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SYNOPSIS

A method is presented to find upper and
lower bounds of the probability that a simple
structure will fail under a random loading of
earthquake type.  The structure considered is
a one-story building treated as a system of
mass, spring and dashpot with single-degree of
[reedom. The failure is assumed to occur
when the absolute value of the displacement of
the mass exceeds a critical value.  The present
method leads to evaluation of lengthy integrals
which, however, can be performed numerically
with an electronic digital computer and produces
the upper and lower bound close enough at

least for the order estimation of the probability.
1. INTRODUCTION

When failure of a structure initially at rest
and subject to a random excitation is considered,
the probability P.(T"; —4,, ,) that the response
a(t) of the structure such as stress, strain or
deflection will exceed specified negative and po-
sitive threshold values —2,(<{0) and 2,(>0)
in the time interval (0, T) is, as pointed out
by Bogdanoff, Goldberg and Bernard” and by
Bolotin?, of primary importance. Ior example,
if failure of a structure occurs when the stress
o at critical section exceeds the “ultimate stren-
gth” either in compression —g; or in tension oy,
then the probability of failure of the structure
in the interval (0,7) is given by I°,(T; —uo,
e,

This is essentially the problem of finding the
distribution of the first passage time and exact
solution seems extremely difficult to obtain.

However, it is possible to evaluate an upper
and lower bhound of P.(T; —1, 2,), the deriva-
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tion of which has been given in Reference 3
and is repeated heres briefly.

If {A} < {B} represents the statementi that the
event A belongs to the event B,
that

it is evident

[x<71)<— ]‘11 < {IIliIl $<t><_ xl}

and

[z (e >4,) © Imax 2@ 2>2,)

for any time 7, and r, (0<(r,, ©,< 7") where

O<e<T.
Therefore, if {AU B] denotes the union of
the events A and B,
P(T, —1, )

=P [ {min 2 (@)<C—2,) U {max 2 (&) >, ]
> P [ {x(71)<w’21; u [I<Tz)>lz}]

where 0< r,, 7,< 7 and P represents the pro-
bability of the event indicated in the braces or
brackets following it. Hence, the last member
of Eq. (1) is a lower bound for P,(T"; —4,4,).
To find an upper hound, P,(7T; —oo, ) (A0}
is considered first. By definition,
PT, = P{max x(2) >4
(RS T) womermeremernssne e ronsc s (2)
I A, B} denotes the joint event of A and I3,
P.(T+dT; —co, D)
(T —e0, )
+ P (max x(£)< 4, max x() >4

—0o0, )

and
Pimax x(2)< A, max x{') =4
L Pla(TH<3, max x (@) > - (4)
where ¢ and # are such that 0<{¢<{ T and
T< ¢ < T+dT.

The last expression represents the probability
that x(z) crosses 1 with positive slope in the
interval (1% I'+d'T). Hence, following Rice®

Pla(TH<2, max x(¢t") =)

-_-r'x' b2, 5 TYARAT wwnveeenen- (5)
0
where T<t' < TH+d7T and ¢(x,&; 1) is the
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joint density function of x=x(T) and Z=
Z(TYy=dx(T)H/dT.
From Egs. (3)~(5),
dP (1" oo, )
T

<f°°.7;~ 6(% &3 TYdd == hy(T) - (6)
Jo

Similarly,
dpP,(T"; —1, )
dT

0
<J (zlg(—4 &; THdx=h(T)

Hence, for 0 < ¢ < T,
P05 -2, 2)
=P [ minx(@)<— 4} U imax (&) >4} ]
TP (T =2, ) + P (T} —o0, 1)

T
<J'0 Ull(r>+h2(r>]dr ............ (8)

The last expression is an upper bound for P,
(T =2, 2.

The use of Eqs. (1) and (8) for the bounds
does not require (¢} to be Gaussian, or of
white noise type or stationary,

However, as will be discussed in the following
sections, the response of the structure to the
excitation is assumed to be Gaussian with the
joint density function

plx,x; 1)

B 1 1
T 200, Yl P T 2o

A ] -

where o¢,=0,(T), o,=0,(T") are the standard
deviation and o-=p(1") the correlation function
of z(T) and &(1T).

simple condition of failure that the structure

Thevefore, under such

fails when the absolute value of the response
reaches a critical value 2, the probability Py
that the structure will fail at any time is

Pr=P(c0; 2, D ZJmh(r)dr - (1)
0
where, with the density function given in Eq.
9,
BT :wa sl d; T)di
0
O .
-[* atec-a; ydieean

By transformation x=a,[7(1—0%""+pifo ],

. 174\
-] 3]

xj [(1=p?) /oq+ ,oX/(t‘]exp(—-— Z—)d 7

4y

where 5, = —pifo,(1—p*)*/"
Since it can be shown that

e 7 _nf)
o £)oron(

and
,oroexp(-—“g‘>d77<5 \/Z_JTF,
L%
R(TH<h*(T)
_4_0_2___ _ a2y1/2 k—fl i ’
e
4 6«/2_ﬁpﬁimexli{“l(i> H
g, 2\,
............... as)
where

§=11if 0720, =0 if pL0 oveerrere (14
From Egs. (10) and (13),

P=P,(c0; -1, ;.)<:2J°°h*<r)df---(15>
0

The last member of Eq. (15) with 2*(z) of
the form Eq. (13) is an upper bound of the
probability of failure I, of the structure subject
to a Gaussian excitation.

As to the lower hound under the assumption
that x(#) is Gaussian and 1, == 1,=4, one obtains
from Eq. (1)

Pr=Pyloo; =2, Plx(t) L4

F P ) =2 [1 -0 (;]*ﬂ

1

where 5,* is the maximum value of ¢, () that

- x u’
occurs at t=¢, and /77 @{x) ;:J;mexp<f-2"—>
du.  The last member of Eq. (16) is a highest
lower bound of the probability of failure P,

In the present investigation, Eqs. (15) and
(16) are directly employed to evaluate the upper
and lower bounds of the probability of failure
of a simple structure subject to a Gaussian

random excitation of earthquake type.
2. THE GROUND MOTION

General discussions concerning differentiation
and integration involving random functions may
be found in Reference 5.
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In view of the evident condition that the
ground velocity £(¢#) has to approach zero as
time ¢ increases to infinity, the following func-
tions are assumed for the ground displacement
(@, velocity £(£) and acceleration F.

f(l) TJ; (e“arme—ﬂf)g(f)df ............ (17)
FUY = (e e g () o (18
f=(-ae™+peg®)

F (e =P G(L) e (19

where 8> a >0 and ¢(#) is a stationary Gaus-
sian random process with the mean

and covariance

LgBrg(H>=R{t—s)
1

=-*~*J D) Nd w
2 T oo

The square brackets indicate the ensemble
average and @ (o) =@ (—w) is the power spectrum
of g(&)*%.

It is assumed that ¢() exists and is con-
tinuous In mean square; moreover, since ¢(¢)
is stationary and Gaussian, so is g(2).

Hence, F(2) and f() are Gaussian and conti-
nuous in mean square with mean

CFEY= DD =0rrereraremiaariiinaain (22)
and covariance
1(t,9) ={FBOF>
w (e e (YR —5)

51,9 = floy= T,
=(—ae™rge™y(~ae T+ e )
xRE—s5)—(—ae™—feth)
X (—e ™ +eR(t—5)
e e (g e+ 8ePHRE—5)
(e B (e - PR (-8

............ (24)

where

R(t—5) =gl gs)>=—<Lgg)>

with R(0) =0 because of assumed existence of
the mean square derivative of g(z) and

Ra—6)= =g g(s)D> oo 27
Since for 0<r, o'<¢
J’trR(r,r')d tdr ZUtJ’zﬂ(r,r')d rdt
oo oo

f() in Eq. (17) exists in mean square under
the assumption that the left hand side of (28)
exists, and

LU= (e et (29
Also
=5 0@ @0 ~Lwn]
% [ (@,) = L,(0,0)3d @+ (30)
where
L(0,2) =~ 1= e e (31)
a—1iw
L(w,t) = —XA Ml—gtfrif] (32)
A—1w

and I, (w,2) (k=1,2) are the complex conjugates
of I (w,t).
jugate is used throughout.)

(This notation for complex con-

<ff(0)>==<f.z(‘0) >=0, } ......... (33)
{LHO>= (e~ BR0)
Em ¢ f2 ()= tljm CFPD>=0 oo (34)
ii_‘,‘; W AEI)
_la=a) = do
T2z J‘“wcb(co) (@ + ™) (3 + o)
............... (35)

The last equation provides the variance of the
distribution of permanent displacement of the
ground due to earthquake.

Available records from the major earthquakes
in the past have not been analyzed to such an
extent that the ground motion can be described
in terms of particular forms of random process.
Therefore, no claim is made that Egs. (17),
(18) and (19) are the random processes that
describe the ground motion due to earthguake
acceleration. These functions however represent
possible forms of randomness which might be
found in the ground motion, and are employed
to illustrate the foregoing method of evaluating
the probability of failure.

For later purposes, consider the following
integral

I- J T GO HE (e, d r d e (36)
oJ0

where G(7) and H{z) are differentiable func-
tions of 7 in the interval [0,£].

Integrating by parts and with the aid of Eq.
(24),

I— G H® ult, ) — G J: B ule, ) d o
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- H(t) Jt GOple,de
0
+ Hlt CEYH ulr,oyd e de weeeens (37)
0Jo

3. MASS-SPRING SYSTEM WITH
DAMPING

The structure considered here is a one-story
building the mechanical model of which can be
assumed to be mass supported by a spring
coupled with a dashpot.

Tlence, the egquation of motion may be assu-
med to be

mE+ 5 &+ kr—=—mfE)
where x is the displacement of the rool of
mass m relative to the ground and %2 and #
are shear stiffness and damping of the columns
supporting the roof.

Under zero initial condition, the solution of
Eq. (38) is

t "
2t = #J' () f d roeeeeemsennes (39)
0
with
1 .
Ji(E) we ——=H S @ L rveererrerreianennns 40y
7n ) Y
where 2 p=——, o,= (o, — 3% o=— and
m m

0 < )

Assuming that the integrals in Eq. (36) or
(87) exist with GG)=h(¢—1) and H{ED =
h(t—7" both differentiable and bounded in
(0,2), one can show that x(#) in Eq. (39)
exists in mean square. Then it can be shown
that x(¢) possesses first and second derivatives

in mean square, In particular

g-C@:ﬁJ’:fl(t,T)j’(T)dr ............... (4D
where

. 1 .
B =——{w, cos wl—usin o)™
wl

Since f(£) is Gaussian with mean zero, &()
and &(2) are also Gaussian with mean
(D)=L (L) D ez Qrrrernnrnnnsennninnnns (43)
and, respectively, variance and covariance
0,7 () =<{x* () >
et e .
= J J e+ gin @, (¢ —1)sin @, (1"
0

2
@, 0,

P, VA T A e (44)

(.‘"—Z'Ut t [t ,
T <t

m]z
x{psine, (t—1) —wcos o, (f—7))
x{usinw, (t—1") — o, cos o, (f-)}
XO(r,e0d rd t s (45)
ROIREIBTION

gt fee

ey s

o e 8in @, (F—1)
@ JoJo

X{ew, cosw (t—1)—usinew —1)}

KICe, e AT d it reeeeereeres (46)
Making use of Eq. (37), one obtains from Egs.
(44), (45) and (46)

e et
o= @)’ .Uo
1

x{psinw (t—1) —, cos o, —1)Fe"

x{psinw,((—)—w,cos 6, (f—17)}
et u(r, eV d v d T e Un

Qe
o, (8) = u{t, E) + ——w——j {(¥—oDsinw,(t—1")
1 0

—2 pw,cos w,(F—t )Y n(t,c)d
e

+ J:t ”t“/f —o,")sin o, (¢-1)

@y 0o

-2 pw,co8 @, (£--1) e’
*{ (W —osin o, (E—1")
—2 pw, cos &, (¢ —1)Ye" u(z, ) drdd’

e[t

0, ()=~ J {usin o, (—1)
0

@,

—w, 005 @, (t—-1)¥e" u(c, )d
i ] .
— o Jojo{# sinw,(¢—1)
~,008 w, (¢t — 1)}
K (ut o, sin e, ¢—1")
—2puw,cos o, (—NYe ulz, Ddcdr

Furthermore, introducing Eq. (23) for u(¢—5)
with R(z—35) of the form of Eq. (21), one can
(47), (48) and (49) can be
integrated with respect to ¢ and ¢’ as follows :

a (&) =K, (&) +o K,

= po LK)+ K ()Y w,” oo (30)
0 (O =ler e - K + (p'—w,) K, (&)

4 o K, () -2 po (1 —wP)

) (K (D) + K (D))

+2 0 f (e, (e e ) K (&)

—2 pw, (™ —e K, () Y@, - (B1)
0,.(8) =[—2(a’ -0,V K, @) 2 pa,"K,(t)

+2 o, K () +w, (u* -0, K, ()

—w,u(e —e YK, (2)

show that Eqgs.
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B e — e VK () ] fa, e 52)
where
- 1 e o
K,= ’—_.J DV @ cesrermnennnn (53)
27 ) oo
K, (@) = j}l—{jw @ (T (w0, )T (0, )l o
............... (54)
Kz(”:'zl—,fr O (), (0,0 T (0.0 d o
............... (55)
K, ()= E%Jw Bl (o, )T, (w,0)d w
............... (56)
K0 =] o@ w00 0.0de
T —o0
............... (57)
K, (&) = EI—J.W BN e™ T (0, Ddw - (58)
T —c0
K, ()= 51— J o (Ve T (w,Hd w - (59)
T —co

¢
‘]1 (C[), L‘) - e_,;tJ [C(p—n-l-z'm) T __ e(p—-prfiw-r):l
0
Kein w, (F—1)d T -rreeeenenn (607
t
»],,((1) /) - e_/AJ_ L\@(,u_'x pioyr _e(/zfﬁl\.z‘wr) }
3 R -
0

KOS w, (E—T)d T «reemeeenen (61
Let Gylo, ¢5 0) and I (w, t; 6) (=1, 2 and
g or £) be defined as follows :

14 . .
G (w, t; 6) :Rge_"tJ’ eI %in @, (t-o)d «
o

={{p—0"1tw —o' e cos vt
—e " (p—0)sin w f—¢ "™
+2(u— 0 wl{esin wt

—e g sin 0¥/ Y(w,8) (62

cos w,t}

z T N
H (o, £ 0) :z?me""" e igin g (t—t)dr
. 0

=[{{u—6) +w o} {e"sin vt
—eMosinwt] —2(u—0w
% lecos wt—e* (u—0)sin @t
—ecos ot} 1/ Yiw,0) - (63)

¢ .
G, (w, t; 9) :R,_,c—“'j et N eos o (E—o)d T
0

A (R
X e (u0)cos wt—e % w sin wt
— e (- 0)cos w,f +esin w 1)
+2(u— 0w e "o cos ot
+e " (u—8)sin wi
—e o cos @t} ]/ Y (w, 0)--- (64)

3 .
I, (w, t;0) :-&me*‘“tf e " N eos o, (t—1)d ©
0

= a—0)+ o’
% {e"w cos wt+e " (u—0)sin wt
—e o cos wyt] —2(u—Nw

0 sin of

X e (u—0)cos w t—e

—e " (u—8)cos ot

+e *sin w,t] 1/ Y (@, 0) - (65)
with

Y(0,0) = [(4—-6)°+ 0 —o’|*+4(u—0) e

where R,z and ¢,z denote the real and ima-
ginary part of a complex number z.
Hence, Egs. (60) and (61) can be writlen as
(o, D) =Gy lo, tya) —Gylo, 1) 5
+i i, (o, t;a) — Hy(w, t; 5}
(k=1,2)

With the nondimensional time #*, frequency
¢, damping '

t*:wlts é'.:: &)/CDI, ﬂ’ = /,L/Cz)l """"""""" (68)
and also with ¢’ representing
af s a/w” or § == ,g/ml ..................... G

one can derive the non-dimensional variances
and correlation function of x(#) and Z() as
follows :

F (e =20l
1 (= .
=- J OF (w0, 7, (&,67)d &
ZTE =)
............... (70)
2 0%/
Fz (L *) - _‘iz"g'_g"_o_
5| orwonemac
27 ) co
............... (71)

o
F(#5) = Eﬁ%ﬁ

1 f O (0,8 Z, (8,6 d &

T2z .

where [ is a constant with the dimension of
length?/time and
DF (@, 8) =D (@) DD wreeeereeernnennnaneiene 73
Z (&) =a"J, (8.t + 1, (8, 9)]F
-2 R, (6.0 T, (8,0 (T4
Z (8 ) = (e~ — =BT 4 D=t — g HEY)
x [(u"~1)R, | T (&,2%)]
~2 4R, (e T (¢,69)} ]
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1 (=D, D]
l/i,u'?‘lf( t*)V

Z,(8, 1) = — (gt —em 8T
x [u'R, e8] (&%)
=R (" T, (&,691]
— [ (=D D)
— (B3 -DR, (&, 0T, (&, 1)
N WD RN | KT TE T (76)

In Egs. (72),(76) and (77},
Ji (2, 1% = J,(w,t) with replacement of

w,,o,t, 0,4 and 8 by 1,§,¢%,4, & and
respectively (k= 1,2 wwemrerinnnes an
or
Jp(&, 850 = Gy (&, 1% ,a) — Gy(&,0%; 8D
i [H, (&, t%; a) — Hy(&,0%5 8}
(Bem1, 2) weeererememiennnens (78)
where

Gp(e, t%,68) = G, t; 0)
H, (e, %107 = F, o, £ 6) }
with replacement of o,,®,z,u and ¢ by
16,50 and 6 (h=1, 2o 7
and therefore,
[T (&, 007 = G (6, %, a) — G (8,875 AN} °
A+ ([ (&, 8% a) — G (g, 0%; 71 F
(=1, B) crvemeeirennneninnninns (80
R, lJ (&,69J,(8,4%))
=G (e, @) = Gle, %5 NG % ah)
-G, (g, % BO) + {H,(6,t% 5 a)
— H (&, 0%5 B0V [HL (6, 1% ah)
(885 B)) e (81
R (™ T (e, 1))
= GplE,t% ¢ — Grlé,r*; f7) lcos ét*
+ LH (8, 8% 5 &y — H, (&,2% 5 §)]sin &*
(B=1, 2) cremeeernverminnenins e (82
Since it is assumed that the failure of the
structure will occur when the absolute value of
2 exceeds a critical value 2, Eq. (15) with Eq.
(13) and Eq. (16) can be used to find the upper
and lower bound of the probability of failure
P
When Eq. (13) with 0,(®), 0,(&) and 0,,()
given in Eqs. (0), (61) and (62) is substituted,
Eq. (15) becomes

. ) —
Py j CVETF| (=) s
1

=g wr)

Foa/ Dm0k F 5/ I exp
e {‘.4 Lé- ”\./84,21"1:('/[' 1>}J ............ (8\})

where 8=1 for p >0, §=0 for p <0, &, is the
non-dimensional location of the barrier 2 in terms

. .. DR *
of the maximum standard deviation ¢ * = \/ DE*
0)1

\/ DE, (t") of the displacement 2z (#) occurring

at t—tl,, F (8, Fy=TF,(8), F*=F ()
p=p(t*) = F,@)/JVF,tHF,GH 64

The lower bound can be easily obtained from
Eq. (16) where 2fo * =

4. NUMERICAL EVALUATION OF

THE BOUNDS

Purely for the purpose of numerical computa-

tion, @ (@) is assumed to be

O (@) = D% = D016 oovveniens (85)
with which the correlation function R{(z)=
(D2 a) exp (—— -4151—?> iy associated.

Then, at various values of ¢* (= 4¢*, 2 4£%,---),
one can evaluate without much difhculty F, (z*),
F,*y and F,(t*) from Egs. (70), (71) and
(72) performing the integrations with respect
to & using an electronic digital computer IBM
7094.  The numerical example is given for the
case where p/=0.204, ¢'=0.408, § =0.816 and

*=0.475 with 42*=0.1. These values
correspond to for example, w,=10=/sec, p=2
n/sec, a4 zfsec, A=8nfsec and a’=0.0005 sec’.
F %), F,0%) and p(*) for this set of para-
meters are shown in Fig. 1 from which F*
is found to be (.146.

F(FIXI0% BT =IO, plff} —

20
l ) S
Fig. 1T Nondimensional Variances Fi(#*) and Fy(¢¥)

and Correlation Function p(¢*) of Displacement
and Veloecity.

-0.5
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Upper bound| J
-2 - _...__J L - ——

1

Lov‘ver bound

Fig. 2 Upper and Lower Bounds of Probability
of Failure.

svaluation F (¢*), F,(#*) and F,(¢*) at *=
A%, 2 4% 3 41*, etc. makes it possible to use
Fq. (83) for the upper bound for various values
of b, again with the aid of IBM 7094. Al
though it is not discussed hcre, the convergence
of the infinite integral in Eq. (83) with F,(£),
F, () and F,(¢) in Egs. (70),(71) and (72) can
be proved.

As to the lower bound, one can immediately
use Eq. (16) as mentioned before.

The bounds are shown in Fig. 2 which indi-
cates that the ratio of the upper bound to the
lower one is approximately 3.0 over the range
(1.0~10"7).

Hence, the present method seems useful at

of the probability considered

least for order estimation of the probability of
failurc of a simple structure subject to random
excitation of earthquake type in which the ex-

citation dies down rapidly.
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