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LIQUEFACTION ANALYSIS OF SAND DEPOSITS BY AN
ELASTIC-PLASTIC CONSTITUTIVE MODEL

By Hiroyoshi HIRA* and Masao SATAKE**

An elastic-plastic constitutive model is presented in this paper which is capable of
describing the cyclic behavior of sands reasonably accurately. A non-associated flow rule
is used by modifying the model available to monotonic loadings. Undrained cyclic triaxial
tests are simulated and the results are compared with the experimental data. The numerical
formulation and solution techniques are presented to analyze the dynamic behavior of sand
deposits subjected to earthquake shocks. The characteristics related to liquefaction are
investigated about the effective stress path, liquefaction zone and pore pressure. It was
shown that the permeability coefficient can significantly influence the response of the
ground during earthquakes.

1. INTRODUCTION

In the present decade remarkable advances have been made in the analysis for problems of grounds
subjected to dynamic loadings. The dynamic behavior of a ground is generally dependent not only on the
input motion but also on the constitutive relation of constituent soils, The nonlinear relationship appears in
the hysteresis of stress and strain for soils. This nonlinearity has the great influence on the dynamic
response of grounds. In order to incorporate the nonlinear hysteretic properties of soils into
one-dimensional problems during dynamic cyclic loadings, the skeleton curves such as the bilinear model,
Ramberg-Osgood” model and Hardin-Drnevich? model have been proposed., Recently, the general
constitutive laws have been developed to describe more precisely the behavior of soils under cyclic
stresses. The development of the constitutive models for dynamic response analysis is summarized in detail
in the book edited by Pande et al. ¥,

Although much research has been made for the description of deformation of soils under static conditions
of stress, a universal, quantitative model generally acceptable has not yet been appeared. The situation
becomes more complicated when fluctuating loads such as earthquake shock and traffic vibration occur,
The constitutive model under cyclic loadings in drained states must accurately represent the following
characteristics of the soil behavior :

(1) nonlinear hysteretic shear stress-strain relationship ;

(2) accumulated irreversible volumetric strain,

Of the two features, the second is responsible for the increase of pore pressure during cyclic load applied
to a sample where saturated and undrained behavior predominates. When the pore pressure builds up to a
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value of mean total compressive stress, the effective stress state reaches the failure of the material, This
is referred to as liquefaction generally.

An elastic-plastic constitutive model based on the non-associated flow rule has been proposed by Hirai et
al. ¥ for the description of sand behavior under static, monotonic loadings. This model can provide
reasonable, accurate prediction if the range of usage for the model is restricted to the stress paths such as
encountered in monotonic loadings. In the presentpaper, to reproduce the essential features of cyclic
response, the constitutive model available to monotonic loads is modified or extended. This model is
capable of quantitative predictions concerning the pore pressure increase evaluation, The numerical
formulation and solution techniques for dynamic soil problems are presented. The discussion is made about

the computed results for liquefaction characteristics of a ground during an earthquake.
2. STRESS-STRAIN RELATIONSHIPS OF SAND

Let T,, and E'® be stress rates and plastic strain rates respectively. On the basis of the principal of
maximum plastic work called Drucker’s postulate® and written as 7',,E%=0, Prager® formulated an
associated flow rule. Let f=0 beyield function having a closed surface in the stress space. According to
the relation established by Prager, no change in plastic deformation occurs as long as the stress exists
inside of the yield function, i.e., f<0;however, the purely elastic behavior is not observed in the range
f <0 during unloadings for geological materials such as clay, sand and rock. This may recall the noticeable
remark, as pointed out by Prevost et al. ?, that Drucker’s postulate is not the necessary condition but the
sufficient condition for stability and uniqueness, Hill® derived a constitutive relation based on the
non-associated flow rule, not introducing Drucker’s postulate, Developing the formulation given by Hill,
Prevost et al. discussed the strain softening flow rule violating Drucker’s postulate, The stress-strain
relationship during repeated loadings will be investigated by elaborating the formulation shown by Hill in
what follows. Requiring that the principal axes of the plastic strain increment tensor must coincide with

the principal stress axes since the element is isotropic, we can satisfy this condition by assuming that

Ef=A

where g is called a plastic potential, A is a scalar function and g and A may be represented in terms of
invariants of stress and plastic strain, Assuming the work-hardening parameter 7y to be a function of the
plastic strain, we can express the consistency condition given by Prager® in the form

+_ O o, of 9
f a]j; T”+8Ef(—")E(‘l})+a£ aE‘Z“”E(m (R P (2)

This means that loading from a plastic state must lead to another plastic state. Substituting Eq. (1) into
Eq. (2) and solving for A, we obtain

@ O O
ES=h 5. a1, Tn (3)
where
_ f B Y N G )
h= ”H ’+ayaE@>anJ (4)

It should be noticed that above derivation does not count on Drucker’s postulate being essential basis of the
associated flow rule proposed by Prager. The formulation similar to Eq. (3) is found in the constitutive
relation shown by Nova®. The non-associated flow rule generally violates Drucker’s postulate, since the
relation that 7',,E'#=( does not necessarily hold due to the difference between yield function and plastic
potential. The salient feature of Eq. ( 3) is that it is applicable to the case where plastic deformation may
occur for stress states within the yield surface. This feature yields definite advantages over the
conventional non-associated flow rules. From the viewpoint above, the yield function in the present paper
only designates the difference between two states on and inside the yield surface,
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In order to describe the inelastic behavior within the yield surface, the new concept referred to as the
boundary or bounding surface is proposed by Mroz et al ' and Dafalias et al.!?. The stress-strain
relations can predict to some extent the plastic behavior during cyclic loadings. To describe the behavior
during repeated loading of normally and overconsolidated saturated sands, Nishi®® performed undrained
cyelic tests and proposed an elastic-plastic constitutive model, For cyclic behavior of sands, Ghaboussi et
al @ showed a material model where a non-associated flow rule is used and the volumetric strain is
determined by a semi-empirical rule,

For sand, Hirai et al.® discussed the capability of several models related to the associated and
non-associated flow rules. Among them, the model based on the non-associated flow rule possesses simple,
reasonable forms of yield functions and plastic potentials

.f1=Jz+19H+7111=0 .................................................................................................. (5)

f2=11+72—_—0 ............................................................................................................ (6)
and )

g‘=J;/’/I‘——M1nII,/Io|=0 ........................................................................................ (7)

gz_—_11+72=0 ............................................................................................................ (8)

where f; and g, are called the modified Cam clay and Cam clay models respectively, the combination of f,
and g, is related to consolidation, J,= T7,T,/2 is the second invariant of the deviatoric stress Ty, [=
T, is the first invariant of stress, g andM are material constants and 7, 7, and I, denote work-hardening
parameters, The rates of the work-hardening parameters y and 7, are given by

7.=¢ THE‘,"}/B-F ¢,T;,E‘i’}’ ........................................................................................... (9)

72=¢1T”E(}'})/3 ......................................................................................................... (10)
where ¢,, ¢, and ¢ are material constants.

The undrained triaxial compression tests of sand performed by Ishihara et al. ' suggest that, for one
cycle of unloading and subsequent reloading,

a) The deviatoric plastic strain may be assumed not te occur since the reloading process traces the
same path as that along which the unloading has been excuted, in the relation between the deviatoric strain
and the axial difference stress.

b) It may be assumed that no volumetric plastic strain generates if the stress stays below the phase
transformation line defined as —J}/*/L=M.

¢) The volumetric plastic strain conspicuously appears once the stress state has been kept beyond the
phase transformation line,

When no plastic strain due to consolidation occurs, i.e., Egs. (6), (8) and (10) are neglected, the
suggestion mentioned above indicates that

1) I f=0 and 8f,/0T,;T.,;=0, the forms of Eqs. (5), (7) and (9) are employed.

2) If £,<0or 8f,/9T,;T,;,<0 and (—J}/*/L)max<M, the behavior of sand is assumed to be elastic.

3) If £,<0 or 8f,/9T,;T;<0 and (—J3/*/L)max>M, the other forms are adopted as

A A} - e A | R e L L A (11)
o= L Jum0 oo (12)
Fam= gy TugBo ) Br e v eee et (13)

where f, and g, are yield function and plastic potential respectively, 7 and 7, are work-hardening
parameters and ¢, is a material constant. In case (3), the domain enclosed by the yield surface f, is not
elastic and, for stress trajectories within this surface, plastic flow occurs as the yield function f;
contracts or expands, according as unloading or reloading.

The constitutive equation in the elastic state is expressed as

Tym= G e eeeeesee st (14)
where C,,, are components of the tensor of elastic constant and E'¢ are components of elastic strain. Since
the strain rate is decomposed into elastic and plastic parts



190 H. HIRAI and M. SATAKE

E <e)+ E .......................................................................................................... (15)
we get the total stress-strain incremental ralation in the form

T Digmd g oo eeere et et e e (16)
where

Digrim= G Mgy oo e e (17)

Mijkl:Ciqu"aaTgﬂ; aan"m C,,,,,,c,/< gi 8aE7 887‘?3!+Cstuv "387‘{;! 887‘(‘].,,,> ................................ (18)

As the shear stress increases, failure occurs with the infinity of strains. The failure criterion proposed
by Drucker and prager‘5’ is expressed as

F=J! /24 F A R (19)
where £ is a materlal constant. There are many uncertainties in the behavior of soils after failure. For
convenience, it is assumed that the stress-strain relation after failure requires the elastic model

T, z_E”kl D PPt I (20)
where C,;; are elastic constants in loading after failure and are assumed to be Cur=Cr/100.
By use of the combination of Egs. (5), (7) and (9) and the
H other one of Egs. (11) to (13), the effective stress path

5 designated by the curve A to H for undrained triaxial
_0:-4_ compression test with repeated loading is calculated, as shown
) Phase in Fig. 1. The notations p=—1,/3 and ¢=(3 .J,)'/? are employed
o 3k Transforma-

tion in Fig. 1. The part of the curve, ABGH, corresponds to the

Line effective stress path during the monotonic loading. Since the

~N
T

p=-1/3 elastic behavior assumed in the part BCD, no increment of pore

=32
=03 pressure takes place. The effective stress p decreases as the

0 T 4A 3 axial difference stress g decreases from EfoF, while, the
—— P (102kPa) effective stress p increases with the increase of ¢ from F to
Fig.1 Effective stress path computed under G. The trend similar to the results shown above is observed in

undrained cyclic condition. the experimental data given by Ishihara et al.'?.

3. ANALYTICAL FORMULATION OF GROUND MOTION

Consider the dynamic analysis of the ground subjected to earthquake shocks, The deviatoric stresses
B T A L T (21)

are employed, where ¢;,=—T,,. The notation ¢,=—E,, will be adopted
later. Fig.2 shows the horizontal surface layer on a base layer and the

rectangular cartesian coordinates.

Egg'fearce Since the ground is laid down under conditions of zero lateral strains, €1
N = ¢330, it is seen from Eq. (16) that the stress-strain relationship in the
xpr 0 present problem is expressed as
Base Layer &;l Du De
e . .
Fig.2 A ground anyd coordinate ‘sz = D“ Dzz B SRR (22)
system, 033 Dsi Dy, E12

Tz Dy D.

where for loading such that f,=( and 2f1/901;6,,20, it follows that
Du=—L/BN—=2G/3—Ji*/L+M)/A—Gsn/(LJY WX\ J—BI})/A—2 Gsul/ B
D..={( J;/Z/Il-{-M)/A Gsu/(LJY'?) h4 Gs.:/B
Da=—hL/BN+4 G/3—{JY*/L+M)/ A= GSu/ (LI Y WX Jy—BI}/A—2 Gspl/B
D= /Z/II+M)/A Gs2 /(I ;/2}4 Gs../B
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Dy=Du, D:x=Dy

Du=Gsy, ‘(Jz—ﬂlf)//\—z Gszz*/(llJ;/zB)

D=2 G—4 G*s},/(LJy*B)

B=(¢1—¢z) J§/2+M¢1I‘+{2 GJ;/Z_(JZ__Ing)x(M_*.J;/I/Il) 3/M/I| .................................... (23)
and for the stress state like that f,<0 or 9f./d0c7,67;,<0 and (—=JY*/L)max>M, we obtain

Du=—15L/BN—2G/3—L{L—BI)/A—2 Gsul/(AB)

D=4 GSIle/(w)

Du=—5/B N+4 G/3— L {L—BI}/A—2 Gsul/(AB)

D.,=4 GszL/(AB), Duw=Du, Dw=Di, Du=0

D.=2G, B=(¢’z+3ﬁ/A) I:—3 Jof Aceersmrennn et (24)

In the above, A is a material constant defined as &§=A4%,/0% and G is the elastic shear modulus.
Since the total stress in the vertical direction g;, is assumed to be constant, we have

g e+ (25)
where i denotes the pore pressure. Using Egs. (22) and (25) leads to

Gua==Aq g Agllesererereessrenmmes e P (26)

B2gm=C &gt Callversremermer s s st mem sttt 27)
where

A1=D42’D22D41/D21

A= —Du/Dzl

Ci= D2/ Dy (28)

C.,= ’I/Dzl

The mixture theory for solid and fluid phases is first established by Biot'?, who extended it to the
dynamic range limited to linear elastic behavior. Developing the Biot equations to deal with non-linear
situations, Zienkiewicz et al. ” showed an approximate but reasonable formulation of mixture theory in the
form

Gryy b PBTE PI +o e em e (29)
u'z+ﬁfb:=Pfg/kwi+,0;f]¢ ........................................................................................... (30)
Bugm= By oo e s (31)

where g,,= o},+ ud,;, pis the density of solid plus fluid, b, are body forces, y, are relative displacements
of solid matrix, k is the permeability coefficient, p, denotes the density of the fluid alone, g is the
gravitational acceleration, w, represent the relative displacements of the fluid to the solid skeleton, ¢ is
the volumetric strain and (*) =9( )/8t. The relation of Eq. (29) represents the overall equilibrium
between the total stress-tensor gradients, body forces and inertia forces. In the dynamic case, the
equilibrium of fluid flow is written as Eq. (30). Finally the mass balance of flow requires the relation of
Eq. (31) when solid grains anq fluid are assumed to be imcompressible. Substituting Eq. (30) into Eq.
(31) and assuming that =0 leads to

gy Py Ry e reeremmmem e n s (32)
This expresses an augmented form of the transient seepage equation.

The motion in the directions of x, and x, is considered in the surface layer on the base layer., Assuming
that 9g,,/8x,=0, we get from Eq. (29)

3alz/axz=p(j]1+§]o) .................................................................................................. (33)
where b,=—1y, and g, is the displacement in x,-direction of base layer. When it is assumed that
ou/ox,=0, Eq. (32) is expressed as

DM PG D et

ax%_ t B gg " TTeEe e eEReTe e et s (34)
Substitution of Eq. (26) into Eq. (33) leads to

9’4y, A 9’Ay, | 9’Aye 24Au
PYE — 3 axi +p PYE —A, o, B | T L L T TR TECEPEPEPRPPPD (35)
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where Ay, is the displacement increment and
E1a = Y3/ Dda/2 -+ erere et e et (36)
Substituting Eq. (27) into Eq. (34), we obtain

k a u ou aElz
pg 9 TG thg =

Egs. (35) and (37) form a coupled system of differential equations for fluid-solid dynamic interaction., The

surface layer is divided in finite element mesh, as shown in Fig. 3. Applying the standard discretization
procedure (e.q., Zienkiewicz®) to Eq. (35), we arrive simply at

IMUAY LKA Y AF S0 e eve ettt (38)
where matrices [M], and [K], of jth element and the force vector
GL Nod1e Element |AF], are given by
1
2 ; [M]fzpjhl/(i[f 2] .................................................. (39)
K}
9 “‘1
Surface [K],= A,,/Zh,)[ 1 ] ......................................... (40)
Layer j 1 —1 AU,
n] o aFL=an/2am |} +aue[l 1| e Y
n where o, h, A, and A,, correspond to o, h, A, and A, of jth
< n element respectively and
Base =N Y (42)
Layer JUPSINTIU v eveveme et am e “3)
Fig.3 Finite Element Division, In the above, {Y} and {U}irepresent displacements and pore pressures

at nodes for a particular element respectively and [N] is called the
shape function
[N]=[hj_x’z, xé]/h, .................................................................................................. (44)
where x; is the local coordinate system.
The linear acceleration method formulated by Newmark!? is used to solve Eq. (38). The flow equation
(37) similarly yields a discrete form

[SHUNFLT U P=0 - evemmvrmeeeee e e (45)
where matrices [S], and [T], of jth element and the vector {P}, are expressed by
[SL,=k,/(p,9h,) [ _11 ‘11] ...................................................................................... (46)
[T),=—Cuh,/6 [f H ............................................................................................ 47
{PL=—C\,h,(21),/2 H} ........................................................................................... (48)

where k, C,;, C,,and (e,,), denote k, C,, C,and ,, of jth element respectively, The step-by-step process
given by Zienkiewicz et al. ™ can be applied to Eq. (45).

4. NUMERICAL RESULTS AND DISCUSSIONS 0

A site in Niigata city where the earthquake occurred in 1964 is ‘,:E_E10'
adopted as the ground model for computation, The total depth of the %20_
surface sand layer is 30 m and the water table is 2 m in depth. The
distribution of the relative density of sand is the same as that used by 30 TS e 00
Oka et al.® as shown in Fig, 4. Other parameters of sand deposits RELATIVE DENSITY(%)
are determined as follows : Fig.4 The relative density of sand

(1) The void ratio, e, is determined from the relative density D,,

deposits used in ation,

P
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the maximum void ratio emax and the minimum void ratio e, in the form

e= em_Dr(em_ emm) ........................................................................................... (49)
(2) The mass density, p, of soil is obtained by use of
S (Gat @)/ (1 @) <+ +ereverernemermes et (50)

where G, is the specific gravity of soil particles,

(3) The permeability coefficient k is simply defined by the relation given by Taylor :

k=Ce*/(1+e) (C: COMSLANL) -+ v veemermasrmsss e see e ts sttt ottt ettt (51)

In the calculation, the permeability coefficient of the element at the ground surface is specified.

(4) The elastic shear modulus is determined with the aid of the method proposed by Seed et al. ?
(Egs. (2) and (4) in 22)).

(5) The soil parameters M, B8, ¢, ¢, etc. in the proposed constitutive relation are connected with
the relative density of sands, For convenience, however, according to the experimental data given by Hirai
et al.¥ it is assumed that

Gs=2.65, €max=0.99, emn=0.61,

A=6.34X107, M=0.228, f=1.33X107*

$.=86.9, $:=21.7, £=0.280, ¢y=—5.56X 10 -ree-errrsrrrerrmrimiiiiitn e (52)
where the value of ¢, above is determined to satisfy the results shown in Fig. 1 and the following values are
adopted

h;=1m, At=0.001sec, K,= Uum/azz(o)‘o L LR PR RRERLR (53)
where o7y, are initial effective stresses.

Fig. 5 shows the acceleration record observed at the gallery of Tarumizu dam when 1978 Miyagiken-oki
earthquake occurred, This record is employed as the input base acceleration. Fig.6 demonstrates the
relationship between the shear stress o,, and shear strain ¢, at the depth 9.5 m for the permeability
coefficient k=10"* m/s and it is seen that the nonlinear hysteretic property appears as the shear stress is
repeated. Fig. 7 depicts the relations between the shear strain and time and it is found that for k=10"*m/s
the shear strain abruptly increases to reach liquefaction at 5.68 sec; however, for k=10"°m/s
liquefaction or failure does not occur. The computation for k=10"*m/s is not carried out after
liquefaction, because the constitutive model presented here is not available to the description of the state
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af z «
z AAI\ g
£ 0 Vi & o
5 L " \ . I3 3
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Fig.6 Stress-strain relation, .Fig.7 Strain time history. Fig.8 Stress time history.
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Fig. 10 Acceleration time history. Fig.11 Effective stresses p-q relation.

of the zero effective mean principal stress. Fig. 8 shows the relations between the shear stress and time

and it is noticed that the shear stress is hardly affected by the magnitude of the permeability coefficient,
Fig. 9 exhibits the relations between displacement and time at 9 m in depth, The sudden increase of the

displacement for k=10"*m/s accounts for the occurrence of liquefaction, Fig. 10 demonstrates the

relation between acceleration and time at 9 m in depth and it is seen that the amplitude of the acceleration

for k=10"*m/s possesses the value greater than that for k=10"°m/s.
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1 1 1 i
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Fig.12 Pore pressure profile.

Fig. 11 exhibits the effective stress paths in p—¢ plane at the
depth 9.5m. The liquefaction follows failure for £=10"*m/s in
Fig. 11 ; however, the stress state for k=10"* m/s dose not reach
liquefaction or failure. This result is similar to the ones obtained
by Zienkiewicz et al.® and Oka et al.™”. It is suggested that the
occurrence of liquefaction is much dependent on the permeability
coefficient of sand.

Fig. 12 demonstrates the relations between the effective mean
principal stress p and depth. As seen in Fig.12, p amounts to
almost zero between 7 and 9.5m in depth at 5.68 sec, i.e.,

12
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Fig. 13

Pore pressure time history,
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liquefaction takes place. It may be of interest to note that the zone of liquefaction which Seed et al.

estimated on Niigata sand deposits is considerably similar to the depth range of liquefaction in Fig. 12. Itis
found, however, from Fig. 12 that the increase of the pore pressure for =10"* m/s is not so conspicuous
in comparison with £=10"*m/s.

Fig. 13 shows the relation between pore pressure and time at 9.5 m in depth. It is noticed that the pore
pressure for k=10"* m/s increases with time, fluctuating after 2.5 sec to reach liquefaction, while for k
=10"* m/s the increase of the pore pressure is not enough to cause liquefaction. Ishihara et al.? observed
simultaneously the acceleration and the pore pressure in the sand deposits during an earthquake. The
numerical result for £==10"" m/s in Fig. 13 is similar to the field data given by Ishihara et al. with respect
to the trend that the pore pressure increases suddenly near the maximum value of the input acceleration and
subsequently the dissipation of the pore pressure continues gradually.

Fig. 14 exhibits the effective vertical stress g5, at 9.5 m in depth. It is seen that o7, tends to decrease
with time for k=10"* m/s ; however, the trend for k=10 m/s is that the effective stress ¢?, is increasing
with not monotonous but fluctuating change on and after 2.5 sec. Fig. 15 shows the effective lateral stress
&), at the location 9.5 m in depth. The change of o}, for £=10"* m/s tends to decrease with fluctuating.
When liquefaction occurs, the change of the total lateral stress ¢, Agy,; can be written as Ao,=
(1— K;)@hae. i. €., the total lateral stress increases as the state approaches liquefaction. This trend is also
observed in experimental results shown by Ishihara et al ®.

DEPTH=9.5m

/— k=10"3m/s

DEPTH=9.5m

/—k=1 03mys

EFFECTIVE STRESS Uz (10kPa)
o
T

EFFECTIVE STRESS Ojy (10kPa)
[

TIME (SEC} TIME (SEC)

Fig. 14 o2, vs. time history. Fig.15 o1, vs. time history.

5. CONCLUSIONS

The main results obtained in the present paper are summarized as follows :
(1) An elastic-plastic constitutive model of sand for cyclic loading is proposed by modifying the model

available to monotonic loading conditions.

(2) A stress-strain relationship during repeated loads is derived from the non-associated flow rule
violating Drucker’s postulate.

(3) The incremental forms of the stress-strain relationship are presented to apply the constitutive
model to the Finite Element method.

(4) The analytical formulation is made concerning the one-dimensional dynamic response of the level
ground during an earthquake,

(5) For two cases where liquefaction occurs and does not appear, the characteristics of the effective
stress path, liquefaction zone and pore pressure are demonstrated.

(6) The permeability coefficient makes significant influence on the response of the ground subjected
to earthquakes.



196 H. HIRAI and M. SATAKE

REFERENCES

1) Jennings, P_C. : Periodic response of a general yielding structure, Proc. ASCE, No.EM2, pp. 131~166, 1964,

2) Hardin, B, O. and Drnevich, V. P. : Shear modulus and damping in soils : design equations and curves, Proc. ASCE, No.SM7,
pp. 667~692, 1972,

3) Pande, G.N. and Zienkiewicz, O.C. : Soil mechanics-transient and cyclic loads, John Wiley & Sons, 1982.

4) Hirai, H., Yanagisawa, E. and Satake, M. : Elastic-plastic constitutive models for the behavior of sand, Proc, JSCE, No. 343,
pp. 255~265, 1984,

5) Drucker, D.C. : A definition of stable inelastic material, J. Appl. Mech., Vol 26, pp.101~106, 1959,

6) Prager, W. . Recent developments in the mathematical theory of plasticity, J. Appl. Phys., Vol. 20, pp. 235~241, 1949.

7) Prevost, J.H. and Hoeg, K. : Soil mechanics and plasticity analysis of strain softening, Geotechnique, Vol. 25, No. 2, pp. 279~
297, 1975.

8) Hill, R. : The mathematical theory of plasticity, Oxford Press, pp.33~35, 1950,

9) Nova, R. : A constitutive model for soil under monotonic and cyclic loading, pp.343~374, reference 3),

10) Mroz, Z. and Norris, V.A. : Elastoplastic and viscoplastic constitutive models for soils with application to cyclic loading,
pp. 173~217, reference 3),

11) Dafalias, Y.F. and Herrmann, L. R. : Bounding surface formulation of soil plasticity, pp. 253~282, reference 3),

12) Nishi, K. : Elasto-plastic behaviour of saturated sand under undrained cyclic loading and its constitutive equation, Proc, JSCE,
No.319, pp.115~128. 1982,

13) Ghaboussi, J. and Momen, H. : Modelling and analysis of cyclic behaviour of sands, pp.313~342, reference 3.

14) Ishihara, K., Tatsuoka, F. and Yasuda, S. : Undrained deformation and liquefaction of sand under cyclic stresses, Soils and
Foundations, Vol.15, No.1, pp. 29~—44, 1975.

15) Drucker, D.C. and Prager, W. : Soil mechanics and plastic analysis or limit design, Quarterly Appl. Math. , Vol. 10, pp. 157~

165, 1952,
16) Biot, M. A. : Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., Vol.33, pp.1482~1498,
1962.

17) Zienkiewicz, O.C. and Bettess, P. : Soils and other saturated media under transient, dynamic conditions ; general formulation
and the validity of various simplifying assumptions, pp.1~16, reference 3),

18) Zienkiewicz, O.C. : The finite element method in engineering science, McGraw-Hill, pp.322~346, 1971.

19) Newmark, N. M. : A method of computation for structural dynamics, Proc. ASCE, Vol.85 No.EM 3, pp.67~94, 1959,

20) Zienkiewicz, O.C. and Parekh, C_J. : Transient field problems : two-dimensional and three-dimensional analysis by
isoparametric finite elements, Int., J Numerical Meth. Eng., Vol.2, pp.61~71, 1969.

21) Oka, F., Sekiguchi, K. and Goto, H. ; A method of analysis of earthquake-induced liquefacthon of horizontally layered sand
deposits, Soils and Foundations, Vol.21, No.3 pp.1~17. 1981.

22) Seed, H.B. and Idriss, I. M. : Analysis of soil liquefaction : Niigata earthquake, Proc. ASCE, Vol.93, No.SM3, pp. 83~
108, 1967.

23) Zienkiewicz, O.C., Leung, K. H., Hinton, E. and Chang, C.T. : Liquefaction and permanent deformation under dynamic
conditions-numerical solution and constitutive relations, pp. 71~103, reference 3),

24) Ishihara, K., Shimizu, K. and Yamada, Y. : Pore water pressures mea;sured in sand deposits during an earthquake, Soils and
Foundations, Vol 21, No.4, pp. 85~100, 1981,

25) Ishihara, K. and Li, S. : Liquefaction of saturated sand in triaxial torsion shear stress, Soils and Foundations, Vol, 12, No. 2,
pp. 19~-39, 1972,

(Recieved May 30 1984)




