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OPTIMUM DISTRIBUTION OF INPUT ENERGY AND STIFFNESS
IN EARTHQUAKE RESISTANT DESIGN FOR SHEAR
MULTI-MASS SYSTEMS

By Tomonori OHNCO* and Takashi NISHIOKA**

Based on the control of input energy distributed to each story in multi-mass systems, the
relation between input energy and structural characteristics is examined fundamentally to
establish the rational earthquake resistant design. As the results of numerical analyses,
the plastic response of shear multi-mass systems can be treated as the linearized systems in
apparent, in the case of equal stiffness distribution between upper and lower story, The
theoretical formulation based on the modal analysis is developed to the elasto-plastic
systems and the method of input energy control is discussed. The optimum distribution of
input energy and stiffness in the earthquake resistant design are also presented.

1. INTRODUCTION

In the earthquake resistant design of structures, it is important to balance aseismic safety with
economy. Many research works in the past have focused mainly on the aseismic safety, and the methodology
for securing safety in earthquakes were developed by various analytical and experimental studies, In the
earthquake resistant design, however, it is required to use the rational and simple method taken account of
both economy and aseismic safety.

As structures behave inelastic under severe earthquake motion, the methods based on the energy concept
are studied recently to reduce the structural damage and to secure the aseismic safety of structures. While
the restoring force of structures and earthquake motion show very complicated features, the method
mentioned above is very applicable in the earthquake resistant design because the energy quantity
combining the structural strength and the plastic deformation capacity can be easily obtained. Akiyama”~?
and Matsushima®-® proposed the optimum distribution of yield-shear coefficient to estimate the structural
damage by the cumulative ductility factor of structures, Suzuki et al. ®-? proposed to use the structural
strength and the maximum plastic deformation as an index for earthquake resistant design.

On the other hand, the authors suggested that the inelastic response of structures in elasto-plastic
multi-mass systems subjected to seismic motion could be estimated easily by the input energy, and
presented how to control the input energy of structures”. The purpose of this study is to describe the
applicability of these results to the earthquake resistant design, and the relation between the input energy
and the characteristics of shear multi-mass structures, taking account of the restrictive conditions for
both aseismic safety and economy. The method how to decide the optimum distribution of input energy and
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104 T, OHNO and T. NISHIOKA

structural stiffness are also presented. The medium and low rise structures were chosen in this study. It
has been already made clear by the authors that the structural safety and the extent of damage of structures
in severe earthquake motion can be examined by the quantity of input energy, and that the quantity of input
energy depends on such structural constants as mass and stiffness®. In this study, the structural safety is
evaluated by the relation between the input energy and the energy absorption capacity of structures, and

the economy, another important design factors, is evaluated by the total stiffness of structures,

2. FUNDAMENTAL CHARACTERISTICS OF SHEAR MULTI-MASS SYSTEMS ANALY-
ZED BY MODAL ANALYSIS

If a multi-mass system having non-linear restoring force could be replaced properly to an equivalent
linearized system, it would be possible to evaluate analytically the response of inelastic structures with
modal analysis. In a multi-mass system having several masses, the fundamental mode of vibration is
predominant in structural response, compared with higher order of vibration mode, This indicates that the
total input energy and the input energy distributed to each story can be controlled by handling the
fundamental mode of vibration in multi-mass systems?®,

(1) Basic formulation of input energy and stiffness distribution in multi-mass systems

Fig. 1(b) shows the fundamental mode of vibration in the given
multi-mass system of Fig. 1 (a). When the response of multi-mass

system can be evaluated properly by the fundamental mode of Un-1
vibration, the input energy distributed to each story E,(i=1—N) ! /
due to sinusoidal excitation is defined by the mass distribution of ii/
the system and the fundamental mode of vibration, and the input Euz /

energy to the system (the total input energy FE) is given as
E=2E;. The ratio of the input energy distributed to the i-th
storyL E; to the total input energy E (the input energy
distribution) can be written as”
Ev/E=mu/imiu+ molu,— uy)+-eeeeeee
+matun— Uun ) (a) Model of (b) First mode.
E/E=m{ui—ui )/ imiu+mylu,—w) e (1) r:a:‘;l:;;tem.
+mduy—uy L =22

Fig.1
where y,=the i-th element of fundamental mode of vibration.

Defining the mass ratio of each story to the first as a;=m.;/m, and the ratio of the input energy

distributed to each story as ,=E,/E, Eq. (1) is expressed by the following simultaneous equations as
the function of vibration mode |y}

al(l_l/bl)_al Ay Q3 A3— Ay ot Qy Uy

At a,/b: Q— @y —a,/ b, as—a, - ax Uy
i =) e (2)

a,—a, a,— Qa; Aa— Qg v aN‘aN/bN Un

When the value of g, and b, are given, the eigenvector {u,} of the fundamental vibration can be obtained
from Eq. (2), and then if the fundamental natural frequency « and the mass m; are given, the stiffness of
each story k;, can be determined for the given modes of vibration fual

]ﬁ:wzg M/ Uy
) N N
kz:wé ;_imjuj/(ui_uifl)] (N > L) e (3)

ky= (l)szuN/(uN_ uN—l)
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The total stiffness of the system is given by K:'}N:', k.. The ratio of the stiffness in each story to the total
stiffness (the stiffness distribution) k,/K is determined from the total stiffness K and Eq. (3).

(2) Relation between the stiffness of each story and potential energy

When the system in Fig, 1 (a) is vibrating with the fundamental mode of vibration shown in Fig. 1 (b), the
potential energy V of its system is given as follows.

V:{k1u¥+k2(u;—u1)z+ ...... +kN(uN_UN—1)2[(/}$/2 .......................................................... (4 )
where ¢, is the generalized co-ordinate. In determining the stiffness of each story, one of the important
problems is how to distribute the stiffness properly. By using the Lagrange’s multiplier, let us obtain a
condition which minimize the potential energy under the condition that the total stiffness K is constant.

Introducing a parameter A, the functional F of V, A and k; is formed as follows

F=V+Ak+kyt--- + kv—K)

When the functional F is minimized, the condition that minimize V can be obtained from following equations,
oF _ oF

ak,-_ﬁzo (i=1,2, -+ ,N)
The general relation among elements in the fundamental mode u, is then given as follows.
we=ieu, (i=1,2, N ) e (5)

The shape of fundamental mode which satisfies Eq. (5) has an inverted triangle. On the other hand, when
the mass and the natural frequency are given, the fundamental mode of vibration which minimize the total
stiffness K can be obtained from the following equations.
oK oK .. 9K _
ou, Ou. OUy
As a result, the same relation as Eq. (5) is obtained. That is, the fundamental mode of vibration which

0

minimizes the total stiffness also minimizes the potential energy V for the given mass distribution. In other
word, if the fundamental mode of vibration is chosen as an inverted triangular shape (u,=i-u,), both total
stiffness and potential energy of the system become minimum. The energy distribution in this condition is
given by the following equation,

E: _ m; .
e e (i=1,2. UIN) oo (6)
The stiffness of each story is introduced by Eq. (3) and (5) as follows.
N
Fim @3 oy (1,2, weeeee, N oo (7)

(3) Relation between input energy distribution and stiffness distribution

In the case of a multi-mass system having constant mass distribution, the input energy distribution to
each story is given by Eq. (1) as follows.

E/E= u./iu, F (U — Ur)+ (U — ug)+eeeee +{uyv— uN—l)}: U/ Uy

Ei/E:(ui_ui—l)/uN: =2 T (8)
As the element in the fundamental mode of vibration is given by the formula of y,= i %, in Eq. (5), the
input energy distribution to each story is given by

E./E=u,/N-u,=1/N=b,

EL/E:{L—(LA——I)}HI/N-ulzl/N:bL g T (9)
The input energy distribution becomes equal (E,/E=-=FE,/E=-+=Ew-E=1/N).

The natural frequency  is varied with the difference of stiffness distribution. In the case of the system
having constant mass and constant stiffness distribution, its fundamental mode of vibration is determined
by using the modal analysis as follows.

uz=(2—mw2/k)u1

ws={2—mo’/ kY —1lu,

w=l2—mo*/kF—2—mo'/ Elu,
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It is clear that the above equations give the different relationship of y,=i-u,. Accordingly, the input
energy to each story is not equally distributed.

As stated above, when the fundamental mode of vibration is to satisfy the relation of 7,= i- u,, the total
stiffness of the system having constant mass distribution becomes minimum. There is a relation ;> k;,, in
the stiffness of each story. The stiffness of each story in the system having constant mass is given by the
relation y,;,,—u,=u, as follows.

ki:{N(N_}_l)__ i(i—l)}-mw2/2 .................................................................................... (11)
where j=1,2,---, N. That is, in the case of the system in which the mass and the natural frequency are
given, the potential energy of the system reduce to the minimum, if the input energy is to be distributed in
proportion to the mass distribution, In this case, the stiffness of each story is given by Eq. (11) in the case
of the constant mass distribution.

3. OPTIMUM DISTRIBUTION OF INPUT ENERGY

When the fundamental vibration is predominant, the eigenvector of fundamental vibration mode can be
determined by handling the input energy distribution to multi-mass system. Once the eigenvector |u,} is
determined, the eigenvalue problem can be applied to find the stiffness of each story.

Considering the structural safety from the relation between the input energy and the energy absorption
capacity of structures, an idea is to maximize the energy absorption capacity and at the same time to
minimize the amount of the input energy. For example, it is attained easily to make the stiffness size in the
lowest story relatively weak?, but the concentration of the input energy at a specific story makes the
stiffness size of other stories increase and cannot reduce the total stiffness.

(1) The most suitable distribution of input energy

The elementary stage of earthquake resistant design is to obtain the stiffness distribution, and the most
suitable design at this stage is to define the stiffness distribution so as to satisfy both safety and economy.
As described in chapter 2, the stiffness of each story is obtained by distributing the input energy to each
story. The optimum design based on the energy concept is to plan the most suitable distribution of input
energy. In the following, the way of determining the most suitable distribution of input energy is discussed
to reduce the total stiffness and to make use of the energy absorption capacity effectively.

According to the experiments by the authors® on the energy absorption capacity of reinforced concrete
columns, the energy absorption capacity up to the ultimate state was mainly evaluated by the behaviour of
axial tensile reinforcement. The experiments also showed that the energy absorption capacity was
proportional to the stiffness of structural members, In the elastic behaviour of structural members, the
energy absorption capacity was not exactly proportional to the stiffness, but in the plastic behaviour the
energy absorption capacity up to the ultimate state of
members was proportional to the size of elastic stiffness. Table 1 Stiffness distributtion for Case 16,

The energy absorption capacity of the j-th story W, was Case| 1 2 3 4 5 6
k, {2825 | 3491 | 5057 | 8184 | eso4 | 3327
Ky |2825 | 2618 | 3035 | 4464 | 2268 | 2767
kq|2825 | 1746 | 1011 | 744 | 1134 | 1648
Tx;|ea7s | 7855 | 9103 | 13392 | 10206 | 7742

then assumed in proportion to the elastic stiffness of each
member k;, by W.,=a-k, (a=the proportional constant),
As an example, let us take a 3 DOF system having three

equal masses. Using the six types of the fundamental mode

of vibration and taking the natural frequencies as the same o | 2:25| 3.12 | 5.56 [10.92 | 7.41 3
constant value w=27/0.6=10.47 (1/s), the stiffness of § 1.80 |{2.12 ||2.48 {[2.71 | [3.75
each story and the total stiffness were obtained as shown in g L . L 4

Table 1. Case ] in the table is the one that the stiffness of ‘“

each story has constant value, and Case 6 is the one that the

fundamental mode of vibration has an inverted triangular Eimé:ffi?;izg&gitsz/m)

shape, The total stiffness becomes minimum naturally in w =2m/Tg =27/0.8sec=10.47/5
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Table2 Rate of stiffness distribution and energy distribution for Casb -6,

Case 1 2 3 4 5 6

i ki/K | Ej/E ki/K | Ei/E ki/K | Ei/E ki/K| Ei/E ki/K | Ei/E ki/K | Ej/E

1 10.333 |0.444 10.444 | 0.321 | 0.556 | 0.180 { 0.611} 0.092 | 0.667 [ 0.135 | 0.430) 0.333
0.333 10.356 | 0.333|0.359|0.333}0.266 {0.333]| 0.157 | 0.222 | 0.371 { 0.357 | 0.333
3 10.333 |0.200 ] 0.22210.320[0.111 | 0.554 ] 0.056| 0.751 | 0.111 | 0.494 | 0.213 | 0.333

[N)

Table3 Values of (k,/K—E.,/E)-100. Case 6. Table 2 shows the stiffness distribution
Case 1 5 3 4 5 6 and the input energy distribution defined by the
fundamental mode of vibration. For convenience, if
1} -11.1 | +12.3 | +37.6 | +51.9 | +53.2 | + 9.7
2 [-2.3 | -2.6 | +6.7 |+17.6 | -14.9 | + 2.4 the proportional constant ¢ is chosen as o=1, the
3 [+13.3 | - 9.8 | -44.3 | -69.5 | -38.3 | -12.0

stiffness distribution in Table 1 can be regarded as

the energy absorption capacity of each story. In

other words, the stiffness distribution for each case shown in Table 1 is regarded as the ratio of the energy
absorption capacity of each story. Since the input energy is distributed to each story as shown in Table 2,
the propriety of the input energy distribution is examined by comparing with the stiffness distribution.
Table 3 represents the relative relation between the stiffness distribution and the input energy distribution
given in Table 2, The numerical values express (k,/K—E;/E)-100. Both in Case 6, which has the
minimum total stiffness, and in other cases, the story which has enough energy absorption capacity and
the story which has not enough are mixed, and the energy absorption capacity is not utilized effectively.
From both standpoints of aseismic safety and economy, the stiffness and input energy distributions in
all cases shown in Table 2 are not suitable. The most suitable distribution of input energy is to be planned
so as to balance the energy absorption capacity of each story with the input energy distributed to each
story. It brings the results that the input energy in each story should be made equal to the stiffness
distribution,

(2) The method to equalize stiffness distribution with input energy distribution

The simplest case that the stiffness distribution is equal to the input energy distribution is the one that
the stiffness of each story has the same size and that the fundamental mode of vibration has an inverted
triangular shape. However, the fundamental mode of vibration when the stiffness of each story has the
same size is not coincident with that when the total stiffness becomes minimum. It is clear in chapter 3 that
the multi-mass system having the characteristics stated above does not exist. Since the input energy can be
controlled by handling the fundamental mode of vibration, both two systems the system having equal
stiffness and the system having equal input energy distribution are first defined in fundamental mode of
vibration. The latter system has an inverted triangular shape in the mode. The average values of the
elements of the modes in two systems are calculated. For example, a mode in a 3 DOF system having equal
mass and stiffness in every stories is assumed as |y,}=11.0, 1. 802, 2. 247}", and an another mode having
equal input energy distribution is assumed as }y,|={1, 2, 3}". Averaging these values, the third new mode
shape is obtained as {u,J={1.0,1.901,2.624|". Next, the stiffness distribution and the input energy
distribution are calculated by Eq. (3) and by Eq. (1) on the basis of the new mode shape, respectively.

ki/K=0.3896, E,/E=0.3811, ky/ K=0.2561, E;/E=0.2755

k./K=0.3543, E,/E=0.3434,
Comparing two values, some differences exist in the results. Therefore, averaging again the above values,
the new input energy distribution is defined as follows,

E.\/E=(0.389610.3811)/2=0.3854, E;/E=(0.2561+0.2755)/2=0.2651

E./E=(0.354340.3434)/2=0.3489,
Substituting these values into Eq. (2), the fundamental mode of vibration is obtained as |u|=
{1.0, 1. 905, 2. 595". The same process should be repeated until the stiffness distribution is equal to the
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input energy distribution. In this case, after repeating two times, the following result is obtained.
k./K=0.3860, E.,/E=0.3859, k:/ K =0.2649, E;/E=0.2651

k./K=0.3491, E,/E=0.3491,

Finally, the fundamental mode of vibration is calculated as {1,}=={1.0, 1. 905, 2. 592{". The total stiffnesses
K are K=15.147 me? in the case of equal stiffness distribution, K=14. 000 m«® in the case of the equal
input energy distribution and K =14. 239 m«?® in the case that both distributions are equal. It means that
the final system is regarded as the one having the average characteristics of the two.

In this way, averaging two values of k,/K and E,/E, an unique system which has same distribution in
stiffness and input energy can be obtained. It may be due to the facts that the equations for the stiffness
distribution and input energy distribution, givenin Eq. (1) and (3), respectively, are expressed as the
function of the mass and the elements 1, of fundamental mode of vibration, and moreover, that the sum of
two distributions takes a certain value.

As a simple example, consider a 2 DOF system having equal two masses. Assuming the relation of
u;=pB u(8>1) between elements of the fundamental mode of vibration, the sum of the stiffness
distribution and the input energy distribution is given as follows.

k/K+E,/E=1+@B—1)/B*+—1)8=F(8), k./K+E,/E=2—F(8)
Fig.2 illustrates the above relations for 8. It is

obvious from the figure that each value of the sums

approaches a certain value with @ increased (lim F(8) 1O~ Ey/Eviy/x o ee—eme
=1). Though the average values obtained from the T

above equations show some variation within a range of

small @, it can be regarded almost constant. (B;/E+k, /K) /2

Based on these facts that the sum of the stiffness and 0.5 —————————— - o

input energy distribution, especially the average value
of the two, is almost equal, the more effective method

can be introduced in averaging. It means that the same

result can be obtained also by using either of the two e —

1.0 200 30 g 4.0
modes, the mode of the system having equal stiffness (uy=Buy)
distribution and the mode of the system having equal Fig.2 Relation between 8 and Fi(g).

input energy distribution. The simplest method is to

use the system having equal input energy distribution. In a N-DOF system, the elements yu, of the
fundamental mode of vibration in the system having equal input energy with constant masses is given by the
relation w,=i-u, (i=1,2, -, N). The input energy distribution is given as E,/E=1/N, and the
stiffness of each story is given by Eq. (11). If both two values, k;/K and E,/E, are not equal in
comparison between the stiffness and input energy distribution, these values are averaged next as the new
input energy distribution, This method requires slightly more repetitions than the method stated before,
but is very effective because of its simplicity.

(3) Numerical examination

Above discussion has been confined to the elastic system. The problem how the system having the elastic
characteristics defined by the method of section ( 2) behaves in elasto-plastic response, and the problem if
the relation between the stiffness distribution and the input energy distribution may be satisfied or not in
the case of elasto-plastic behaviour are examined next numerically.

The system used here was three 6 DOF systems having equal mass (m;=50t; ;=1-6) in each story.
The stiffness of each story was defined so that the elastic natural period T,, was equal to 0.8 s. Table 4
shows the defined stiffness of each story. In the table, CASE A B and C represent the stiffness
distributions in the cases of (A) the equal stiffness distribution, (B) the equal input energy distribution
and (C) the stiffness distribution equal to the input energy distribution, respectively. Fig. 3 illustrates
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the stiffness distribution and the input energy distribution to compare the difference between them, Fig. 4

shows the comparison between the planned energy distribution by theoretical formula (illustrated by the

solid lines) and the numerical results obtained by the elastic and elasto-plastic analyses. The sinusoidal

excitation having 300 gal in amplitude and 10 sec in duration time was chosen to know how the input energy

E was distributed to each story. The elastic analyses of the system were made by the input sinusoidal

excitations in the periods of (.5-1.5sec. When the structural condition changes plastic, the period of

plastic response (the apparent natural period) becomes longer because of the stiffness degradation?.

Chosen the elasto-plastic stiffness ratio 7 of each story
as constant, the apparent natural period T#* of the system
is given by T*=T,,/+/5(n<1.0)"". Therefore, the input
sinusoidal excitations in the periods of 1,5-2. 5 sec were
used for the elasto-plastic analyses. The elasto-plastic
stiffness ratio 7 corresponds to the range between
0.1-0.3 in this case. As shown in Fig. 4, the elastic
analyses plotted by the marks (O coincide with the
planned energy distribution in all cases, and the elasto-
plastic analyses by the marks @ agrees closely with the
planned energy distribution.

The reason why the elasto-plastic analysis developed
by the theoretical formula of the elastic system is in good
agreement with that of the elastic analysis is given as
follows, The behaviour of a given system may be regarded
as the linearized system in which all stories change
plastic at the same time. If the elasto-plastic stiffness
ratio 7 is equal in each story, the plastic stiffness is the
products of 7 and elastic stiffness k;, and the mode shape
of multi-mass system having this plastic stiffness dis-
tribution is equivalent to that of the elastic system. In
other words, when the stiffness distribution is not
different between upper and lower story, the plastic
response of shear multi-mass system can be treated as the
linearized system®. In the figure, the stiffness distribu-
As described in
section (1), the stiffness distribution can be regarded

tion is illustrated by broken lines.

Fig. 4

o

STORY

Comparison

(a) ki/K:const.

Enerqgy
Distribution

10 20 (a)

(b) Ej/E=const.

10

Table 4 Stiffness of each story in CASE A B, C.

CASE A B c
& PRt 5415 6610 5964
ERE: 5415 6292 5802
wgo |3 5415 5665 5475
Eo |4 5415 4723 4957
Bz 5| 5415 3462 24192
EZ (6] 5415 1890 3044
W W
Sk; 32490 28642 29434
[Unit : (t/m)=98(N/cm}]
CASE-A CASE-B CASE~C
O
ke 16.7 6.6 10.3
(Dms
ks 16.7 12.1 14.2
E)ma
kg 16.7 %16.5 16.8
ms
k3 16.7 %w.e %18.6
(Hm2
k2 16.7 %22.0 %19-7
¢Hm
kq 16.7 %23.1 %20.3
10 20 30 0 10 20 30 0 10 20 30
STIFFNESS DISTRIBUTION k;/K(%)
5.8 16.7 10.3
11.3 16.7 14.2
16.1 16.7 16.8
20.0 16.7 18.6
]22.7 16.7 19.7
]24.1 16.7 20.3
0 16 20 30 0 1o 20 30 0 10 20 30

ENERGY DISTRIBUTION Ei/E(%)

Fig.3 Comparison of stiffness distribution and energy
distribution in CASE A B, C.

20 (%) 0

(¢) ky/K=E;/E

@ Elasto-
Plastic

O Elastic

10 20 (g

RATE OF ENERGY AND STIFFNESS DISTRIBUTION

between planned energy distribution and results of numerical analyses.
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equivalent to the distribution of energy absorption capacity. Fig. 4(a) and (b) show that the input energy is
more than the energy absorption capacity in the shaped portions of the stories. These values are not the
amount of the energy quantity, but the energy proportion of each story to the total energy. Accordingly, in
Fig. 4, the aseismic safety is not directly examined from the quantitative standpoint of both input energy
and energy absorption capacity, but the balance of the stiffness and input energy distribution in the system
can be known, and the most suitable stiffness distribution can be determined in reference to the safety and
economy. Fig. 4(c) shows the results of numerical analyses in the system in which the stiffness distribution
is equal to the input energy distribution, It is clear from this figure that the numerical results are
somewhat scattered by the difference of excitation periods, but are well coincident with the lines defined
by the theoretical formula. In this case (CASE C) the input energy and the energy absorption capacity are
well coincident in each story, and this case may be regarded as the most appropriate plan of distribution
that satisfy both aseismic safety and economy.

5. NUMERICAL EXAMPLES TO DECIDE STIFFNESS

Based on the results obtained in the previous chapter, the

simple numerical examples to decide the stiffness of struc- ke= 660t/m

. . T - (= 65KN/cm)
tures were given as follows, The input energy distribution M=50t E 1660t
. 5= m

were taken such three cases as (1) the equal input energy  ,.c0. (=163kN/cm)

=2605t/m

distribution in each story (Model A), (2) the equal 4 =255k /cm)

distribution between the stiffness and input energy (Model B)

k3=3580t/m

and (3) the case shown in Fig.5 (Model C) which was M=50t (3sta/en)
k2=4560
presented by Yamada et al'®. Yamada et al. have reported on : (=44;£§/ch
. L - - . =50t
the optimum aseismic design of shear multi-mass system. It is k1=5420t/m
{(=531KN/cm)

based on the criterion that the optimum design is attained
when the ductility factor becomes equal to the target ductility Fig.5 An example model of six mass structure,
requirements. The third example (Model C) is given as the
optimum result in the case of the target ductility requirements of 2. ). The natural period T,, and the mass
m; in Model A and B are taken equal to this example.

(1) In the case of equal input energy distribution (Model A)

Considering only the fundamental vibration, the input energy distribution is given by the following

expression,
.l .
E mxun/[muurFZ:zmr(ur—uH)] ci=1
Zi T 12)
N
E m:(ui-ui,.)/[m,ud—@'2 mr(ur—um)} ti=z2

The masses of each story are m;=m,=m;=m,=ms and ms=m,/2 by the given conditions,
Substituting these values into Eq. (12), the input energy distribution is given as follows.

u1/0.5(u5+ us) L =1

(u—1-1)70.5(us+ ue) © i22
Defining the input energy distribution to each story as ,= E,/E and arranging each equation in Eq. (13)

E,

E

by the elements of fundamental mode {y,}, the following expressions are obtained,

U= b, X0.5(us+ ue) .

u;= b;X0.5(us+ us)+ui—|=U|X(TZ_:_‘ b/ by L i=2~5

Us= bsX(u5+ue)+ u5=u,><(b.+ b,+ b+ b4+ b5+2b5)/bx .............................................. (14)
In Eq. (14), defining the value of input energy distribution as b,=1/6=0. 1667 (;=1—6), the fundamental
mode of vibration |y,} in the case of the equal input energy distribution is obtained as follows,

98s



Optimum Distribution of Input Energy and Stiffness in Earthquake Resistant Design for Shear Multi-Mass Systems 111

}u,l———{l, 2,3,4,5, 7}7 ................................................................................................... (15)
Since the fundamental mode of vibration |,} and the mass m; are already given, the stiffness k; is obtained
from the following equation.

[K]{u1}=w2[M]}uJT .................................................................................................... (16)
Developing Eq. (16), the following expressions are obtained.
kit ku— kaus= o*maw,

(
— kst (kz+ kaua— kstts= o mau,
= kst (bt Edus— kata= o’ msts
—kust+ (k4+ kshua— ksus= o' m,u,
— kst kst ko) us— kst = w’ms s

— ksus+ ket = ' Mells
Rearranging by the stiffness of each story k,,

k= wz(wﬁn,ul + Moyt Mals+ Ml MsUst Melts)/ U

k _w 2 mrUr)/( — U 1) B (17)
Substxtutmg the elements of fundamental mode, u,=1, u,=2, u,=3, u.=4, us=5, us=7 and the
masses m;=m,=m:=m,=ms=5.102, ms=2.551 (t-cmi-sec?) into Eq. (17), the stiffness and
stiffness distribution of each story are obtaind as follows.

£ki=94.39 o), k,=89.29 o, k:=79.08 o, k:=63.78 o, k;=43.37 o, k:=8.93 ’,

k;/K"O 2492, k./K=0.2357, k,/K=0.2087, k./K=0.1684, k:/K=0.1145, k:/K=0.0236

K= Z k,=378.84 W e (18)

(2 )' In the case of equal distribution of stiffness and input energy (Model B)

The method of averaging, described in chapter 4, ( 2), is used here. Since the stiffness disribution for
the case that the input energy of each story is equal {5,=0. 1667 (i{=1—6)] is given by Eq. (18), these
average are calculated at first.

=1 :(0.1667+0.2492)/2=0.2081—b,, =4 :(0.1667+0.1684)/2=0.1677— b,

=2 :(0.1667+0.2357)/2=0.2014—+b,, i=5:(0.1667+0.1145)/2=0.1408— b;

=3 :(0.1667+0.2087)/2=0.1879— by, =6 . (0.1667+0.0236)/2=0.0953~>bg r++--=-rrevrreeereer (19)
By using the average values given in Eq. (19) as the new input energy distribution, the fundamental mode of
vibration is calculated by Eq. (14).

lud=11.0, 1.967, 2.870, 3.676, 4.353, 4.812|"

Substituting the masses and the above fundamental mode of vibration into Eq. (17), the stiffness of each
story and their distribution are obtaind as follows.

k:=83.02 *, k,=80.58 o, k;=75.17 o, £k.s=66.05 o’, k:=50.94 «’, k:=26.74 o',

k./KN=0.2170, k./K=0.2107, ks/K=0.1965, k./K=0.1727, ks/K=0.1332, k¢/K=0.0699

K:g Ei=382.50 o e (20)
Since there is the difference between the input energy distribution given by Eq. (19) and the stiffness
distribution given by Eq. (20), the average values are calculated again and the same process is repeated
several times, In this case, the input energy distribution and the stiffness distribution coincided after
repeating five times,

fuil=11.0, 1.969, 2.872, 3.671, 4.313, 4.693|"

£,=82.50 o', k:=79.91 ", k:=74.57 o*, k,=65.95 o, k;=52.96 o*, ks=31.44 &’

kl/K—O 2130, k./K=0.2063, k./K=0.1925, k./K=0.1703, k:/K=0.1367, ks/K=0.0812

K= Z Ei=387.33 % e e 2n

The total stiffness K is increased by 2.24 % in comparison with the case of the equal input energy
distribution,

(3) In the case of Model C
The natural period T,, and the fundamental mode of vibration in Model C are given as follows.
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Table5 Relation between stiffness distribution and input energy

distribution i h Model. . . . .
stribution Tn each Tode m Stiffness Distribution

Model A Model B Model C O Energy Distribution
- Model A Model B Model C
ko | kx| oE/E| K |RxemsE k| kx| B/E 6 — — r
) )
' 1
1| 4587 |0.249 | 0.167] 4009 | ©0.213 | 5420 |0.293 |0.139 5 15 N
] ] 4
2| 4330 |0.236 [ 0.167| 3883 | 0.206 | 4560 |-0.247 | 0.158 >4 : 4 :
& Y
-
& | 3] 3843 |0.209 | 0.167| 3624 | 0.193 | 3580 | 0.194 | 0.181 S 3 ﬁ Jp— 3 ]
£ 1 4] 3000 |0.168 | 0.167| 3205 | o0.170 | 2605 |0.141 | 0.203 w2 M 2H‘ 2#‘
5| 2108 |0.115] 0.167| 2574 | ©0.137 | 1660 |0.090 {0.216 1 H 1 — ) ——
6] 434 {0.024|0.167| 1528 | ©.081 660 | 0.036 | 0.104 10 20(%) 10 20(%) 10 20(%)
4 ) ) )
* 18410 18623 18483 Fig.6 Relation between stiffness distribution and
[Unit : kyq(t/m)] energy distribution,

Tu=0.901 sec (w=6.971/sec)
Jurl=11.0, 2.134, 3.431, 4.887, 6.441, 7.931}"

The input energy distribution b,(;=1—6) is given by Eq. (12).
b,=1/0.5(6.441+7.931)=0.1392 b,=(4.877—3.431)/7.186=0.2027
b,=(2.134—1)/7.186=0.1579 bs=(6.441—4.887)/7.186=0.2163
b:=(3.431—2.134}/7.186=0.1805 bs=(7.931—6.441)/14.372=0.1037

(4) Comparison of stiffness and input energy distribution among Model A, B,C

The stiffnesses of each story in Model A, B were calculated by using the first natural period of Model C,
T,,=0.901 sec. Table 5 shows the comparison of the stiffness and the input energy distribution in each
model. Itis clear in Table 5 that the total stiffnesses in Model A, B and C are almost equal each other, but
that the total stiffness in Model A, which has the equal input energy distribution, is the minimum of the
three. Fig. 6 illustrates the relation between the stiffness distribution and the input energy distribution in
each model. As shown in the figure, the stiffness distribution in Model C shows a triangular shape, and the
input energy distribution of the fourth and fifth stories is somewhat large in volume. This fact is coincident
with the result of the author’s previous paper? which was obtained from the elasto-plastic response
analysis with the earthquake records and sinusoidal waves.

In Fig. 6, comparing the relation between the stiffness distribution and the input energy distribution, the
input energy distribution exceeds the stiffness distribution at the fifth and sixth stories in Model A, and at
the fourth and fifth stories in Model C. Assumed that the stiffness size of each story is in proportion to the
size of energy absorption capacity, the failure may be occurred at the story in which the input energy
distribution exceeds the stiffness distribution, Model C is the case designed by the large iterative
calculation so as to equalize the ductility factor of each story, but the almost same result was obtained in
Model A and B by the simple calculation with figures mentioned above. Considering the balance of energy
absorption capacity to input energy distribution, Model B, which makes the stiffness distribution equal to

the input energy distribution, can be regarded the most rational.
6. CONCLUSIONS

The purpose of this study is to eastablish the rational earthquake resistant design based on aseismic
safety and economy, and to study the relation between the input energy imparted by earthquake motion and
the structural characteristics. According to this purpose, the mothod how to determine the most suitable
distribution of input energy in shear multi-mass systems and how to determine the stiffness size of each
story are examined fundamentally, The concluding remarks are summarized as follows.

(1) When the fundamental mode of vibration is predominant in structural response, the input energy
to the system can be controlled by handling the fundamental mode of vibration, By examining the relation
between the stiffness distribution and the input energy distribution, and by using the method of controlling
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the input energy, the system which satisfy the given conditions can be determined.

(2) The sum of the stiffness distribution and input energy distribution can be regarded as almost
constant. The system which satisfy the optimum distribution can be obtained easily by applying the method
of averaging.

(3) The theoretical formulations developed in this study are based on the modal analysis in the elastic
system. When the stiffness is distributed to the system so as not to differ between upper and lower story,
the plastic response can be treated apparently as the response of elastic system.

(4) Defining the total stiffness of system as an index for the economy and defining the relation
between the input energy distributed to the system and the energy absorption capacity as an index for the
safety, the optimum input energy distribution is obtained by handling so as to equalize the stiffness
distribution with the input energy distribution under the restrictions of two indices.

Based on the method presented in this study, the stiffness size of each story can be obtained easily by
calculating the input energy distribution, when the mass and the first natural period of system are given,
The optimum stiffness distribution to each story can be obtained by the simple calculation with figures
without using the dynamic design procedure.

This research works was supported partly by the Grant-in-Aid for Scientific Research No. 60460150
from Japanese Ministry of Education,
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