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CONTROL OF INPUT ENERGY FOR ELASTO-PLASTIC MULTI-MASS
SYSTEMS SUBJECTED TO SEISMIC MOTION

By Tomonori OHNO* and Takashi NISHIOKA**

It is necessary to study the behavior of energy response of elasto-plastic multi-mass
systems to develop the earthquake resistant design based on the energy concept.

In this paper, for the purpose of getting fundamental information about the behavior of
energy response in elasto-plastic multi-mass systems, six mass systems which represent
the systems having bi-linear hysteretic restoring force and subjected to sinusoidal
excitation are used in the numerical analysis., The response characteristics of elasto-
plastic multi-mass systems is examined basically and the linearized estimation of input
energy for them is analyzed by the method of modal analysis. The control method of input
energy distributed to each story of multi-mass systems is represented.

1. INTRODUCTION

The seismic resistance of structures has been studied by the authors to evaluate it with the relation
between the plastic energy dissipation imparted by seismic motion and the energy absorption capacity of
structures?~?_ In the earthquake resistant design, it is necessary for this purpose to know the amount of
plastic energy dissipation W, imparted by unit seismic motion in earthquake resistant design. The authors
also suggested that if the total input energy E imparted by seismic motion could be estimated
quantitatively, the plastic energy dissipation of elasto-plastic SDOF systems W¥* would be determined
safely by using the ratio of plastic energy dissipation to the total input energy (W,/E)>?. It was also
suggested that the response of elasto-plastic SDOF systems excited by irregular waves can be evaluated by
the response of equivalent linearized structures having apparent natural period T*= T,/v/5 (T, . elastic
natural period, 7 ! elasto-plastic stiffness ratio; 1.0>7=0. 1) and subjected to the sinusoidal excitation
having the same period T3*?.

In case of linear multi-mass systems, it is naturally possible to evaluate the response of structures with
the method of modal analysis combining each natural mode of vibration. In case of non-linear systems, it is
impossible to use the method of modal analysis based on the principle of superposition. However, if the
multi-mass system having non-linear restoring force could be replaced properly to an equivalent linearized
system, it would be possible to evaluate easily the response of inelastic structures with the method of
modal analysis. In regard to linearization technique, the equivalent linearized method which makes the
error minimize in each time step was widely used in the past, but its numerical calculation is very
complicate and needs many iterations. The authors have suggested the possibility of modal analysis with
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the energy concept in the previous paper which discussed the effects of irregular excitation on inelastic
structures?

The purpose of this paper is to develop the linearization technique of elasto-plastic multi-mass systems
by the method of modal analysis using the apparent natural period in plastic range T* defined by elastic
natural period T, and elasto-plastic stiffness ratio 5. It also shows how to control the input energy for each
story E; in elasto-plastic multi-mass systems theoretically and numerically, based on the energy concept.

2. ENERGY RESPONSE IN MULTI-MASS SHEAR SYSTEMS OF STRUCTURES

The response of elasto-plastic multi-mass systems can be examined analytically with the method of modal
analysis, if systems are linearized. In this chapter, the fundamental equation of energy quantity for each
story based on the method of modal analysis is formulated to estimate the energy response characteristics
of the elasto-plastic multi-mass systems,

(1) Basic formulation of energy response based on the method of modal analysis

Defining the modal function of multi-mass systems as u,, ({=story number ; 1, 2, ---from bottom to top.
s=the order of vibration), the relative displacement of each story y,(1) to thf ground motion is described
by superposing the modal function with weighning functions ¢, as y(#)=2] ¢su;, (N=the number of
mass) . !

When the multi-mass system starts to move by the ground displacement ¢(#), the equation of motion is
given as follows,

('/;S+2hsns('/;s+ nige= _ﬂsq'; ........................................................................................ (1)
where ¢,=generalized co-ordinate, h =generalized damping factor, n,=s-th order undamped natural
circular frequency, B;=generalized participation factor, These are given as follows,

ho=7 | Crtdet 23 Cluna— ] / 1 33 musi

L) 1ULs T 2y fUps™ Ui—rs nst:l miUss
N N

ni={ bt 2 hltsis— e} / 2 ot

N N
ﬂs=i§ mtut's/tg MiULs e (2)

in which m,, %, and C; are mass, spring constant and damping coefficient of each story, respectively.
If the ground displacement of seismic motion @() is given by the stationary input ¢(%)= ¢, coswt, the
solution of Eq. (1) is shown as follows,

¢s= ¢0ﬂs(w/ ns)z COS((Ut - fs)/{(l —w’/ n§)2+4h§(w/ ns)zil/z
where tané&=2h w/n./{1— w’/n?).
The relative displacement of the {-th story y,(%) is given as follows.

y{t)=¢, S;Nl Bstidw/ns’ coslwt — &)/11— w*/niP+4hi w/ nd4"?

=¢°2§, ut,stcos(wt—és) .................................................................................... (3)
where Ds=ﬂs(w/ns)2/{(l — wZ/n§)2+4h§(w/ ns)2}1/2 ............................................................ ( 4 )

The input energy distributed to each story E;, in one cycle of sinusoidal external excitation is given as
2/ w -
E= —[ mpy.di

miw'den(u, D, Sing+ u, Do sing)  :i=1
miw2¢§{(ui.l_ ui—l,l)Dl sing+----- +(uz,~— u,-_,,N)DN sinéy =2

.................................................................................... ( 5 )
The input energy to the system (the total input energy E) is shown as
N 2 N N
E=[ZE Ez=w’¢§7r[m1 Z‘: U:.stSinfs‘f’tZ; ”“szl (Uss— Ui-1.6)Ds Sinfs} ............................... (6)
= s= = =
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The ratio of the input energy distributed to the ;-th story E, to the total input energy E is introduced by
Eq. (5) and (6).

For example, the rate of input energy distributed to the second story is shown as
2
E, m. SZ=:1 (Uas— Urs)Ds SIS
= . S s (7)
My 23 thsDs Sinéot 23 my 2 (s~ tir,o)Ds SinGs

8=

Both Eq. (5) and Eq. (7), the equation of the input energy distributed to each story and the equation
of the rate of energy distribution are the function of the mass m; and the stiffness ;. Accordingly, when
the mass and stiffness of linear systems are given, the vibration mode is obtained by eigenvalue analysis,
and then the total input energy and the input energy distributed to each story are determined.

(2) Basic formulation of numerical integration in energy response for elasto-plastic systems

Fig.1(a) illustrates the model of an elasto-plastic multi-mass structure with shear springs and damping
mechanics in each story. In this study, the characteristic of restoring force of the shear spring was chosen
as bi-linear hysteretic model as shown in Fig.1(b). The system is characterized by the mass m,, the
elastic stiffness k,, the damping coefficient C, (=2h,/m .k, : h,=damping factor) and the stiffness ratio
of the elastic to the plastic 7, in each story. The basic formulation of energy response in elasto-plastic
multi-mass system can be written as follows,

mI[ xlxldt+[clﬁdt—[tcmxzdt+[Ql(x,)dx.—[Qz(xz)dxs—m,foléx,dt

t £ ) t t/. N-1
mi[jijidt-’_[ (Ci-i'i_cnl«fiﬁ)\fidt‘f‘[ IQl(xi)_Qi+l(xi+l)[dxi=—mi[ <¢+§i‘i)i'tdt

mwfa'bNdeH[ CNvadH[ Q,AxN)dx,,:—mN[(;}HZg £)audi
.................................................................................... (8)

The terms on the right hand side of Eq. (8) which correspond to the total input energy E are given by

the form of numerical integration with minute increment of time, Al=1t,,,— ;.

1 n .- . . .
—Emn .Z‘I)At(¢j+lxl,j+l+¢j:tl'j) 11=1
iz
Ei‘_‘ = _
1 n . N-1 . . - N—1 . .
_Emt jgo At[ <¢j+l+ g xi,j+1>xi,j+l+<¢j+ E xi,j>xi,1} 1122
.................................................................................... (9)
where x,(i=1,2, --, N)=story displacement, ¢ ,=the acceleration of seismic motion in time ¢, n=the
number of time interval by the end of seismic motion,
In this study, the total input energy obtained by response analysis was examined numerically by using

Eq. (9).
3. NUMERICAL ANALYSIS OF ENERGY RESPONSE

A six mass system shown in Fig.2 was used fundamentally to calculate the response of multi-mass
systems. The energy response of the model was calculated with Eq. (9) for the sinusoidal excitation
having the periods (.4-4.( sec (amplitude 300 gal, duration time 10 sec). Fig, 3 shows the total input
energy for the system in relation to the period of the sinusoidal excitation. Fig.4 shows the relation
between the rate of input energy for each story E; and the period of sinusoidal excitation, It is clear in
Fig. 3 that the total input energy becomes greater in the period between 2. 3-3. 2 sec and shows its maximum
at the period 2.5 sec. According to Fig. 4, the rate of input energy distributed to the top story of the
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@ memz5t
kg= 43KN/cm
mg=50t
kg=210KN/cm
mg=50t
k4=308KN/cm

system (the sixth story) is the maximum with no
relation to the period of excitation. In Fig, 4 the
energy distribution has the tendency to concentrate
at the fifth and sixth stories in the period between
1.4-4.0 sec.

Xg=431KN/cm
) my =50t

o g . 1 x1= /cm
The response characteristics of elasto-plastic .
multi-mass system will be decided by the relation  (a) Fundamental  (b) Bi-linear Fig.2 Six mass system
between the period and amplitude of excitation and mode] of multi- hysteretic used in calcula-
) . mass system model tion,
the elasto-plastic period of structures, if any. Fig. 1

When the structure is excited by the strong

seismic force, the response changes plastic if only one story becomes plastic. Fig. 3 illustrates that the
structure has its own natural period even in this plastic condition. However, it is very difficult to know
previously which story changes plastic and which story stays in elastic condition. If each story has bi-linear
restoring force, it is possible to evaluate the plastic behavior of the structures by using the plastic
stiffness K,= .k, the products of elasto-plastic stiffness ratio, 7, and elastic stiffness k;*. Therefore,
14 types of structural condition were chosen arbitrarily as shown in Fig. 5.

The elastic structural condition has the mass m, and the stiffness k, in Fig.2. The elasto-plastic
conditions (1)-(14) in Fig.5 are the assumed conditions regarding that some stories change to plastic
condition. In the figure, the mark X shows the plastic story, and the numerical values are the stiffness of
the story including the case of elastic condition. The plastic stiffness K, was chosen as (0. 1 k,, taking the
elasto-plastic stiffness ratio 7=0.1.

Linearized eigenvalues were calculated in each structural condition from (1) to (14), which were
shown in Table 1. Compared with the natural period of each structural condition in Table 1 and the period
2.5 sec at the maximum input energy in Fig, 3, the fundamental natural period of the linearized structural
condition (11) or (13) shows the nearest value. In other words, the elasto-plastic condition in Fig, 2 can be
replaced to the linearized structures in which all other stories changes plastic except the first or the
second story. By comparing the linearized natural period at this condition with the excited period 2. 5 sec
in Fig. 2, it is obvious that the maximum energy is imparted to the structure at this period. Since the
structural condition (13) of Fig. 5 has the same plastic condition in each story as judged from the results of
numerical calculation in time series, the way of estimation mentioned above proves correct,

Even if the structural conditions are same in elasticity, the structural conditions in plasticity change
with the elasto-plastic stiffness ratio of each story 5, and the energy response in plasticity shows various
features. The effect of elasto-plastic stiffness ratio 7, on the energy response was then studied by selecting
the distribution of 7, in each story as shown in Table 2.

Fig. 6 shows the total input energy having various distributions of 7, given in Table 2 (Case A is in
Fig. 3) in relation to the period of sinusoidal excitation. It is noticeable that the different distribution of 7,

i E &40 420 “o W W 4 “
: 700 0.5 238 2138 a8 FAEL) HL 2138 [z}
g Ei/E CBSG‘A 6th NG N4 3144 N4 31 N4 N4
g 600 0.4 389 3899 390 3899 1899 3899 %0
500 01 “w 4401 401 4407 4401 “w
E 0.3 Sth 485 4653 4653 4653 4653 4651 485
00 (L) (2) (3) (4) (3) (6) (7
0.2
E 00 : 1st “ “ " “ “ “ “
2nd 238 214 214 04 214 2t4 2
200 0.1
3zd ' dth N4 144 314 N4 314 314 4
100 0.0 N %0 390 1899 %0 %0 390 390
1.0 2.0 3.0 (sec) 4.0 [ 440 440 ] 4401 au 4“0
o o o bg 5 To PERIOD OF INPUT SINUSOIDAL WAVE s 455 s s s 51 s
PERIOD GP INPUT SINUSOIDAL WAVE (2ec) Fig.4 Relation between rate of input (8) (9) (10) (11) (12) (13) (14)
Fig.3 Relation between total input energy for each story and period (it (t/m)=98 (N/cm) ]
energy and period of sinu- of sinusoidal excitation, (in case Fig.5 Assumed plastic conditions of six
soidal excitation. of 7,=0.1=const.) mass system.
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has the different period and value at the maximum input energy.
Fig. 7 shows the input energy distribution in each structural
condition. The energy distribution to each story clearly
changes with the distribution of 7, In shorter excited period
than 1.4 sec, the sixth story absorbs much energy of all other
stories with no relation to the distribution of 7. In longer
period above 1.4 sec, the input energy concentrates on the
story having the weakest stiffness in all cases, and the energy
distribution is almost equal except this story,

Next, the plastic structural conditions of cases A-E in Table
2 were assumed as shown in Fig,8, referred to the energy
distribution at the period of the maximum total input energy
between 1.4 and 3.4 sec in Fig. 3 and Fig.6. In this figure,
Condition T, [ and [[f show the difference of assumption on
plastic stories. The mark X indicates plastic story and the
numerical value is the stiffness of each story as same as in
Fig.5. The numerical values of plastic stiffness in each story
are the products of the elastic stiffness k, shown in Fig. 2 and
the elasto-plastic stiffness ratio 7 given in Table 2. The
linearized natural periods of each structural condition were
then calculated as a linearized eigenvalue problem, which are
shown in Table 3. The bold letters at the top raws in Table 3
indicate the excitation periods at the maximum input energy T,.
In Table 3,
fundamental natural period of Condition [[.

the nearest period to T, is obviously the

The discussion in this chapter are summarized as follows ;
1) Structural response in plastic condition of multi-mass
system having bi-linear restoring force can be determined by
the products of elasto-plastic stiffness ratio 7, and elastic
stiffness k,, if all structural conditions are known previously
and if the plastic stories are estimated by the stiffness

Table 1

Natural periods of assumed models
given in Fig, 5.

Case] (L) | (2) | ()| () | (5) [ (6) | (T)
Ti1.68 [1.61 [1.54 [ 1.46 [ 1,37 [ 1.58 | 2.74
r2{0.52 {0.50 1 0.47 | 6.45 | 0.57 | 0176 | 1.04
T3[0.34 | 0.30 [ 0.32 | 0:41 | 0.38 | 030 | 0le3
74| 0.21[0.20 | 0.26 | 0.2 | 0:23 | 0,19 | 0.4
7sf0.16 [ 0,19 { 0.16 | 0,17 |.0.15 | 0.15 | 0.39
T¢| 0.12 10.16 | 0.13 ] 0.12 { 0,12 | 0.12 | 0.37

Case| (8) [(9) [(10){(11)(.(12)](13)] (14)
v1[2.70 [2.63 | 2.58 [ 2.55 | 2.28 | 2.54 | 2.83
Ty[1.38 f1.42 | 1221 | 1236 | 1125 { 1134 | 1042
73l 0.81 {0.80 0.8 | 0,87 | 0.70 | .80 | al90
74| 0.49 | 0.59 | 0.54 | 0l60 | 0:47 | 054 | 060
T5] 0.38 | 0.39 [ 0.44 | 0.44 | 0.31 | 0.41 | 0.46
Te] 0.27 |0.18 [ 0.26 | 0.15 | 0.13 | 0.20 | 0.37

(Unit; sec)

Table 2 Six mass systems with different

distribution of elasto-plastic
stiffness ratio 7,

Case A B (o4 D E
ny 0.1 0.1 0.05| 0.3 6.2
nz | 0.1 | 0.1 01| 0.25] 0.2
n3 0.1 0.1 0.15] 0.2 0.1
ng 0.1 0.1 0.2 0.15{ 0.2
ng { 0.1 [ 0.1 o.25 0.17| 0.2
ng | 0.1 | 0.2 0.37] 005 0.2

E -
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Fig.6
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. 0.6 N3=0.15 0.6
ng=0.20
0.5} o8 ns=0.25 0.5
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PERIOD OF INPUT SINUSOIDAL WAVE (sec)

Relation between total input energy for
systems with different 7, and period of

sinusoidal excitation,

Case-D)
320,30
n=0.25
n3=0.20
n;m0.15
n5=0 <10

0.4 0.4
0.3 0.3
0.2 0.2
. : <0 (sec) 4.0
PERIOD OF INPUT SINUSOIDAL WAVE

0.1 0.1

0.5 >
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Fig.7 Influence of different distribution of 7, on input energy
distributed to each story.
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case| A B C D E
“ 440 440 22 B8
24 24 238 24 428 :
1| o | Lo na | Lo | Tore Table 3 Natural periods of assumed
3899 3899 3899 3899 190 ) i j
m 117
“n “n w | Luo uor odels given in Fig.8.
4653 4653 233 4653 4653
Case A B o] D E
Ty [ 250 | 250 | 3.00| 2.50 | 2.00
“ 8 “w 2 = Ty | L1.79 1.37 | 2.61 231 1.72
214 24 238 224 a2 Ty 0.94 0.57 0.58 1.03 0.95
e e et e 15| 0.55 | 0.38 0.47 0.55 0.52
II o . s e ’;:; I 14| 0.23 0.23 0.30 0.23 0.31
5 Ts| 0.15 | 0.15 | o0.1l9 0.15 0.17 ®
4401 un | XKao 4401 880 Tg 0.12 0.12 0.14 0.12 0.13 k5= 660t /m
A = &S
653 | Jassa | Ken 53 4653 r{ 197 | 1.8y [ 276 [ 2.38 1.90 " sow/om
Ty | 1.09 0.97 0.70 1.21 0.98 Yrs=1660t/m
TI (T3] 0.56 | 0.58 | o0.47 | o0.59 [ 0.53 Gy 1osem
“ " o 2 T¢| 0.28 0.20 | o0.38 0.39 0.41 =2
e Ts| 0.15 0.16 0.25 0.17 0.18 125253%,':)
214 o | Qs 214 4z Te | 0.12 0.12 0.17 0.12 8.17
14 M | e a2 e T ] 2.54 2.46 2,91 2.44 2.08 3=3580t/m
115 2 o | Kses 7% 3% T3] 1.34 1.07 0.94 1.34 1.01 =351KN/cm)
" o | Lo o aao IIz|Ts| °.8¢ | 0.7¢4 | o0.52 0.66 0.59 2=4560t/m
poss s | Lo - Ty | 0.54 0.53 | 0.43 0.40 .48 =447K8/cm)
X 2l Ts | 0.41 | 0.41 | 0.35 0.28 0.29
Tg | 0.20 | 0.20 | 0.33 0.13 0.17
{Unit: (¢/m}=98 (N/cw) ) (Unit; sec)
Fig.8 Assumed plastic conditions of Fig.9 An example model of six

mass structure.

cases A-E in Table 2.

fundamental natural vibration of plastic condition predominates when the large amount of energy is
imparted to the structures.

4. CONTROL OF ENERGY DISTRIBUTED TO EACH STORY OF MULTI-MASS
SYSTEMS

It is difficult to estimate the energy response of a given elasto-plastic multi-mass system, because its
elasto-plastic behavior is affected by structural characteristics. From the results obtained in the previous
chapter, it was made clear that the plastic response of structures could be estimated by replacing it to an
appropriate linear system. However, it is necessary to examine by trial and error the correspondence of
linearization with the results of numerical integration to check the above estimation. In this chapter, the
control method of energy distribution to each story of multi-mass systems is studied. If the energy
distribution to each story could be controlled arbitrarily, it would be useful to judge plastic stories in

accordance with the energy quantity.
Since the rate of the plastic energy dissipation W, to the energy distribution for each story E, was

varied mainly with the value of damping factor h, and the elasto-plastic stiffness ratio 7, the value of 4,
and 7, were chosen equal in all stories. In this case the rate of plastic energy dissipation for each story is
proportional to the rate of input energy distributed to each story,

The input energy for each story is varied with the distribution of mass m; and stiffness k,. In structural
design process, the mass of each story is determined at first, and next, the stiffness distribution is
calculated. At this stage, if the energy distribution to each story could be controlled at one’s will, the
control of energy would be very useful for the earthquake resistant design based on the energy concept.

The example shown in Fig, 9 is a six mass system having the optimum stiffness distribution obtained by
such iterative method that the response calculation is repeated until each story has equal ductility factor
(by Yamada et. al¥). This model was used in order to evaluate how the input energy E is distributed by
various sinusoidal and seismic excitations, The periods of sinusoidal excitations were chosen from (.5 to
3.0 sec (amplitude 300 gal, duration time 10 sec) and the following earthquake records were used.
(1) EICentro, 1940, NS. (2) Pacoima Dam, 1971, S16 E. (3) Pacoima Dam, 1971, S74 W.
(4) Tokachi, 1968, NS. (5) Hyuganada, 1968, EW.

Fig. 10 shows the distribution of input energy to each story calculated by Eq. (9). The response for
earthquake records are represented by the fine broken lines in the left hand side of Fig. 10, and the bold
broken lines in the middle of the figure are in the case of sinusoidal excitations. The bold solid lines also
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Fig. 10 Input energy distribution for each to each story by adjusting planned distributed to each story
story.

energy distribution, which were chosen linearly.

represent the rate of energy distribution which is obtained by substituing the numerical values of mass,
stiffness, damping constants and elasto-plastic stiffness ratio of Fig. 9 into Eq. (5)-(7). The responses
of the input sinusoidal excitation in the periods of (). 5-1. 5 sec are scattered widely. The responses in the
longer period than 2. () sec shown in the right hand side of Fig. 10 are conservative and are well coincident
with the bold solid line calculated by Eq. (5)-(7). The responses of seismic excitations are rather
scattered to each other and show the same tendency as that of the sinusoidal excitation in the period of
0.5-1.5 sec. In this model, the energy distribution for the longer period is balanced in each story except
the sixth story,

The apparent fundamental period T* of the plastic state in this model is within 2-3 sec. It is clear from
Fig. 3 that the amount of the total input energy for the excitation period shorter than T¥ is extremely less
than that of the period T¥* Therefore, when the structural safety against strong seismic motion is
discussed by the energy concept, the examination for the excitation period which corresponds to apparent
fundamental period of plastic structures T#* may give safe evaluation. ,

The fundamental vibration predominates in the energy response for six mass systems used in this study.
Disregarding the influence of higher order than the fundamental vibration, Eq. (5) is simplified to the
following equation.

my o’ ¢imus, Dy sing :1=1

E= mi' $imluy—ui)Dri sing 1i=2
.................................................................................... (10)

The equation of energy distribution to each story is given by

E, miUs, .

f=m1u1,1+mz(uz,1—u1,1)+ """ +mN(uN,l_uN~1.l) =1

E, MUy~ Us—11) .

fz MU+ mz(uz,l_u1,1)+ """ +mN(uN,1_UN-x,1) =2

.................................................................................... a1

It shows that the energy distribution to each story is defined by the mass of each story and the
fundamental mode of vibration, Defining the mass ratio of each story to the first as g,=m,/m, and the rate
of the input energy distributed to each story as b,=E,/E, Eq. (11) is expressed by the following
simultaneous equations as the function of vibration mode.

ul,dax(l—l/bl)—azH uz,l(az~a3)+ ....................................... + Uy ay=0
Um{an — az(l -1/ bz)}_}_ u“{az(l -1/ bz)_ GaH’ ........................... + uN,la~=0
Ul,\(l —a.)+ uz,l(az“ Qg)teeeeerees + uNAl,]iaNAl —afl—1/ bN)H‘ uMl{aN(l -1/ bN)}:O

.................................................................................... (12)

If the values of @, and b, are given, the eigenvector {u,} of the fundamental vibration can be obtained from
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Eq. (12). Once the eigenvector |u,} is determined, the eigenvalue problem which is commonly used in the
vibration analysis can be applied to find the stiffness distribution. The form of general eigenvalue problem
is given as follows,

LR Ta = 2 LM gd e eeeevemesesesesem et s 13)

If the fundamental frequency 7, (or the fundamental period T,=27/n,) and the mass [M] are given, the
stiffness [K] can be determined for the given modes of vibration,

As an example, let’s determine the stiffness distribution so as to equalize the share of input energy for
each story, when the value of mass are m,=m,=m,=m,=m;=2 m=50 (t). a,=a,=a;=a,=as=1,
a,=0.5, and b,=1/6 (i=1, 2, .-, 6) are obtained from the above condition. Substituting these values into
Eq. (12), the eigenvector {1} is obtained as {u,}’={1, 2, 3,4, 5, 7{". When the fundamental frequency n, is
given as 7 (rad/s), the stiffness of each story is determined by Eq. (13) as k,=4 625, k,=4375, k.=
3875, k=3125, ks=2125, k=437 [(t/m)=98(N/cm)].

While the stiffness is varied with the fundamental frequency 7,, the vibration mode which determines the
energy distribution to each story is never varied. The fundamental period T, of the above system is (. 9 sec
(=27/7). Once the system changes plastic, the vibration period in plastic T¥ becomes longer than T.
Assuming that the period of excitation affected on the energy response in the six mass system was longer
than 2. ) sec, the energy response was calculated. Fig. 11 shows the results of the input energy distributed
to each story in case of the sinusoidal excitation with the periods of 2. () and 2.5 sec. In Fig. 11, Case (a),
(b) and (c) show the differences of the planned energy distribution which are represented by broken lines.
In all cases, bold solid lines show the analytical values calculated by Eq. (12), (13) and (9). In case (a)
the planned energy distribution was taken equal share of input energy distribution, which coincides closely
with the analytical values, Fig. 11 (b) shows the case b,=1/3, b,=1/4, b;=1/6, b,=bs=b=1/12, and
Fig. 11(c), the case b,=b,=by=1/12, b,=1/6, bs=1/4, bs=1/3. In the cases of (b) and (c), there
are somewhat differences between the planned distribution and the analytical values, It is recognized,
however, that the results of numerical examination described in this chapter is practically satisfied with
the planned distribution.

5. CONTROL OF TOTAL INPUT ENERGY

There is a specific earthquake resistant design that allows the yielding of the lowest story in multi-mass
systems, For example, the reference 6) is the research on earthquake isolation for structures from this
viewpoint, According to this study the reduction of seismic force to structures can be attained by installing
a special structural device having weak stiffness on basement. If the input seismic force is reducible, the
total input energy to structures naturally decreases. This is one of the control method of total input
energy.

The total input energy of structures having a certain mass distribution is clearly varied with the
difference of stiffness distribution, From the results shown in the previous chapter, it is possible to
control the energy distribution to the system by handling the mode of vibration in the multi-mass system in
which the fundamental vibration is predominant. The relation between the total input energy and the
stiffness distribution was then examined from the standpoint of earthquake resistant design based on the
energy concept,

As an extreme example, the stiffness distribution was calculated so as to make the rate of input energy
distributed to the first story 95% of the total input energy, The masses m, were taken as
Mi=M=Ms=m.=m:=2 ms=50 (t), and the fundamental period T,, as 1.5 sec. Substituting b,=
5.7/6, by=by=b,= bs= bs=0.06/6 into Eq. (12), the fundamental mode of vibration |} was calculated,
and finally the stiffness distribution |k} was decided as {k,j"={505, 39557, 30648, 22233, 13567, 1811
[(t/m)=98 (N/em)] by Eq. (13). That is, this is the case that the stiffness of the first story is
excessively smaller than that of other stories,
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Table 4 Stiffness distribution by planning energy

distribution given in Fig. 12.
3.0 [

Rate of energy distributed to lst story to total energy
(t/m) 3t 9% 15% 16.78] 218 27% 33%
ky 14950 5763 4002 31726 3242 2775 2518
X2 4916 4172 3562 3525 3194 3021 2940
Xy 2988 3054 3174 3122 3268 3299 3228
kg 1926 2143 2428 2518 2744 3051 3742
ks l032 1319 1578 1712 2074 2639 4304
ke 224 252 330 352 470 1673 5054
Ik 26036 16703 15074 14955 14992 16458 21785
1.741 1.117 1.008 1.000 1.002 1.101 1.457
[Dndt: (t/m)=98{N/cm) }
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Next, the rates of input energy distributed to each story were ratio and rate of energy distributed
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chosen linearly as shown in Fig.12. The distinction among to 1st story.
these distribution is represented by the value of energy

distribution to the first story shown in the figure. The six mass Yy
system having the mass m,=m,=m;=m,=m:;=2 m,=50 (t)
and the fundamental elastic natural period T,=1. ( sec was used
in the calculation. After calculating the fundamental mode of *
vibration, the stiffness distributions were obtained as shown in
Table 4. The lowest raw in Table 4 shows the total stiffness

ratios, namely, the ratios of the total stiffness divided by that

100

TOTAL INPUT ENERGY (x9BOKN-cm)

of equal energy distribution (the total stiffness of column 4 ; the
rate of energy distribution is 16.7%). Fig.13 shows the o ahold

1.0 2,0 (sec) 3.0
relation between these ratios and the rate of distributed energy . FERIOD OF TNFOT SHUSOIDNL WAVE

to the first story. 1%, 40 % and 50 % of the rates of input Fig. 14 gila:::hbe:;:;m:::imz::_izr;erii
energy distributed to the first story are also plotted in the sinusoidal excitation,

figure, It is clear from this figure that the total stiffness is the

minimum of all when the rate of energy distribution is taken equal for each story and that the total stiffness
increases whenever the rate is increased or decreased to the value of 16. 7 %. The amount of the total input
energy for each system was calculated with the stiffness distribution given in Table4. Fig. 14 shows the
relation between the total input energy for each system and the period of sinusoidal excitation. The longer
the period of sinusoidal excitation, the more increases the total input energy in every system. The total
input energy for each system is somewhat varied with the period of excitation, and has the tendency of
decreasing with the rate of energy distribution to the first story increased. In the figure, a broken line
shows the rate of 95 % for the first story.

The amount of the total input energy may be reduced by increasing the rate of energy distribution to the
first story, but consequently it is necessary to take larger stiffness for each story except the first, and the
total stiffness of the system becomes large. It seems that the concept of earthquake isolation
concentrating the energy to the lowest story is one of the effective way of reducing the total input energy
for the system, On the other hand, since the stiffness distribution and the value of the total stiffness
should be evaluated from the restricted conditions of the earthquake resistant design, it is not always
optimum for the structure to minimize the total stiffness.

The aseismic safety of structures can be evaluated by the relation between the total input energy and
energy absorption capacity of systems”. In other words, it means the evaluation of the relative relationship
between the input energy of each story and the energy absorption capacity of each story. Fig, 13 shows the
relation between the rate of energy distribution for the first story and the total stiffness ratio, It is clear
from Table 4 and Fig. 13 that the rate of energy distribution to upper stories becomes large in order to get
the small rate of energy distribution to the first story and that the upper stories consequently have weak
stiffness. On the contrary, the larger the rate of enery distribution to the first story, the larger the
stiffness of upper stories should be taken, and it reduces the stiffness of the first story considerably
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small. Since the energy absorption capacity of each story is generally proportional to the value of stiffness
for each story”, it is reasonable to design the structure so as to take the energy distribution proportional
to the stiffness of each story,

When the rates of energy distribution to the first and sixth stories are taken 21 % and 12 %,
respectively, the rates of energy distribution become 20, 17, 16 and 14% from the second to the fifth
(shown by the black circles in Fig. 12). The stiffness distribution determined by this plan is shown in the
third column from the right hand side of Table 4, in which the stiffness of each story decreases in general
with upper stories. The ratios of the stiffness of each story to the total stiffness are 21.6, 21.3, 21.8,
18.3, 13.8 and 3.2 % in order from the first story. Though these values of stiffness distribution are
somewhat different from that of the planned rate of energy distribution, it seems the most reasonable rate
of distribution in Table 4,

Since the optimum problem how to distribute energy may be different with various conditions such as the
purpose and types of structures, the energy distribution should be determined on all occasions by
examining these conditions.

When the energy distribution to each story is determined, the total input energy can be controlled by the
fundamental mode of vibration and the period of vibration as same as the control of energy distribution to
each story. The response characteristics of elasto-plastic multi-mass systems will be evaluated easily by
using the stiffness decided by the energy distribution and the fundamental mode and period of vibration.

6. CONCLUSIONS

Concluding remarks can be summarized as follows :

(1) The response of multi-mass systems having bi-linear restoring force is characterized by such
structural values as mass, stiffness and elasto-plastic stiffness ratio. The elasto-plastic behavior of
systems mainly depend on the elasto-plastic ratio 7 of each story. Taking this into account, the
elasto-plastic behavior of systems can be estimated easily by linearizing the elasto-plastic state of
multi-mass systems with both elastic stiffness and elasto-plastic stiffness ratio.

(2) For such a multi-mass system as the six mass system used in this study, the fundamental vibration
is predominant in the energy response, compared with higher order of vibration. This indicates that the
total input energy, E, and the input energy distributed to each story, E,, can be controlled by handling the
fundamental mode of vibration of multi-mass systems. In this study such a stationary input as sinusoidal
excitation was mainly applied to the theoretical formulations and the numerical analyses. These results
may be applicable to make the earthquake resistant design based on the energy concept.
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