鋼構造物の非破壊検査の課題と最新技術

白旗 弘実 東京都市大学

2023. 10. 17

^{鋼構造継続教育} 鋼構造物の非破壊検査の課題と最新技術

indication from crack with multiple reflection 50 degrees

1

東京都市大学 都市工学科 白旗弘実

鋼構造委員会

鋼構造物における先進的非破壊検査・評価技術に関する 調査研究小委員会

- 1. 非破壊検査の原理, 歴史, 課題および最新技術
- ・超音波探傷
- ・渦電流探傷
- ・赤外線
- 2. NDE4.0

謝辞:本日の資料も同小委員会のものを一部使わせていただいています

全国大会2019~2022

第I部門非破壊評価(2020年は非破壊評価のセッションなし)

レーザー超音波,表面波,フェーズドアレイ超音波,赤外線,鋼床版, 極低周波渦電流,AE,塗膜,高感度磁気非破壊検査

ここ数年の日本の土木界(鋼構造)での非破壊テーマの傾向

フェーズドアレイ超音波探傷の鋼床版き裂検出 赤外線サーモグラフィの鋼床版き裂検出 極低周波渦電流探傷による疲労き裂検出 高感度磁気探傷による(アクセス困難な箇所の)残存板厚評価 塗膜を除去しない疲労き裂の検出(超音波,渦電流) 超音波探傷

超音波:

人間の可聴域よりも周波数が高い音波 20kHz~50MHz 圧電効果,逆圧電効果:

圧力をかけると表面に分極が生じる(内部に電界が生じる)現象 電圧をかけると変形する現象

音響インピーダンス:

試験体の密度×音速で表される量

物質	密度(kg/m³)	音速(m/s)	音響インピーダンス(kg/m²s)
空気	1.2	340	408
水	1000	1480	1480000
アクリル	1200	2700(縦波)	3240000
鋼	7700	3240(横波)	24948000

音響インピーダンスの差が大きいと波が入射しにくい 波の反射,屈折などは高校で習った物理のとおり:

ホイヘンスの原理,スネルの法則など

超音波探傷技術の発展

1880 圧電効果の発見
1915 圧電効果を利用した探触子の開発 水中の物体検出
1934 連続波透過法(ドイツ)
1940 パルスエコー法(アメリカ)
1950~ 日本でも超音波探傷の研究が ブラウン管を利用した探傷器
1980 デジタル超音波探傷器
1995 フルデジタル超音波探傷器

1990半ば マルチチャンネル超音波探傷器 2000 フェーズドアレイ超音波探傷器(Tomoscan focus) 2010 FMC (full matrix capture) 2020 512素子励振/512素子受信のフェーズドアレイ超音波探傷器

非破壊検査, Vol.55, No.9~12, 2006 Vol.56, No.5, 2007 などより

(従来の)フェーズドアレイ探傷 $2000 \sim$ 微細な圧電素子が密に並ぶ構造 素子の励振時間制御で入射波を操作 ステアリング 振動素子 フォーカシング振動素子 遅 早 早 早 遅 素子サイズ,素子間隔 波面 ~ 波長の半分 波面 ↓入射方向 、射方向 入射角を変える ことができる フォーカスする位置を 自由に変えることができる 6

(従来の)フェーズドアレイ探傷 Sスキャン表示 デッキプレート配置の探触子 35から85度で1度おきに変化 直接入射による指示 集束~板厚中心(6mm) 75度以上の入射屈折角 -80 -60 -60 -40 -40 -20 100 120 140 120 140 き裂なし 160 160 180 き裂あり 180 220 220 240 240 260 260 280 1:1 -200 - 180 - 160 - 140 - 120 - 100 - 80 - 60 - 40 - 20 0 20 40 100 120 140 160 180 -200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 底面1回反射経路による指示 (約45度)

波形を見ただけではき裂があるのかわかりにくい

従来のフェーズドアレイ探傷

入射屈折角,集束位置を事前に設定して得られる波形表示(セクタスキャン) 現場では最低限の評価を行い,詳細分析はあとで時間をかけて メリット

検査中のリアルタイム表示、欠陥の有無を確認しやすい

送受信データ数が比較的少ない

デメリット

採取したデータの条件は変えられない

FMC/TFM

各チャンネルごとの波形を保存

波形取得後にPC上で,任意の入射屈折角,集束を再現(オフラインフォーカルロー) 波形取得後にPC上で,TFM (オフラインTFM)

TFM イメージの生成をリアルタイムで処理(ライブTFM)

メリット

波形の再現,追跡が容易

デメリット

データ数が膨大になる

探傷に時間がかかる (近年のPC性能向上でライブTFMも可能)

フォーカルロー:所定の入射屈折角,集束位置を得るために設定する 各素子励振時間差の設定 10

フェーズドアレイ超音波探傷システム

OEMPA (現 dB社)

パソコン 探傷器を制御 振動子の励振時間設定 LANケーブルでデータ通信 デジタル波形収録 2種類のデータ収録ソフトウェア

> 白旗:土木学会論文集 2016 IABMAS 2020 より

渦電流探傷試験

Maxwellの方程式

 $\nabla \times H = J + \frac{\partial D}{\partial t} \qquad \begin{array}{l} \text{H: 磁界} \\ \text{E: 電界} \\ \text{D: 電東密度} \\ \nabla \times E = -\frac{\partial B}{\partial t} \\ \nabla \cdot D = \rho \end{array} \qquad \begin{array}{l} \text{H: 磁界} \\ \text{I: 電界} \\ \text{D: 電東密度} \\ \text{I: 國東密度} \\ \text{I: 國東密度} \end{array}$ **ε**:誘電率 $D = \varepsilon E$ μ:透磁率 σ:導電率 $B = \mu H$ $J = \sigma E$ ρ:電荷密度 $\nabla \cdot B = 0$

$$\nabla \times \nabla \times A + \mu \sigma \frac{\partial A}{\partial t} + \mu \varepsilon \frac{\partial^2 A}{\partial t^2} = \mu J_0$$

A:磁気ベクトルポテンシャル $B = \nabla \times A$ J_∩:試験コイルの断面における励磁電流密度

非破壊検査便覧より

矢印は走査方向

自己誘導コイル: 励磁と検出を兼ねたコイル

上置コイル:

パンケーキコイルともいわ れる.コイルの中には磁気 コアを用いることが多い.

単一方式: 単一のコイルをブリッジに 結合するもの

標準比較方式: 2つの同一のコイルを分離 して一方のコイルには標準 となる試料にあて, 検査コイル1つだけを検査 すべき物体のところへ置く (分離型コイルともいわれる)

相互誘導型の1つ

ブリッジ回路

平衡条件

$$\frac{|Z_b|}{|Z_a|} = \frac{|Z_d|}{|Z_c|}$$
$$\theta_b - \theta_a = \theta_d - \theta_c$$

I_Gを0に調整してZa~Zcに インピーダンス変化が生じるとI_Gが流れる → リサージュ図形

Z: 複素インピーダンス
 R: 直流成分(抵抗)
 ωL
 L: 自己インダクタンス
 θ: 位相角
 ω: 交流角振動数

渦電流探傷技術の発展

1954 渦電流探傷装置

当時は電磁誘導法,渦流法,渦流探傷などで呼ばれた 火力発電など配管の腐食検査 1970原子力発電の制御棒の酸化被膜厚さ計測など タービン,航空機,船舶のリベット,溶接の検査

2010 以降

土木構造物(鋼構造物)における適用の検討

非破壊検査 Vol.57, No.1~3, 2008.より

赤外線

可視光線の赤色(0.7µm)より波長が長く, 電波(1mm)より波長の短い電磁波

帯域名	波長(μm)	特徴
近赤外線	0.75~1.4	暗視カメラ
短波長赤外線	1.4~3.0	水に反応 (1.4,1.9µm)
中波長赤外線	3~8	
長波長赤外線	8~15	サーモグラフィ
遠赤外線	15~1000	

センサ

検出	タイプ	備考
熱型	導電型	マイクロボロメーター
	起電力型	
量子型	光電動型	
	光起電力型	

熱型

センサに赤外線が照射され,温度が 上昇する際の変化

(抵抗,容量,起電力)を電気信号に 変換する

常温で使用できる(冷却が不要) どのような波長帯でも対応可能

検出	タイプ	備考
熱型	導電型	マイクロボロメーター
	起電力型	
量子型 光導電型		
	光起電力型	

導電型(マイクロボロメーター)

MEMS技術によるセンサアレイ(20μm) 温度上昇により抵抗が変化

起電力型

異種金属を接合し、温度差に比例して生じる(ゼーベック)起電力を利用

量子型

赤外線照射による光電効果を利用 常温ではS/N比がよくないので、冷却が必要 感度、反応速度が高い

光導電型 導電率(抵抗)を温度に変換

光起電力型 起電力を温度に変換

非破壊検査 Vol.60, No.6, 2011. Vol.68, No.6, 2019 より

赤外線利用技術の発展

1800 赤外線の発見(ハーシェル) 1850 熱弾性効果の発見(ケルビン) 1958 赤外線カメラ 1980 軍事用暗視カメラ 1980~90代 赤外線応力計測装置の普及 1990 現在のサーモグラフィーの原型 マイクロボロメーターの開発 2008 MEMS技術の発展 非冷却型カメラの普及

2010以降 高速化

実験概略

赤外線カメラ

バケツ ・水3Lを入れたバケツから 試験体内部に水を入れる 注入時間 約30秒

> ・注水後**10**分以内でエル ボー部にフォーカスを 合わせて赤外線写真撮影

水温(水道水) 夏:約20度,冬:約10度

赤外線カメラ

検出素子	非冷却マイクロボロメータ
素子	320 x 240 ピクセル
温度分解能	0.045K
温度測定範囲	-20~120度

写真撮影

FLIR T420

2019年度から2021年度の6月から2月まで 撮影日には10時から16時まで1時間おき 晴天,曇天時に撮影 (雨天時は撮影しない) 撮影時の最高気温35度,最低気温5度

撮影枚数は640枚超

機械学習

アンサンブル学習 : ランダムフォレスト, AdaBoost, XGBoost, 畳み込みニューラルネットワーク(CNN)

アンサンブル学習についてはパラメータチューニングを実施 グリッドサーチ

ランダムフォレスト

best score : 0.875

パラメータ	検討範囲	最適値	デフォルト値
n_estimators	5, 10, 20, 50 , 100, 300	100	100
max_depth	3, 5, 10, 20	10	None
min_samples_split	2, 3, 5, 10	3	2

n_estimators : 弱分類器の数 max_depth : 決定木の枝分かれの数 min_samples_split : 枝分割を行う最小のサンプル数

AdaBoost		best score : 0.872		
	パラメータ	検討範囲	最適値	デフォルト値
	base_estimator		DecisionTree	DecisionTree
	max_depth	1, 2, 4, 6	2	1
	min_samples_leaf	1, 5, 10	5	1
	n_estimators	10, 50, 100	100	50
	learning_rate	0.01, 0.1, 1.0	1.0	1.0
チューニングに2時間程度 学習に10分程度 max_depth : 決定木の枝分かれの数 min_samples_split : 葉に含まれる最小のサンプル数 n_estimators : 弱分類器の数 learning_rate : 更新速さのパラメータ				、 小のサンプル数 タ
XGBoost		best sc	ore : 0.873	
	パラメータ	検討範囲	最適値	デフォルト値
	n_estimators	10, 100	100	100
	max_depth	2, 4, 6	4	6
	learning_rate	0.1, 0.3, 0.5	0.1	0.3
	gamma	0, 0.1	0.1	0

チューニングに8時間程度,学習に15分程度

正しく判定された例

正しく判定されなかった例

実際:き裂あり 判定:き裂なし

4つの手法すべてに 対して不正解

実際:き裂なし 判定:き裂あり

4つの手法すべてに 対して不正解

学習手法による差、傾向はわからなかった

各手法の課題

超音波

- 励振・受信素子数:16x16のマトリクスアレイを2個使った探傷 16x16x2=512素子
- 励振・受信素子数:32x32のマトリクスアレイを2個使った探傷 32x32x2=2048素子
- 512 素子でポータブルなものはあまりない?
- データ数の増加,特にFMC1波形につき1000サンプルとすると
 - 64素子として, 64 x 64 x 1000 = 4,960,000
- データ通信速度 GByte/sは必要
- TFM 計算時間の増加

データ通信,計算の高速化

渦電流

- プローブがブラックボックス コイルの向き,個数,巻き数などが未知 - 数値シミュレーションに影響
- リフトオフなど再現性

赤外線

- 天気,気温などの影響(適用条件)

- 規格化

NDE 4.0

https://www.nikken-totalsourcing.jp/business/tsunagu/column/1881/

時期	特徴・変化	
第1次産業革命/イ ンダストリー1.0	18世紀半ば~ 19世紀初頭	蒸気機関による軽作業の機械化
第2次産業革命/イ ンダストリー2.0	19世紀半ば~ 20世紀初頭	重工業の機械化による大量生産時代の到 来
第3次産業革命/イ ンダストリー3.0	1970 年代初頭	コンピューターによる単純作業の機械化
第4次産業革命/ イ ンダストリー4.0	2010年~	Al・loTの活用による高度な知的活動の自 動化
第5次産業革命/イ ンダストリー5.0	2021年~	Al・loTの活用による人間中心で環境の変 化への対応力のある持続可能な産業への 変革

ドイツは2011年にIndustry 4.0 を提唱, 「2030 Vision for Industry 4.0」を発表

NDE 4.0

Industry 4.0 の一環として、ドイツ、Meyendorf により2017年提唱された

NDE 4.0 は, 既存のNDEシステムとIndustry 4.0 の技術の融合から生まれたNDEシステムのデジタライゼーションである.

デジタイゼーション: これまでアナログで(紙など)行っていた業務(もの)を電子化すること

デジタライゼーション: 何かをデジタル化することによって業務のやり方を変え,効率化すること

DX:

デジタル・ITといったテクノロジーを業務に取り入れることで, 企業の提供価値を高め,社会をより豊かにすること

NDEをデジタル化することで効率化を図る

NDE 4.0 の海外の取り組み調査 および 日本への導入

ICTを活用した超音波による非破壊評価技術研究委員会

中畑和之委員(愛媛大)

NDE 4.0 の設計原則 非破地

非破壊検査Vol.70, No.2, 2021より

a) 相互運用性:

IoTによってセンサーやデバイスを相互に接続し、モダリティ間でデータ交換できるようにすること.

b) 情報の透明性:

検査データはオープンにしてサイバー空間で共有し,その解釈を可能とすること. c)検査支援:

検査の判定を行うAI やロボットなどを用いて過酷な労働環境の検査をサポートする こと、

d) 分散型意思決定:

サイバーフィジカルシステムが独自に意思決定を行い,独立してタスクを実行すること.

a)とb) についてはデータフォーマットとその交換の仕組みを整備することが重要 日本におけるデジタルデータの課題と同じ

c)とd) についてはAIやロボットを導入したあとの,技術者教育や認証が重要

現状の医療システムにおけるデータ相互運用とその規格

検査オーダーからレポートの作成 まで放射線情報システム(RIS), モダリティ,画像管理システム (PACS)などのシステムが情報交換 しながら検査を行う

HL7:患者,検査結果のデータを DICOMに変換する機能

DICOM(Digital Imaging and Communications in Medicine) : 動画を含む医用画像・検査情報 データの規格およびそれを通信・ 印刷・検索するための国際規格

NDE 4.0 で想定するデータ相互運用とその規格

非破壊検査では、生産管理システム として統合基幹業務(ERP)と製造実行 システム(MES)サーバーで構成され、 通信規格であるOPC Unified Architecture を介してデータをやりとりする

OPC UAはIndustry 4.0 で産業用通信 規格としてドイツで指定されたもの

非破壊検査で生成される大量の画像, 映像,信号データなどの通信には DICOMに基づいたDigital Imaging and Communication in Non-Destructive Evaluation: DICONDE (ダイコンデ)を利用する

DICONDE規格はASTMによって整備されている

データリポジトリ

国交省では データプラットフォームxROAD の作成,管理を検討している 一部,外部に委託している箇所も

NDEデータプラットフォーム の管理,運営先として

両者が協力する検討は必要

https://www.mlit.go.jp/report/press/content/001490634.pdf

まとめ

・非破壊試験技術,特にコンピュータと組み合わせて 信号処理できる分野の進化は著しい

・以前はオーダーメイドの機器で高額な開発費用が必要となる 入れが多かったが,低価格化もすすんでいる

・非破壊検査の業界でもデジタライゼーションが必要

・オープンデータ化はAI開発,他業界によるソフト作成などの 可能性が期待できる

・NDE 4.0 の取り組み

・最新技術, NDE 4.0についても多くが海外由来で先進技術を 取り入れるのであれば海外(欧米)の動向に注意することが重要