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TO EARTHQUAKE MOTION
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ABSTRACT

In this paper, the authors derived analytically the formula finding the abso-
lute maximum response of structures due to earthquake motions from their re-
spective maximum acceleration. The computation results for a given structure
by this formula accompanied by the assumptions of input power spectral density
gave a good coincidence within a narrow band estimation with its precise re-
sponse obtained by the direct-integration of the governing equation with strong-
earthquake records as an input.

I. INTRODUCTION

Earthquake-resistant design of civil engineering structures with a long period
of vibration has been based on their response analysis using certain strong-
earthquake records or their average response spectrum. However, these methods
still have some shortcomings: in the former, due to the individual earthquake
characteristics, and in the latter, due to the averaging process. As a new ap-
proach, a stochastic process, characterized by spectral or correlation method of
analysis, has been applied to this field of study by many researchersP~'», As
a result, the expected mean value and moments of random response have been
obtained. However, it is the maximum value that has the most vital role in
structural design, and thus an attempt is made herein to derive the formula find-
ing the maximum deformation response of structures when subjected to earth-
quake motion.

There are two methods of approach available to find the maximum value of
random variables after their statistical processing: namely

(1) threshold-crossing method

(2) peak-distribution method
The general concept on (1) and (2) was formulated by S. O. Rice!® and D. Mid-
dleton'®., Furthermore S. O. Rice showed that these two methods yielded almost
the same result near the maximum in the case of stationary Gaussian white
noise passed by a low-pass filter or a band-pass filter. For this reason, the com-
putation presented herein is performed by using method (2) after the spectral
analysis of random variables.

This method assumes the input power spectral density of earthquake motion.

* Dr. Eng., Professor, Dept. of Civil Eng., Kyoto University.
**  M.S. (Civil), Assistant, Dept. of Transportation Eng., Kyoto University.
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Tajimi, for the first time, proposed to use as a substitute for this the absolute
acceleration response of a one-degree-of-freedom system to a stationary Gaussian
white noise. But his proposal has a discrepancy in the lower frequency range
near zero which severely affects the response of structures with a long vibration
period. Therefore, its improved form was adopted by H. Sato'®. In this paper
the authors, taking into account the multi-predominant frequencies of earthquake
motion, simulate the above spectral density of the velocity response one of an
idealized foundation layer with a parallel arrangement of one-degree-of-freedom
systems as an input of a stationary Gaussian white noise.

Since the intensity of earthquake motions is generally measured by their re-
spective maximum acceleration, it is most significant to predict the correspond-
ing maximum response of structures from this value. Tajimi, assuming that the
ratios of maximum to standard deviation of both the excitation and response are
equal, constructed the response amplification factors of deformation, velocity and
acceleration for a structure whose natural period is shorter than twice the sup-
posed vibration period of the foundation layer. In a third case though, H. Sato
corrected this by considering the extreme probability density both for the excita-
tion and response'®. However, in a case of structures with a long vibration
period, it is the deformation response that determines their design parameters.
Y. Nakao and N. Sasaki, considering the joint probability density of the above
ratios, deduced a formula concerning the maximum deformation response of struc-
tures to the maximum input acceleration!®, but it still has a broad band estima-
tion. Herein, the authors took the following approach for this investigation.
The relationships between maximum and standard deviation, both of earthquake
motions and response of one-degree-of-freedom systems, were first studied, and
then, by combining these with the results from their spectral analyses, their pre-
cise response amplification was determined with a narrow band estimation. It is
the function of (1) the response amplification in a stochastic sense of a concern-
ed system, (2) its vibration period and the damping effect, and (3) the duration
of the earthquake motion. This discovery makes it feasible to estimate properly
the response of structures due to earthquake motions even in the case of a
multi-degree-of-freedom system, as shown in the example.

II. STATISTICAL ESTIMATION OF THE MAXIMUM
RANDOM VARIABLE

In this paper, as was mentioned in the Introduction, the absolute maximum
value of random variables is found from the peak distribution. The related basic
theory was reviewed by Y. K. Lin'® in the case of a stationary stochastic pro-
cess. The authors have tried further to extend it in a form applicable to a non-
stationary stochastic process.

D. Middleton expressed by the following equation the expected number of
peaks above the specified level during the interval of (4, ), provided that the
random variable x is differentiable with respect to time up to the second order'®.

NG, b, )= S |50 LN () —Eldt @1

where 5[] signifies the Dirac delta function and [[-] the Heaviside step function,
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respectively. By the use of the joint probability density function of the involv-
ed variables in Eq. (2.1), the expected number of peaks above £ during the inter-
val (0, £2) is obtained as

td g 0 3 . =
E[N(E, t)]=— So dt Ss S E[ple, &, &5 )ldi dx (2.2

- z=0

where p(x, &, &; 1), the probability density of x(f), &(¢), and %) at time ¢, is as-
sumed to be subjected to the Gaussian distribution and then the corresponding
at =0 is expressed in the form as

. 1 mez—[—M;;i}H-ZMx;xi'}
— _ _ 2.3
(o, &, 5 ()=~ =srrrr exp | 5131 @3
where
2 2 . 2 .
oz o.xa; oxx wa :0-2 o-i: _gix
T
[MI: s et M;;:o’202,—-0'4,..
symmetric T | pri gt gl glgt,
- xTr X r Xx

po i
&(t) and %), and their covariances, respectively, which are obtained through
stochastic processing. The number of peaks per unit of time is found upon sub-
stitution of Eq. (2.3) into Eq. (2.2), and after some algebraic operations.

The notations ¢%, a7, oi; o, o', ¢t are the variances of random variables x(t),

1 ( 2 — szx2
Bl D=4 75t Se [ﬁ VM exp(“ 2| M]| >
i ”i”erf<2|M1Mu>}eXp< oM | Ms xﬂd‘”
2.4)
where
erf (x):—;—/% S: e Vdy (2.5)

The expected total number of peaks above & during the interval (0, £;) is then
t
EING ta1=| * Blnce, tjat @.6)

The absolute maximum value, therefore, can be found by letting the lefthand
side of Eq. (2.6) equal 1.0 or 0.5, each of which gives the lower and the upper
bound, respectively.

for the lower bound: E[N(&kx, t)]=1.0 (2.72)
for the upper bound: E[N(&¥ax, t)]=0.5 2.70)

On the other hand, the probability density of peaks at time ¢ is given, based
on the heuristic assumption by Huston and Skopinski!”, as
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1 0

~ Efnn) e & 2.8)

P& D=
where the notation E[#nr(f)] means the expected total number of peaks per unit
of time, regardless of their magnitude, and is obtained from

Etnnt)=|"_da [ _itpce, o, )i 29

=0

Substitution of Egs. (2.4) and (2.9) into Eq. (2.8) yields

2
1 MiiMe—Msl 2 M.,
P& D= 5 T M 5 M| [ T=vM exl’(_ 2| M| 52)

VT M M My =M Ms s
+=Tnte ¢ et (g ) oo e e

III. SIMULATION OF EARTHQUAKE MOTION

Simulation of earthquake motion in a stochastic sense means an approxima-
tion of its spectral composition in frequency domain on the basis of strong earth-
quake records'® or on the geophysical investigation. Such a procedure has been
used by many researcher, assuming a filtered Guassian stationary white noise
through a certain linear system?®-%.",% as an earthquake motion.

The authors also followed this semi-experimental way of thinking in consider-
ing earthquake acceleration, and it is simulated by the velocity response of a
linear filter®

By 2pdeg+(wg? -+ 1) 2y =X 3.1

where the notations w, and p, represent, respectively, the predominant frequency
and the damping effect of the foundation concerned. Then, applying the input-
output relationship in stochastic process to the above system, the power spectral
density of the synthetic earthquake motion is

Si,(@)=| Ha (io)|*D (3.2)

?

(wo? + 2 — ? +4ulw?

Szylw)= (3.3)
with the intensity D at the base rock as a parameter,

Most of zarthquake acceleration records, as are shown by the dotted line in
Fig. 1, have a broad-band power spectral density of one peak, or that of several
peaks where a few predominant frequencies can be observed. Hence, the founda-
tion layer of an idealized parallel system of one-degree-of-freedom systems as in
Fig. 2, was assumed. This results in the following input-output relationship in
frequency domain.

Siy@)=| 2 aiHz, (iw)|*D (3.4)

where the coefficients a; determines the magnitude among peaks. In this paper,
the following simplified expression of Eq. (3.4) was adopted,
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Siyfw)= 2 asl Hz, (i) 'D (3.5)

This function presents a tendency closely approximate
to the results of several strong earthquake records:
i.e., by adjusting parameters involved, the prominent
peak or peaks of the above function can be confined
within the frequency range, for instance, 0~60 rad/sec,
and its amplitude can be made negligibly small near
the zero frequency range, and diminished in an asymp-
totic manner at the higher range more than 60 rad/sec.
As fundamental information concerning the value of
parameters, Figs. 3, 4 are shown, where the number
of superpositions was taken up to 2. Several illustra-
tions are presented by the solid line in Fig. 1. Their

conformity in shape to actual power spectral densities could be attained by choos-
ing parameters in Eq. (3.5) as in Table 1 through man-machine communication

(by FACOM 230-10).

As for the auto-correlation functions of the above synthetic earthquake mo-
tions, they are found as the Fourier transform of Eq. (3.5) as

Rif(t)=3 oo eXP (—to;| 7 [ws, COS wy,r— 15, Sin g, |7 DD (3.6)
i=1 g Vg,

x 1

Power spectral density

Power spectral density

Fig. 3 Earthquake simulation effect of « Fig. 4 Earthquake simulation effect of x
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Comparison between these auto-correlation func-
tions and those of strong earthquake records is
also made in Fig. 1.

IV. MAXIMUM ESTIMATION OF
EARTHQUAKE ACCELERATION

When the earthquake motions are simulat-
ed by the stochastic process, their expected
mean value and moments can easily be found.
However, their maxima are more significant
from the aseismic structural engineering point
of view. For this investigation, the theory de-
rived in section II is certainly applicable. The

Table 1 Value of constants used in
earthquake simulation

EL CENTRO 1940 NS

0 [+3

(RN

2000

ig
.0 10000
.5

.8 500

ocbwn @

TAFT 1952 SE 111

, a

1
2000

ug
.5 10000
.5

.0 500

coo «

6
8.
4

OLYMPIA 1949 SE176

EL CENTRO 1940 EW
w, Yg a
5.0 10000
2.5 13000
2.0 2000
1.5 2000

0, " o

g

.0 8000
0 12000
0 300

necessary statistical quantities such as those zowg 3“9 ] ¢ ‘e g ¢
included in Eq. (24) or (2.10) can be obtained fo.0 30 200 120 25 900
from Eq. (3.5) and the stationarity of the con- PR T 3.0 15 1000
cerned process as follows: 30 10 100
e 1 20~ . . in the case of one-sided
r T on lE:lS o | Hs,p i)|*D do power spectral density!'® (4.1.2)
s 1 = (- o in the case of two-sided
% Ton ES_OO'HM(@“’WD do power spectral density (4.1.b)
2 1 2= .
oy :—é—[;‘ gl So wlei‘gi(gw)PD dw (42)
2 1L 0% . e
o =5 > SO o'\ Hs, (iw)]*D do “.3)
0hp =0 (4.4)
05y =0 (4.5)
0':,1',:"‘—0'1; (46)

The actual calculations were carried out with an integral range of 0~60 rad/sec.
This truncation is efficacious as is proved by comparing the results by numeri-
cal integration of Eq. (4.1.a) and by residue integration of Eq. (4.1.b).
Substitution of Eq. (4.1) through Eq. (4.6) into Eq. (2.4) and Eq. (2.10) yields the
expected number of peaks of the synthetic earthquake motion above the specified
level & and its probability density of peaks, which are shown in Figs. 5 and 6,
respectively. Fig. 5 indicates that the maximum acceleration of earthquake mo-
tion is about 3.0~3.5 times of its standard deviation, regardless of the shape of
its power spectral density, but affected by its duration as shown in Fig. 7.
Furthermore, this figure predicts the following approximate relationship between
the ratio of maximum to standard deviation of earthquake acceleration and its

duration,
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for the lower bound

art=0.91log tsa-+2.16  (4.7.2)

for the upper bound OLYMPIA 1949 SH 266 GT‘X
a¥ =0.82 logw tea+2.53  (4.7.b) Fig. 6 Probability density of peaks

These formulae have a narrow-band estimation of the maximum. Their applica-
tion to strong earthquake records, as indicated in Table 2, gives a good coinci-

Table 2 Estimation of the absolute maximum acceleration of earthquakes

ob ob L st U st
tEd fmax fmin °f i 1TL,max °f fU max m 2) & W

€L CENTRO 1940 NS 10.3 298 -318 94,3 3.11 293 3.38 319 1.02 1.08 0.93 1.00
EL CENTRO 1940 EW 29.0 230 -160 70.2 3.49 245 3.73 261 0.94 0.65 0.88 0.61
TAFT 1952 SE 111 17.0 180 -149 57.0 3.28 187 3.53 201 0.96 0.80 0.90 0.74
TAFT 1952 NE 21 16,0 170 -182 56.6 3.26 184 3.51 199 0.92 0.99 0.8 0.9
OLYMPIA 1949 SE 176 19.0 160 -193 69.2 3.32 230 3.58 247 0.70 0.84 0.65 0.78
OLYMPIA 1949 SW 266 19.0 307 -193 84.4 3.32 281 3.58 302 1.09 0.69 1.02 0.64

(1= fz‘;x/fﬁmax (2)='fr[r’»li)n/fifmax - fs:x/fafmax (4):'fr?xti’n/fafmax
tEd . duration of earthquake record used for statistical analysis

fﬁgx: observed maximum acceleration

f;?n: observed minimum acceleration

op t standard deviation of peaks of earthquake records

a'% . lower bound ratio of maximum to standard deviation, Eq.(4.7.a)

ag : upper bound ratio of maximum to standard deviation, Eq.(4.7.b)

flffmax: Tower bound of the statistical maximum acceleration

St upper bound of the statistical maximum acceleration

U,max”
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4“5 ] dence of actually observed maxima or
' ) minima. In Fig. 6 are also presented the
/ @ peak distribution directly obtained from

Op e o strong earthquake records for comparison.
[ Each assumed stochastic process well re-
2o (e o « 0,62 Toquats 4 2.53 p?esgnts. the significant range of peak
f 10T distribution—the portion which is more

1.0 (2): of = 0.91 Togygtgy + 2.16 than 1.5 times the standard deviation, and
it is concluded that the above good esti-

0 Y S L AN mates of the maxima or minima of earth-
! 510 0% 100 sec quake accelerations are due to this fact.

Earthquake duration tEd

Fig. 7 Ratio of earthquake maximum

acceleration to its standard V. RESPONSE OF A ONE-DEGREE-
deviation OF-FREEDOM SYSTEM

‘ The input-output relationship of a one-degree-of-freedom system in frequency
domain, when restricted within an elastic limit, is expressed by

Se(w)=|aH (io)|*Sr(w) 6.1

where Sr and Sz are the power spectral densities of excitation and response, re-
spectively. 2H(w) is the transfer function with regard to displacement response
of one-degree-of-freedom system to acceleration input; i.e.,

1

dygee N T,
)= irane

(5.2)

where wy and { are the undamped natural frequency and the damping factor,
respectively. When the system is subjected to the synthetic earthquake motion
of Eq. (3.5), its two-sided response power spectral density is thus obtained as

Se(w)=2 ai| H(io) '] H, (io)|*DJ2 (5.3)

The corresponding variance, as the inverse Fourier transform of this, is

o

Sr(w) do (5.4)

aﬁ(t):—z%; S

Integration of Eq. (5.4) upon substitution of Eq. (56.3) is carried out by the
method of residue theory. Such integral formulae applicable here are given in
reference (20) in the following form:

1=S°° | H(iw)|* doo (5.5)

where

—tw*Bs—@!Bi+iwB:+ Bo
' Ai—i® As— ot As+ivAi+ Ao

Hiw)= (5.6)

and the result is
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I=7{(B!/ Ao} AsAs— A1 A+ As(Bi*—2ByBs)+ A1(Bs'—2B1Bs)
(B3} AN A1Ar— AcA)[A(AsAs— A1 As)— AAsT] 5.7

This kind of residue integrals were originally formulated by H. M. James and
others?, Then, the displacement response variance is

1 m Iz
% e =
ga= 2 i=1 2 (58)

where [; is the integrated value by the use of Eq. (5.7) with the following co-
efficients:

A0i=wo2(w§i+,u,z,i) By;=0

Ali=2w0{C(w3i+ll§i)+{lain} Bi=-1 |

Ari=wo? +w3i+y§i+4&ooygi By;=0 (5.9)
Asi=2wo+ ptg,) B3;=0
Au=1

The velocity response variance is likewise

o
—00

o= 5 S W 4H ()| au| H, (i0) |*DJ2-doo (5.10)
This integration is also carried out by Eq. (5.7) with the same coefficients of
Ay (j=1,4) as in Eq. (6.9) and with By (j=1,4) of
By:=0
Bii=0
By=—1
B3i=0

(5.11)

As for the absolute acceleration response variance, using the transfer function of

o=y S\ 1H ) i) Do (5.12)
i=1 K

- 00

instead of Eq. (5.2), it is found to be

@o®+ 120w

s N
oH ()= o — o+ 120me (5-13)

The integrated value is obtained by Eq. (5.7) with the same coefficients of Ay
(7=1,4) in Eq. (56.9) and the following Bj;:

BOi=0
Bii=w¢?

(5.14)
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0.4

0.2

0 2 4 6
natural period in sec. natural period in sec.
Fig. 8 Deformation amplification spec- Fig. 9 Velocity amplification spectrum
trum by stochastic analysis by stochastic analysis
Byi=2{an %Rl F
Biy;=0 4.0
Figs. 8, 9, 10, which were obtained
through averaging the response to the 2.0

synthetic earthquake motions in section I1I,
represent the response amplification factors
in a statistical sense with regard to de-
formation, velocity and absolute accelera- 0
tion, respectively. Their general features

closely approximate those to actual strong  Fig. 10 Acceleration amplification spec-
earthquakes?® in the range less than about trum by stochastic analysis
3rad/sec. The precise maximum spectra,

however, may be the different ones from the above figures in the range more
than that, especially so the deformation spectrum as is investigated below.

6
natural period in sec.

VI. MAXIMUM RESPONSE OF A ONE-DEGREE-OF-FREEDOM SYSTEM

Maximum response of a lightly damped system is more easily calculated by
applying the Rayleigh distribution rather than by Eq. (2.10) for its peak distribu-
tion of response. The former distribution is a special case of the latter with a
random index e=0%. In this case the number of peaks is supposedly between
the number of zero-crossing with upward (or downward) and its twice. Hence,
the following equations with regard to the lower and the upper bounds of the
number of peaks above &.

for the lower bound

E[N¢, td)]=S:mE[n(0+)] Sj px)dx dt 6.1.2)
for the upper bound
E[NY(E, t)]= S:R“ 2E[1(04))] S:’ px)dz dt (6.1.b)

where the number of zero-crossing with upward is obtained by Eq. (2.9) as

E[n(0+)]:'2-1*n‘-§—: 6.2)
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and the Rayleigh distribution function is expressed by

2
p(x)f-;% exp (— 212) (6.3)

After integration of Eq. (6.1) over the variable x from & to infinite, it becomes
as

for the lower bound

I3 2
E[NX¢, t)]= SoRd E[n(0+)]exp (— Zidz > dt (6.4.a)
for the upper bound
t y)
E[NY(&, t)]l= SoRd 2E[n(0+)] exp <—— 2(57412 ) dt (6.4.b)

Maximum response during the motion can thus be found by letting the righthand
side of Eq. (6.4) equal 1, which leads the following ratio of maximum to standard
deviation response:

for the lower bound

L
%‘f’i‘«: T Tog, B0 (6.5.2)
for the upper bound
dv,
—%:Jz log: CE[n(0)]tra) (6.5.b)
a

These ratios have almost identical tend-
" encies regardless of the input power spec-
tral density as are shown in Fig. 11. They
very proportionally in a logarithmic as
the natural period of the system. Hence,
the following formulae are propose for
them:

3.0

2.0 L
for the lower bound

ar=arlog T +b* (6.6.2)

for the upper bound
a¥'=a" logi T +bY (6.6.b)

U . .
o = @ 1ong + b

where the coefficients a and b, which are

et . : the function of the response duration of

0.5 1 2 345 10 sec the system and its damping effect, are
natural period T Jigted in Table 3.

Fig. 11 Ratio of maximum response Substitution of Egs. (4.7) and (6.6) into

to its standard deviation the result by spectral analysis of a given

(upper bound) system vyields its maximum deformation
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Table 3 Ratio of response maximum to its standard deviation

Response duration thd® 10 sec.

damping factor L.B. U.B.
(%) at bt & oY
2 -1.20 2.15 -1.03 2.45
5 -1.10 2.16 0.9 2.45
10 -1.00 2.15 -0.84 2.45
15 -0.93 2.7 -0.80 2.46
Response duration th= 15 sec.
damping factor L.B. U.B.
(%) at bt 2! bV
2 -1.07 2.33 -0.94 2.61
5 -1.00 2.33 -0.86 2.60
10 -0.88 2.34 -0.77 2.62
15 -0.82 2.35 -0.73 2.63
Response duration th= 20 sec.
damping factor L.B. U.B.
(%) at bt al pY
2 -0.95 2.45 -0.90 2.72
5 -0.91 2.44 -0.82 2.71
10 -0.83 2.46 -0.74 2.74
15 -0.77 2.48 -0.69 2.74
Response duration th= 25 sec.
damping factor . L.B. U.B.
(%) a- . a v
2 -0.96 2.55 -0.87 2.80
5 -0.84 2.54 -0.78 2.80
10 -0.79 2.55 -0.72 2.81
15 -0.73 2.56 -0.67 2.83
Response duration th= 30 sec.
'dAagp—i;\;‘factor L.B. u.8
(%) aL e bL aU ————— bU
2 -0.94 2.6 -0.83 2.86
5 -0.85 2.61  -0.75 2.87
10 -0.78 2.63  -0.69 2.89
15 -0.71 2.63  -0.67 2.89
. . <m
response as the function of input :
. . 00 -
maximum acceleration.
(173 OR
dmax = fmax (6 .7) 30
ay or
20
where (gz/or) is the response amplifi- 0 b
cation factor in Fig. 8. In Fig. 12
the deformation spectrum obtained 5 damping factor ¢= 2, 5, 10, 15 %
herein is compared with the one pro- By Eq.(6.7)
P /2 .Nak . i
posed by Y. Nakao and N. Sasaki'®, / By Y-Nakao & H.Sasaki
: —— By Research Institute of
and the one by the Research Institute Construction Ninistry of Japan

of Construction Ministry of Japan?®,
where the maximum input accelera-
tion was set to equal 200 gal. The
result in this paper shows a flat spec-
trum against others in the range

0 2 4 6

Fig. 12 Deformation spectra

Maximum acceleration of earthquake was
set to eqaul 200 gal

8 sec
natural period
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more than 2.5sec of the natural period. This tendency is more rational from
the fact that earthquake motions appear directly in the system response when
the system has a long vibration period one.

VII. MAXIMUM RESPONSE OF A MULTI-DEGREE-OF-FREEDOM
SYSTEM WITH APPLICATION TO A MULTI-STORY BUILDING

Response analysis of lightly damped structure with multi-degree-of-freedom
is usually carried out by the modal method, with the displacement expressed as

Yilt)= 3, gD @.1)

where # is the number of degree-of-freedom of a concerned structure and ¢»
is the i-th mode shape function of its k-section. The time function g«(#) is gov-
erned by the following equation.

Gi+ 20 w0 g+ waiqi=—Bif (7.2)

with notations ws; and ¢ being the corresponding undamped natural frequency
and damping factor, respectively. The participation factor 8:; shares the i-th
modal contribution to the structural response and it is obtained as

n
> Mg
=]

me{ gD}
1

k
n
2
k=

=

(7.3)

where m is the concentrated mass at k-section of the structure. However, in
the case of random excitation input such as earthquake motions, the above super-
position of Eq. (7.1) must be replaced by the following through spectral analysis.

03, (O=E[y(t) 7.4)
O D= S A B Oy 2 3 TPl (.5)
where
1™ jag,, 1 f=
Jii= [‘21_: S-w iaHz(Z(U)IZSF(G))dQ)}/': o S_w Sr(w) dwj| (7.6)
- 1 arr ;s NEET*(] A (- )
Ji= [ o S_w REH(iw)eH: (ZU}))SF((D)dCU]/I: P S'w Sr(w) dw} (7.7
1 oo

0'F2:'2—n_‘ S_w Sr(w)dw (7.8)

drys s -1
oH (iw)= we— 0 + 120000 7.9)

In Eq. (7.5), the first part is the direct-contributions of each normal mode, and
the second, the cross-contributions between them. The latter becomes significant-
ly large in proportion to the closeness between adjacents modes and the value of
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their damping effects: i.e.®,

If 1-<ﬁ'—i>2 > 485 »“’—">+2}- >0, Br=pi (7.10)
w; ‘Bj w; 3 Wj.> Wi, ‘B]—-ﬂz .
then the cross-contribution between i-th and

j-th mode is negligibly small

Moreover, according to the results from investigation of a tower and pier system
of a long span suspension bridge®, structures of good performance from the
aseismic design point of view are the ones with their vibration modes sufficient-
ly separated. Then, adopting the same consideration in the previous section,
the maximum response for this case is obtained as

Yr max= '\/ é a?«iriz{ﬁi¢;(i)}2 *Or (7.11)
=1

where the notation a,, coincides with - in Eq. (6.7) at the natural period of the
i-th mode of the concerned structure, and 7: is the deformation amplification
factor in a stochastic sense with regard to /-th mode. This formula is express-
ed as the function of the maximum input acceleration upon substitution of Eq.
“.7).

'Z/xmaxzx/ éazi]’iz{ﬂiqh(i)}z 'fmax/af (7.12)

Example

A 33-story building, idealized with an equivalent 5-mass system was analyzed
as an illustrative example of the above theory. Its dynamic properties are pre-
sented in Fig. 13 and Table 4. The

. . . . Table 4

design details are contained in refer-

ence (25) vibration modes 1-st 2-nd 3-rd 4-th 5-th
In Table 5 are listed the computa- natural period ;.0 173 194 08 0.70

(sec.)

tion results by the direct integration?®

EL CENTRO 1940 S
EL CENTRQ 1940 LW
OLYMPIA 1949 SE 176
OLYMPIA 1949 SW 266
TAET 1952 SE 111

TAFT 1952 KE 21

(3] SxPectation | by Y.akeo & H.Sosaki

Research Institute of
Construction Ministry of Japan

! .
-1.0 1] 1.0 10 20 30 40 50 cm

Fig. 13 Mode shapes Fig. 14 Maximum deformation response

Maximum input acceleration 200 gal
Response duration frq=25 sec
Fraction of damping {=0.05 of each mode
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Table 5 Maximum response

EL CENTRO 1940 NS

Direct-integrated Response by Eq.(7,12)k Response by Y.Nakao & N.Sasaki
response(by p-method) L.B. U.B. Expectation u.8.

SEC.1 4.6 cm 5.3 cm 6.5 cm 9.1 cm 18.2 cm

SEC.2 10.1 10.8 13.3 19.2 38.3

SEC.3 17.3 15.5 19.3 28.4 56.8

SEC.4 25.0 19.8 24.6 36.6 73.2

SEC.5 30.8 25.1 319 45.0 1.9

TAFT 1952 NE 21
Direct-integrated Response by Eq.(7.12)A Response by Y.Nakao & N.Sasaki
response(by g-method} L.B. U.B. Expectation U.B.

SEC.1 4.1 cm 3.2 cm 3.6 cm 4.7 cm 9.4 cm

SEC.2 5.7 5.5 6.3 8.7 17.3

SEC.3 8.1 7.5 8.6 12.1 24.3

SEC.4 9.6 9.3 10.7 15.3 30.6

SEC.5 12.3 12.0 13.7 19.5 40.0

TAFT 1952 SE 111
Direct-integration Response by Eq.(7.12j‘ Response by Y.Nakao & N.Sasaki
response(by g-method) .B. u.B. Expectation U.B.

SEC.1 4.7 cm 3.8 cm 4.3 cm 5.7 cm 1.4 cm

SEC.2 8.6 7.1 8.1 n.2 22.5

SEC.3 1.5 9.5 11.0 15.5 311

SEC.4 13.3 11.5 13.3 19.3 38.6

SEC.5 16.0 15.2 17.5 25.1 50.1

¥ Response duration 25 sec.

of the governing equation of the concerned structure with an input excitation of
actual strong earthquake records, and the results by using Eq. (7.12) and by the
proposal of Y. Nakao'® with an input of their respective simulated power spec-
tral densities. Our results show a good coincidence with a narrow band estima-
tion to the precise structural response to earthquakes. This fact guarantees Eq.
(7.12) strongly for estimation of the maximum response of structures to earth-
quake motions. Fig. 14 presents the comparison among maximum response by
our proposing formula, by Y. Nakao'®, and by the Research Institute of Con-
struction Ministry of Japan?®, indicating that structural response is severely af-
fected by the input power spectral density of earthquake motion. Therefore,
the precise determination of the former requires the latter of well estimated.
This will be possible through analytical or experimental geophysical investiga-
tions of the construction site of a structure.

VIII. CONCLUSIONS

The following conclusions are derived based on the results of this analytical
study.

1. Simulation of earthquake motion adopted in this paper proved to be valid
and useful in structural response analysis. It makes possible any arbitrary shap-
ed function for the power spectral density of earthquake motion.

2. The ratio of maximum acceleration of earthquake motion, fmx to its
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standard deviation, ¢y, regardless of the shape of its power spectral density, can
be expressed only as a function of its duration fz4, as

for the lower bound o5 =0.91 logi tea+2.16 8.1.a)
for the upper bound  ¢,7=0.82 logi tga+2.53 (8.1.b)

3. The ratio of maximum response of a one-degree-of-freedom system, Ruax
to its standard deviation response, ¢z can be expressed as a function of its vibra-
tion period, T, as

ar=alogn T+b (8.2)

where the coefficients ¢ and b are different according to the response duration
of the system and its damping effect, and are listed in Table 3.

4. Combination of the above results (1) and (2) with the input-output re-
lationship in frequency domain of a concerned system provides the following
formula as to its maximum response.

o= (25 (22 fous @3)

This formula can readily be extended to a structure with multi-degree-of-freedom
system when it has well separated vibration modes.

Ymax = \/ Z:L‘, aii Ti{ﬁi¢(i)}2 * fmax/af (84)

5. Computation results of a 33-story building gave a good coincidence to the
response obtained by direct integration of its governing equation as an input of
strong earthquake records.
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