洋上風力モノパイル製造への取組み

INITIATIVES TO MANUFACTURE OFFSHORE WIND TURBINE FOUNDATION

高橋哲雄* , 志賀弘明** , 海老原俊広*** Tetsuo TAKAHASHI , Hiroaki SHIGA and Toshihiro EBIHARA

ABSTRACT In recent years, there have been concerns about the severity and frequency of natural disasters due to the effects of climate change, and the promotion of countermeasures against climate change on a global scale has become an urgent issue in realizing the sustainable society. Offshore Wind Power is considered an effective mean of renewable energy in global decarbonization efforts. This paper reports on the manufacturing technology and steel materials for the monopile, which is one of the basic types of offshore wind turbine foundation in Japan.

KEYWORDS: 再生可能エネルギー,洋上風力発電,モノパイル,大単重鋼板 Renewable Energy , Offshore Wind Power , Monopile , Large and heavy Steel Plate

1. はじめに

近年,平均気温の上昇や雪氷の融解,海面水位上昇などが観測されており,気候変動の影響による 自然災害の激甚化や頻発化が懸念されている。持続可能な社会の実現において,地球規模での気候変 動対策の推進が喫緊の課題となっている。

気候変動に関する科学的知見として、気候変動に関する政府間パネル(IPCC)第 5 次報告書 $^{1)}$ では、気候システムの温暖化には疑う余地がないこと、20 世紀半ば以降に観測された温暖化においては人為起源の温室効果ガスの排出が支配的な原因であった可能性が極めて高いことなどが報告され、第 6 次報告書 $^{2)}$ では、世界の平均気温は工業化以前と比べ 1 1.1 $^{\circ}$ 1 上昇しており、21 世紀中に 1 1.5 $^{\circ}$ 2 を超える可能性が高いと予測され、これ以上の気温上昇は気候変動に起因するリスクと予想される影響が更に高まることから、 $^{\circ}$ 20 排出の正味ゼロを達成し地球温暖化を抑制する必要があると示されている。

国連気候変動枠組条約締約国会議 (UNFCCC_COP) によるパリ協定 (COP21 採択) おいて,気温上昇を抑制する世界共通の目標 (2℃より十分低く保ち,1.5℃に抑える努力をする) が掲げられ,グラスゴー気候合意 (COP26 採択) において気温上昇の目標「1.5℃以下」,世界の CO^2 排出量を「2030 年に 2010年比 45%削減・2050年頃までに実質ゼロ」とすることが合意された。

我が国では、改正地球温暖化対策推進法 (2022 年 4 月施行) において「2050 年カーボンニュートラル (温室効果ガス排出ゼロ)」が基本理念として法定化され、温室効果ガスの排出量を 2030 年度に 2013 年度比で 46%削減し、さらに 50%の高みに向けて挑戦することが掲げられた。なお、米国・英国・EU・韓国等、各国においても 2050 年カーボンニュートラルの目標が表明されている。

- * JFE エンジニアリング(株) 洋上風力プロジェクトチーム 基礎ユニット長
 - (〒230-8611 神奈川県横浜市鶴見区末広町2丁目1番地)
- ** JFE エンジニアリング(株) 洋上風力プロジェクトチーム 基礎ユニット
 - ディベロプメントグループ長 (〒230-8611 神奈川県横浜市鶴見区末広町2丁目1番地)
- *** JFE エンジニアリング(株) 洋上風力プロジェクトチーム 基礎ユニット 技術グループ長 (〒230-8611 神奈川県横浜市鶴見区末広町2丁目1番地)

一方,2022年2月に開始されたロシアによるウクライナ侵攻等により世界のエネルギー情勢は混迷を深めている。各国政府は脱炭素の流れを維持しつつも、安定・安価なエネルギー供給を確保するエネルギー安全保障への取組みを加速しており、その鍵となるのが再生可能エネルギーの最大限活用とされている。

IEA (International Energy Agency) は、2050 年カーボンニュートラルのシナリオにおいて、世界の発電電力量に占める再生可能エネルギーの比率は、2020 年の 28%から 2050 年には 88%に達し、その中で主力電源のひとつとなる風力発電は 2050 年に 32%を占める見通しであるとしている (図 1-1) ³。

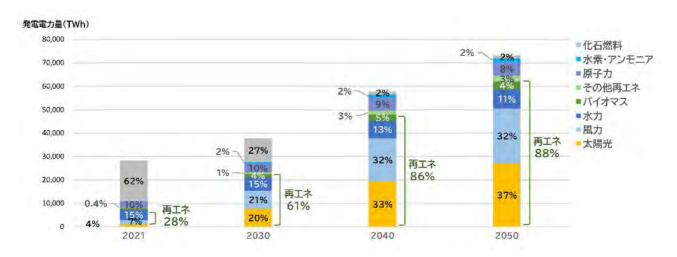


図 1-1 世界の発電電力量推移見通し 3)

風力発電においては、風況が陸上よりも安定している洋上での風力発電システムが注目されており、欧州を中心に大規模な洋上ウィンドファームの建設が既に始まっている。世界における洋上風力発電は、2050年に向けて導入が増大していくことが予想されており、IRENA(International Renewable Energy Agency)「Future of Wind 2019」では、累計で2030年に約228GW、2050年に約1000GWに達すると予測されている(図 1-2) 4 。

図 1-2 世界における洋上風力発電導入見通し[単位:GW] 4)

我が国においては、洋上風力官民協議会 洋上風力産業ビジョン(第1次) 5 にて 2030年までに 10GW, 2040年までに 30-45GW の洋上風力発電導入目標が提示されている (**図 1-3**) 5 。

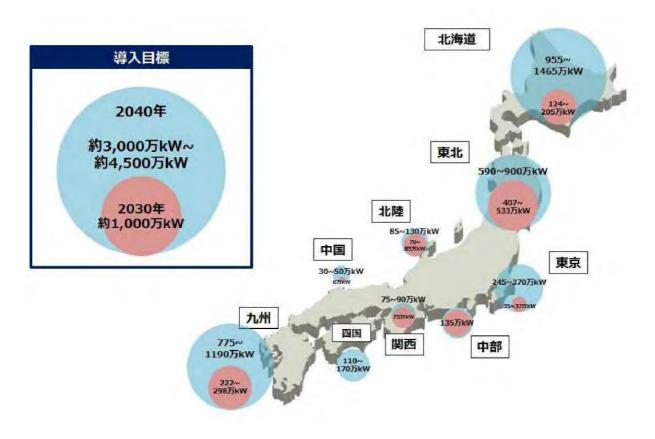


図 1-3 日本における洋上風力発電導入見通し 4)

2. 洋上風力発電設備

洋上風力発電設備(洋上風車)の主要形式を図 $2-1^6$)に示す。洋上風車の基礎には、着床式と浮体式があり、着床式は水深に応じてモノパイル基礎、重力基礎、ジャケット基礎がある。また、さらに水深の深い海域では浮体式基礎が用いられる。2024 年 7 月現在における、我が国における洋上風力プロジェクトの現況を表 $2-1^7$)に示す。国内で建設中もしくは計画中のプロジェクトではモノパイル基礎の採用が多いが、これは浅い海域のプロジェクトが先行しているためである。今後開発される深い海域のプロジェクトでは浮体式基礎の採用が増えていくとされており、浮体式基礎を用いた洋上風車の建設は、2030 年頃から拡大していく見通しである。

図 $2-2^{8}$ に示す通り、洋上風力発電設備は風車のナセルやブレード、タワー、基礎、プラットフォーム設備、配線ケーブルなど様々な要素から構成されており、部品点数は数万点に上る 5 。

場所	現況	事業者	海域	規模	基礎形式
				MW×基数	
秋田港	運転中	秋田洋上風力発電株式会社	港湾区域	4.2×13	モノパイル
能代港	運転中	秋田洋上風力発電株式会社	港湾区域	4.2×20	モノパイル
石狩湾新港	運転中	合同会社グリーンパワー石狩	港湾区域	8×14	ジャケット
入善沖	運転中	入善マリンウィンド合同会社	一般海域	3×3	モノパイル
北九州港	建設中	ひびきウィンドエナジー株式会社	港湾区域	9.5 × 25	ジャケット
五島市沖	建設中	五島フローティングウィンドファーム合同会社	一般海域	2.1×8	浮体スパー

表 2-1 洋上風力プロジェクトの現況 7)

SCOPE講演会資料,一般財団法人 港湾空港総合技術センター,2022.9より引用し, 一部改変

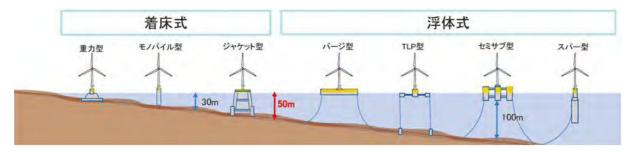
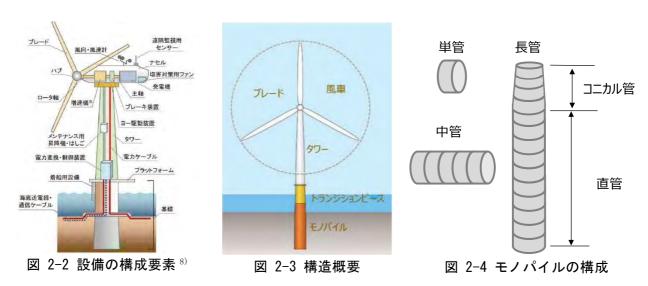



図 2-1 洋上風力発電設備の形式 6)

着床式洋上風車の全体構造は、モノパイル形式を例にすると図 2-3 に示す通り、風車部、タワー部、トランジションピース、モノパイル基礎で構成される。なお、モノパイルは形状によって、図 2-4 に示すように直管部とコニカル部に大別できる。さらに徐々に全長を延長して製作することから、最小構成管を単管、複数の単管を接合したものを中管、複数の中管を接合したものを長管と呼称する。

3. モノパイル基礎製造

着床式基礎のひとつであるモノパイル基礎は、現在の最大クラス(15MW 級風車)のもので直径約10m、長さ約100m、重量約2000t、最大板厚120mm 程度という超大型の鋼管構造物である。これまで、日本国内にはモノパイルを製造できる工場が存在していなかったが、JFE エンジニアリング(株)は、岡山県笠岡市の JFE スチール(株)西日本製鉄所/福山地区の敷地内に、国内初のモノパイル製造工場となる笠岡モノパイル製作所(図3-1)を建設し、2024年4月からモノパイルの製造を開始している。

図 3-1 笠岡モノパイル製作所

笠岡モノパイル製作所の敷地面積は 20ha(430m×460m)で、単管製作および単管同士を 4~5 個繋げた中管を製作する素管工場、中管同士を繋いで完成形状にする長管エリア、研掃/塗装工場、完成品保管エリアから成る(図 3-2)。当該工場の生産能力は年間 10 万程度であり、1 本 2000t のモノパイルであれば年間 50 本程度生産することができる。笠岡モノパイル製作所の製造能力を表 3-1 に示す。また、モノパイル製造の大まかな流れを図 3-3 に示す。まず鋼板加工を行い、板継ぎにより単管製作に必要な長尺の鋼板を製作する。その鋼板をベンディングローラーにより管状に曲げ、内外面自動溶接により単管を製作し、単管同士をターニングローラーで回転させながら自動溶接機で接合して中、そして完成形となる長管を製作する。最後に研掃と塗装を行いモノパイルが完成する。

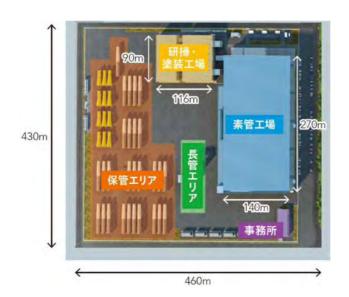


表 3-1 笠岡モノパイル製作所製造能力

製品	製造能力		
最小外径	5 m		
最大外径	12 m		
最大長さ	100 m		
最大重量	2500 ton		
最大板厚	130 mm		
直管/コニカル管(単管)	製造能力		
最小長さ	3000 mm		
最大直管長さ	4200 mm		
最大コニカル管長さ	4000 mm		
最大重量	160 ton		

図 3-2 笠岡モノパイル製作所工場レイアウト

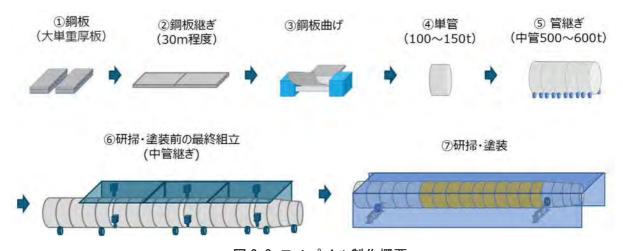


図 3-3 モノパイル製作概要

素材は、JFE スチール(株)で製造する大単重鋼板「J-TerraPlateTM」を主に使用する。JFE スチール(株)の大単重鋼板は、西日本製鉄所(倉敷地区)および東日本製鉄所(京浜地区)の厚板工場において、TMCP 鋼(Thermo Mechanical Control Process、熱加工制御)として大量に製造する体制が整えられており、従来 25t 程度までであった鋼板重量を最大 37t まで大型化して、一枚の鋼板を従来よりも大型化することが可能となっている。大単重鋼板を製造している鉄鋼メーカーは世界的にも限られており、例えば、「J-TerraPlateTM」では、板厚 100mm の場合に従来、長さ 7,500mm だったものを、長さ 11,000mm 程度にすることができる。製造鋼板を大単重かつ TMCP 鋼とすることで溶接量(長手継手、周継手)を削減し、また割れ感受性をおさえることで溶接予熱温度を低減し、その結果として、製造時間の短縮、施工コストの低減および温室効果ガス発生の減少を図ることが可能となる。大単重

鋼板は、今後の風車の大型化に伴う、基礎に用いる鋼板の厚板化においても、コストダウンの効果をさらに発揮することが期待される。また、納入された鋼板の在庫管理をシステム化し、モノパイル製造工場内での鋼板積み替え作業を最小化している。造管には、事前に板継溶接でモノパイルの周長分の大板にした後に板曲げを行う、先行板継工法を採用している。鋼板の寸法加工、開先加工をすべて切削加工とすることにより、製品の厳しい寸法精度要求に対応している。寸法は、後工程の溶接での縮み、板曲げでの伸びを考慮する必要があり、蓄積データを活用し決定する。ベンディングマシンは端曲げが可能な仕様としてプレス機を排することで、工場の省レイアウトに貢献している。

モノパイル1本あたりの溶接長は約1kmあり、溶接部に対して厳しい品質要求(低温じん性、ビード形状、など)があるため、その溶接を高品質・高能率化することが、モノパイル製造における最重要課題となる。

極厚板(t100 mm 程度)の溶接は、JFEスチール(株)と共同で高品質・高能率の施工法を開発し、溶接設備に反映している。溶接方法は、狭開先(開先角度 8~16°)の多電極サブマージアーク溶接を採用している。なお溶接電源は、フルデジタルのロングスティックアウト方式を採用している。溶接品質に大きく影響する溶接狙い位置については、レーザセンサからの情報も活用して制御する。溶接条件(電流、電圧など)は、デジタルデータで保管し、品質管理等にフィードバックする。また板継、周継手外面は、複数の継手を同時に溶接できる設備とし、製造時間の短縮を図っている。

長手継手の溶接による歪 (角変形) は、ベンディングマシンで矯正し、厳しい寸法精度(目違い 4 mm 以下)に対応する。それぞれの溶接個所は、DNV RP-C203 などに準拠した疲労設計がなされており、適用された S-N 曲線に応じて、溶接ビード高さの規定やグラインダー処理などが要求される。この設計要求どおりに溶接ビードを仕上げた後、溶接部の非破壊試験(外観検査、磁粉探傷試験、超音波探傷試験)を実施する。

超音波探傷試験は、超音波自動探傷試験を採用し、検査時間の短縮、検査コストの低減、記録のデジタルデータ化を図っている。なお一般的に非破壊検査は、溶接48時間後の実施が規定されていることから、実施のタイミングや場所などを考慮した工場レイアウトとしている。通常、製品の内外面には防食塗装を実施する。研掃作業(鋼板表面の塗装前下地処理)および塗装作業を屋内で実施するための研掃・塗装工場を有し、また空調設備で温湿度を管理することで、全天候での作業を可能としている。

製品の構内移動は、単管までは工場内門型クレーン、中管以降は多軸台車(SPMT: Self Propelled Modular Transporter)を使用することで、モノパイルの大重量化にも対応できる設備としている(図 3-4)。また、重量物であるモノパイルを安全に運搬するための架台、吊具などの設計も重要な要素のひとつである。完成したモノパイルは、工場敷地内に約30本保管することができる。

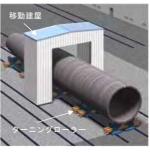
モノパイルの出荷には、JFE スチール(株)溶接管工場の出荷岸壁を使用する。この出荷岸壁南端にモノパイル出荷専用のエリアがあり、岸壁背地にある構台と輸送船の間にランプウェイを架設し、多軸台車(SPMT)によるロールオン方式により積込みを行う。重量物かつ長尺である多数のモノパイルを、季節を問わず安定的に海上輸送できる輸送船は、国内ではかなり限定される。そのため、JFE エンジニアリング(株)では大型重量物の海上輸送にオールシーズンで対応できる内航モジュール船の長期傭船契約を締結している。広大なモノパイル保管エリア、出荷岸壁の専用化および輸送船の安定確保により、国内案件向けにジャストインタイムで輸送できる体制を整えている。

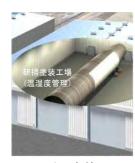
モノパイルの製作概況を図3-5に、モノパイル輸送船係留配置図を図3-6⁹に示す。

図 3-4 工場内門型クレーンおよび多軸台車移動

a)開先加工

b)板継


c) 曲げ加工


d) 単管溶接

e)中管溶接

f)長管溶接

g) 塗装

図 3-5 製作概況

図 3-6 モノパイル輸送船係留配置図 9)

4. 洋上風力発電用鋼材

洋上風力発電設備は、電気事業法、港湾法および再エネ海域利用法に基づく基準への適合性の審査を経て、水域もしくは海域の占用許可が事業者に与えられる。経済産業省と国土交通省は、事業者の負担軽減や審査手続きの合理化を図るため、各法の統一的な考え方を解説することを目的として、「洋上風力発電設備に関する技術基準の統一的解説」(以下「統一的解説」という。)を策定している。統一的解説は、関連法令、総則、洋上風力発電設備等の要求性能、洋上風力発電設備等に作用する自然条件等、洋上風力発電設備等の設計、付属書で構成されている。風力発電設備の支持構造物は、陸上風車の設計では、「風力発電設備支持物構造設計指針・同解説(土木学会)」が用いられている。洋上風車では、この指針の他、統一的解説に準拠し、国内、国外の基準を混合した設計が行われている。洋

上風車では、陸上風車のように主要な国内設計基準がないことが課題 の1つとなっている。

洋上風車の設計では、風車から伝達される風荷重と波の影響を適切に評価できる風波連成解析が必要である。荷重の組合せは IEC 61400-3-1 などで規定があり、風荷重の風速、風向、波荷重の波高、波周期、波向き、風・波の相関、風車の風向追尾に対するヨーエラーなどの制御条件および各種地震波(スペクトル適合波、観測波、サイト波)も考慮して、数千ケースの構造解析を実施することになる。

着床式洋上風力基礎であるモノパイル,ジャケットなどに用いられる鋼材は,港湾工事共通仕様書および港湾の施設の技術上の基準・同解説に規定された材料,電気事業法の規定により発電用風力設備に関する技術基準を定める省令(風技省令)への適合性が確認された材料を使用することが求められる。風技省令への適合性が確認された 鋼材としては,以下の3種類に区分される。

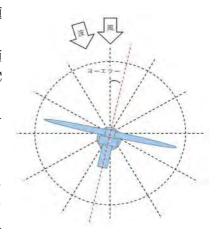


図 4-1 荷重方向の組合せ例

(1) 指定建築材料

平成 12 年建設省告示第 1446 号に適合する JIS 規格材で,基準強度 (F値,降伏強度)が指定されているものが対象となる。

主要な材料である SM490, SM520 は、板厚 100mm 以下について F 値が指定されている。

100mm 超の SM490, SM520, その上の高強度材である SM570 は F 値の指定がなく, 指定建築材料の対象外となっている。

(2) 国土交通大臣認定材

2014 年以前に建築基準法に基づき国土交通大臣の認定を受けて、使用用途が限定されていないもの又は風力発電設備用として用途が限定されているものが対象となる。

TMCP355, TMCP385(日本鉄鋼連盟製品規定)は、板厚 40 mm 超から 100 mm 以下に対しても F 値の低減がない、降伏点一定鋼材であり、国内鉄鋼メーカー各社が国土交通省大臣認定を取得している。例えば、JFE スチール (株)の国土交通省大臣認定材としては、 HBL^*355 、 HBL^*385 などがあり、大単重鋼板に対応した厚板製造ラインも整備されている。

ただし、いずれの鉄鋼メーカーも、これまで需要があまりなかったことから、板厚 100mm 超 のものについては、国土交通大臣認定を取得していない。

(3) 経済産業省電力安全課長確認材

前項(1),(2)以外で経済産業省電安課長により風技省令への適合性が確認されたものが対象となる。風技省令への適合性には、電安課長の諮問先として設定された新エネルギー発電備安全審査専門家会議(材料)の受審が必要となる。

国内鉄鋼メーカーは,100 mm 超鋼板の製造実績はあるものの,風技省令の適合性評価は取得していない。今後,洋上風車の大型化やモノパイル基礎の適用水深拡大に伴い,最大板厚120mm程度まで必要となる可能性があり,国内鉄鋼メーカー各社は,100 mm 超の風力発電用鋼板の開発を進めている。

洋上風力発電で先行する欧州では、IEC、ISO、DNV、EN などに準拠した設計がされており、モノパイル基礎の鋼材は EN 規格材である S355ML が採用されている事例が多く、15MW 級風車向けでは一部 100mm 超の板厚となっている。DNV-ST-0126 では、設計温度、構造区分、強度区分に応じて、材質毎に使用できる最大板厚、シャルピー衝撃試験温度が規定されており、S355ML については条件により板厚

150mm まで採用することができる。S355ML は、強度区分として SM520 と同等レベルであり、国内案件 についても SM520 の採用を検討している事例が多く見受けられる。これまで国内の洋上風力基礎では 板厚 100mm 以下で設計できていたが、今後は 15MW 級風車が主体となるため、風技省令に適合する 100 mm 超鋼板の必要性が高まっている。

ISO, DNV では降伏強度 355MPa クラス, 板厚 100mm に近い材料について、シャルピー衝撃試験温度 -40° 、あるいは -50° でが要求される。JIS などに代表される国内規格材は、シャルピー衝撃試験温度 は 0° でが標準となっているが、各プロジェクトの設計条件によっては 0° こより低い試験温度でのじん性を追加で要求されることがある。表 4-1 にこれらの鋼材の機械的性質を示す。

区分種類		YP [MPa]				TS[MPa]	vE[J]	F値
	1生块	t≤16	16 <t≤40< td=""><td>40<t≤75< td=""><td>75<t≤100< td=""><td>i Stivii aj</td><td>۸۲[۱]</td><td></td></t≤100<></td></t≤75<></td></t≤40<>	40 <t≤75< td=""><td>75<t≤100< td=""><td>i Stivii aj</td><td>۸۲[۱]</td><td></td></t≤100<></td></t≤75<>	75 <t≤100< td=""><td>i Stivii aj</td><td>۸۲[۱]</td><td></td></t≤100<>	i Stivii aj	۸۲[۱]	
	SM490C	≥325	≥315	≥295	≥295	490~610	≥47(0°C)	有
JIS	SM520C	≥365	≥355	≥335	≥325	520~640	≥47(0°C)	有
	SM570	≥460	≥450	≥430	≥420	570~720	≥47(-5°C)	無
国土交通	HBL [®] 355	-	- 355~475 (40≤t≤100)		520~640	≥27(0°C)	有	
大臣認定	HBL®385	385~505 (19≤t≤100)			550~670	≥70(0°C)	有	
EN	EN10025-4	≥355	≥345	≥335	≥325	440~600	≥31(-40°C)	無
	S355ML			(40 <t≤63)< td=""><td>(63<t≤100)< td=""><td>(80<t≤100)< td=""><td>≥27(-50°C)</td></t≤100)<></td></t≤100)<></td></t≤63)<>	(63 <t≤100)< td=""><td>(80<t≤100)< td=""><td>≥27(-50°C)</td></t≤100)<></td></t≤100)<>	(80 <t≤100)< td=""><td>≥27(-50°C)</td></t≤100)<>	≥27(-50°C)	

表 4-1 鋼材の機械特性

国内において,詳細設計が完了し建設中の洋上風力プロジェクトでは,10MW 級風車が最大であり,極稀地震時が支配的な荷重ケースとなっていることが多い。今後主流となる15MW 級風車においても,基礎構造物の設計は疲労強度ではなく,同様に極稀地震時が支配的となり,高強度材のニーズが高まるものと考えられる。モノパイルについて,15MW 級風車,水深30m,極稀地震が支配的な条件で試算したところ,1本あたりの重量はSM520では2249ton,HBL*385では1893tonとなり,鋼重が16%低減できた。同条件でモノパイル50本として特性を比較すると,HBL*385はSM520Cに比べ,製作工期は18%短縮,製造コストは12%低減が期待できる結果となり,高強度降伏点一定鋼材の有用性が確認できた(表4-2)。

材質	SM520C	HBL®385
鋼材規格	JIS G3106	日本鉄鋼連盟製品規定MDCR0017-2016
基準強度	325MPa (75 <t≤100mm) 315MPa (100mm<t)< td=""><td>385MPa (16≤t≤100mm)</td></t)<></t≤100mm) 	385MPa (16≤t≤100mm)
MP寸法	Ф10m×t85~115mm×L90m	Ф10m×t85~95mm×L90m
MP重量	2249ton/本(1.00)	1893ton/本(0.84)
MP製作工期	14.1ヶ月(1.00)	11.5ヶ月(0.82)
MP製作コスト	1.00	0.88

表 4-2 SM520C と HBL®385 の比較

サプライチェーン全体での CO_2 排出量を削減して、脱炭素化を進める取組が始まっており、その一環でグリーン鋼材の需要が高まっている。グリーン鋼材について、国内鉄鋼メーカー各社は既に対応している。JFE スチール(株)が供給しているグリーン鋼材「JGreeX®(ジェイグリークス)」は、マスバランス方式を適用しており、 CO_2 排出削減量は第三者認証も取得している。マスバランス方式とは、製品製造プロセス全体の CO_2 排出量の削減における環境価値を一部の鉄鋼製品に集約し、 CO_2 排出原単位の低い鉄鋼製品とみなすもので、日本鉄鋼連盟からガイドラインが出されている。

5. おわりに

持続可能な社会の実現に向けた世界的な脱炭素への取組みとエネルギー安全保障において,洋上風力発電は再生可能エネルギーの切り札とされている。2050年のカーボンニュートラルの実現に向けた世界的な取組みにおいて,今後洋上風力発電へのニーズはさらに高まっていくものと考えられる。

一方で、そのニーズを満たしていく上での課題も多い。洋上風力発電の拡大と安価な電力供給のためには、発電コストの低減や洋上風力発電設備の部材を大量に早く供給できるサプライチェーンが必要となる。例えばモノパイルのような洋上風車の基礎は、極厚の鋼板により構成される超大型鋼構造物であり、その材料の製造からモノパイルの製作・輸送・施工まで、大きな重量と規模に対応できる技術と大規模な設備が必要となるが、世界的にもその供給力は今後のニーズを満たすまでには至っておらず、サプライチェーンの構築は未だ発展途上にあるものと考えられる。サプライチェーンの整備には、民間企業の事業参入や技術開発、設備投資が不可欠であり、それらを促すためのより具体的な洋上風力発電導入目標や案件の提示などの政策も必要になるものと考えられる。また、今後の発電コスト低減に向けた風車の大型化も予想され、そこでは、さらなる鋼板の大型化や厚板の自動加工・溶接技術、大口径鋼管製造技術、大規模構造物輸送技術等の開発や設備の増強が必要となるものと考えられる。

JFE グループは、持続可能な社会の実現に貢献するべく、大単重鋼板やグリーン鋼材の供給、モノパイル製造・輸送といった、素材から洋上風車基礎供給までを網羅する形で様々な事業に取り組んでおり、本稿では、世界および我が国における洋上風力発電の需要やモノパイルの製造技術、洋上風力発電用鋼材等について報告した。本報告が、我が国における洋上風力発電とそれを実現する技術の発展の一助となれば幸いである。

参考文献

- 1) IPCC AR5 WG1, 2013.9
- 2) IPCC AR6 SR 1.5, 2018.10
- 3) Offshore Wind Outlook 2022, International Energy Agency (IEA) および JWPA Wind Vision 2023, p. 2, 一般社団法人 日本風力発電協会, 2023. 5
- 4) Future of Wind 2019, p. 44, International Renewable Energy Agency (IRENA) , 2019. 10
- 5) 洋上風力産業ビジョン (第1次),洋上風力の産業競争力強化に向けた官民協議会,2020.12
- 6) 国土交通白書, 国土交通省,2022
- 7) SCOPE 講演会資料, 一般財団法人 港湾空港総合技術センター, 2022. 9
- 8) NEDO 再生可能エネルギー白書, 独立行政法人 新エネルギー・産業技術総合開発機構
- 9) 森浩章, 上野秀治, 水上亮, JFE エンジニアリングにおける洋上風力基礎事業への取り組み, 2022.8