plate
components of Eq. (13), the current JRA provision @)
of Eq. (15) with the local buckling stress of Eq. (12)
deviates much from the simplified analysis particularly
for larger plate slenderness, reaching half the results
of simplified analysis. Considering the above results
coupled with the fact that neither JRA nor AISC
interactive formula has coherent rationale from the
theoretical standpoint, the proposed simplified analy-
sis can be a substitute to the existing design procedure
for the design of the interactive column strength with
local buckling,

Fig.5 summarizes the results of the simplified
analysis for the plate slenderness of A,=0.7-1.1,
which have been proved to predict the experimental
ultimate strength with engineering accuracy. With the
aid of curve-fitting procedure, the curves shown in
Fig.5 have been represented by the proposed design
formula in Reference®. It should be remembered,
however, that the proposed formula in Reference” may
not be appropriate for the design purpose because of
the rather complicated appearance of design formula

based on the numerical computation only for square box
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columns. Simplification may be required for the expression of design formula even at some sacrifice of
accuracy. Meanwhile, just changing the standpoint, direct use of the revised Perry-Robertson formula of
Eq. (4) with local buckling may preferably be left to individuals for respective design procedures, taking
the circumstances into account that the recent proliferation of micro computers drastically facilitates to
handle this sort of rather simple equation in design offices.

5. OPTIMIZATION STUDY

As described in INTRODUCTION, it has been reported that aliowing the occurrence of local buckling
may not necessarily lead to efficient and economical design, as far as the existing JRA and AISC
interactive formulae are concerned. Since the present simplified analysis has given somewhat different
results compared with those existing formulae, optimality for allowing local buckling should also be
examined for the adoption of the present simplified analysis.

(1) Uttimate strength

Consider square box shaped columns of equal thickness again, Load maximization technique is used for
optimization, in which the maximum load carrying capacity under constant weight of materials gives gthe
optimum configuration of an interested structure®. In order to facilitate the computational efficiency and
versatility, the following non-dimensionalized quantities are introduced as

L b B e
R =4b =97, -+ (19)

Assuming thin-walled sections, the functional form of the present analysis can be reduced to
a'uzayf(R, [ oy R R (20)

Considering that the column length be prescribed beforehand in ordinary design, constant value of R is
equivalent to the constant volume of material. Given the steel grade of material indicating g,=const, the
optimality condition can be reduced to the very simple unconstraint optimization with a single unknown (x)
and two prescribed parameters (R and g,) as

Uumx:,,yng L)) e emme e @1)

Numerical computations with the range of R=1 000-20 000 have been made for the steel grades of SS 41
(6,=235 MPa) and SM53 (g,=352 MPa) whose results are shown in Fig.6 in a similar manner as
presented by Usami and Fukumoto'”. Fig. 6 indicates the relation between the interactive column strength
of the present analysis and the plate slenderness A, for the range of R=1000-20 000. Naturally the
interactive strength is observed to decrease as the value of R increases, that is, the total volume of column
decreases, The maximum interactive strengths at optimum for the respective constant volumes (R=
const. ) are indicated by circles, which give the relation between the maximum strength and the optimal
plate slenderness. It is noted that the value of optimal plate slenderness not greater than . 7 does not cause
local buckling as clear from Eq. (12). The values of R beyond which the optimal plate slenderness is found
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in the range with the occurrence of local buckling are 8 000 for SS 41 steel and 4 000 for SM 53 steel. It
should be remembered, however, that the interactive strength obtained for this range with local buckling at
optimum is less than the value of (. 7 ¢,, while the maximum plate slenderness of (). 7 which does not cause
local buckling is always obtained for the interactive strength greater than (.7 o,

As explained, there exists the range where allowing local buckling may produce more economical benefits
for the design of square box columns, perhaps in the range of the column strength less than (.7 o,, when
the present analysis is applied. For ordinary design circumstances, however, it is not frequent that the
column design is made in the range of its strength less than (.7 g,. Moreover, even for this restricted
range of ¢,<0.7 gy, it is observed from the figure that the interactive strength does not change so much
even when the plate slenderness varies in the neighborhood of its optimum value.

(2) Energy absorption

In addition to the optimal characteristics from the view of ultimate strength, it is also worthwhile to
examine its optimality in terms of energy absorption to
be reflected on the earthquake-resistant design, In

n
»

order to grasp the general features of the energy
absorption of steel columns up to the maximum load,

(1073)

n

o
e O
oy

the folloiwng non-dimensionalized value is introduced

5,

in the sense of relative magnitude as

E:[Pu PAw/(PyL)-wweereeeererememereessanienn. (22)

in which w is defined as mid-section deflection of

S

Energy Absorption E
o
o

column, and is given by

&
(1-PL*/ n°ElL)
which is consistent with the beam-column solution of
Eq. (4).

The energy absorption of Eq. (22) is computed for a
variety of column slenderness 2, and plate slenderness
A, and is shown in Fig. 7. The results indicate that the
energy absorption E increases as J, increases with the
maximum between A,=1.5 and 2. (. This trend results
from the fact that the maximum deflection sharply
increases as A, increases, although the ultimate

. : 0.0 0.5 1.0 1.5 2.0
strength itself decreases. It is also observed that the Plate Width-Thickness Ratio : A,

T

0.5 1.0 135 2.0
................................. (23) Column Slenderness Ratio : A
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w= 8

Fig.7 Energy Absorption of Square Box Columns,
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energy absorption does not depend on A, for A,<0.7
without local buckling.

Fig.8 Optimality in Energy Absorption,

Next, choosing the energy absorption as the objec- 25 1.0

(107

tive function, optimization is performed in a similar
way as the aforementioned load maximization. The
results are given in Fig. 8, indicating that the optimal
width-thickness ratios with the maximum energy

: P/Py

0.5

Load

absorption for the respective constant volumes are
found clearly in the range of 4,<<().7 which does not
cause local buckling. It is also noted that increasing the

Energy Absorption E
o

0.5

width-thickness ratio beyond this range monotonically 0.0 0

. a 5 10 15
decreases the energy absorption, R=Li/A (10%)
Combining the optimization in the sense of energy Fig.9 Comparision of Emax an Pmax.
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absorption with the previous results of strength optimization, one can give the comparision between the
maximum energy absorption E... and its corresponding applicable load P at E=FE,, as well as that
between the maximum applicable load P,,, and its corresponding energy absorption E at P=Pp,,, all of
which are examined with respect to constant R, and the results are shown in Fig_ 9. From the figure, it is
said that the ratios not only of P (at E= FEax) / Prmax but also of E (at P=Ppax) / Enax are apparently less
than (. 5 in the practical range of computatins. It is remembered from this fact that one can not obtain the
optimal solutions which simultaneously satisfy both the maximum strength capacity and the maximum
energy absorption, although the respective optimum solutions have been found basically in the range of
width-thickness ratio which does not cause local buckling.

All the facts described above may imply that the disadvantage of prohibiting the use of larger plate
slenderness with local buckling is not remarkable. Since the design procedure incorporating the interactive
column behavior with local buckling tends to become rather complicated, the width-thickness ratio
requirements which prohibit the occurrence of local buckling may preferably be used for ordinary civil
engineering structures. It should be noted, however, that the practical importance of allowing the
occurrence of local buckling may appear in the design of large scale and/or specialty-oriented steel
structures and components,

6. CONCLUDING REMARKS

The interactive column strength with local buckling has been investigated using a simplified analysis
which utilizes the explicit solution of the elastic beam-column theory of Perry-Robertson type,
incorporating all the imperfections such as residual stresses and geometrical crookedness by the equivalent
initial deflection, and also reflecting the influence of local buckling through the use of the effective width
concept,

The comparison of the present analysis with the test data available has indicated the sufficient accuracy
with engineering satisfaction for the ultimate interactive strength of concern.

The results of the present analysis have been compared with the existing design formulae of the JRA and
AISC specifications, It is found that the AISC formula with the local buckling effect evaluated by the
ultimate stress of plate components, not by the local buckling stress, coincides most with the present
analysis with some deviations in the inelastic range of ,,=0. 5-1. 0. The use of the local buckling stress for
the effects of locally buckled plates on the interactive column strength is found to be inadequate, as
indicated by much deviations of the JRA original formula from the present analysis.

The optimality of square box shaped columns for allowing the occurrences of local buckling has been
examined in terms not only of ultimate strength but also of energy absorption based on the proposed
simplified analysis. The numerical study indicates that there exists the range where allowing local buckling
may produce more economical benefits for ultimate strength, perhaps in the larger slenderness range of the
column strength less than (.7 g, of less frequent use of ordinary structures. Noting further that the
interactive strength does not change so much even when the plate slenderness varies in the neighborhood of
its optimum value in this restricted range, the conventional width-thickness ratio requirements which
prohibit the occurrence of local buckling may preferably be used for ordinary civil engineering structures.
This opinion has also been confirmed from the view of energy absorption to benefit on the
earthquake-resistant design, suggesting in the present study that the optimal width-thickness ratios with
possible maximum energy absorption are found clearly in the range which does not cause local buckling.
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