第9章 本委員会の話題提供

9.1 高力ボルト摩擦接合継手の限界状態

本節では、高力ボルト摩擦接合継手の限界状態を整理・分類し、それらに対して現状ではどのよう な設計式が存在し、また検討されているか、国内外の既往の文献や最新の文献を含めその概要を説明 する.

9.1.1 限界状態の分類

ここでは、どのような限界状態があるか表 9.1.1 のように分類し、それらの概要を説明する.表 9.1.1 に示すように、高力ボルト摩擦接合継手の限界状態を考えるとき、ここでは、作用する荷重方 向が引張時、圧縮時、および引張・圧縮繰返し時の大きく3つの状態に分けて考える.以下には、そ の3つの荷重状態時の限界状態の種類を概説する.

作用荷重方向	使用/終局限界	限界状態	備考
引張	使用限界	接合面のすべり	
		(鋼板の降伏)*	
	終局限界	ボルトのせん断破壊	
		鋼板のせん断破壊	端抜け、中抜け(ブロッ
			クせん断),外抜け破壊
		鋼板の引張破壊	
		鋼板の支圧破壊	
圧縮	使用限界	接合面のすべり	
		(鋼板の降伏)*	
	終局限界	鋼板の座屈	
		ボルトのせん断破壊	
		鋼板の支圧破壊	
引張・圧縮繰返し	使用限界	接合面のすべり	すべり係数の変化
		(鋼板の降伏)*	
	終局限界	鋼板の座屈	
		極低サイクル疲労に伴う	単調載荷で生じる鋼板や
		各種破壊(鋼板のせん	ボルトの破壊が早期(耐
		断, 引張破壊やボルトの	荷重以下で)に生じる可
		せん断破壊)	能性がある

表 9.1.1 高力ボルト摩擦接合継手の限界状態の分類

*鋼板の降伏は使用限界として扱わないこともあるため()書きとした

図 9.1.1 に高力ボルト摩擦接合継手に引張力が作用したときの荷重-変位関係の模式図(鋼板の降伏 より先にすべりが先行する場合の例)を示す.引張時の限界状態としては,大きく分けると2つある. 図 9.1.1 の第1ピークが生じているところで接合面のすべり(すべり先行型の場合),もしくは鋼板 の降伏(降伏先行型の場合)が生じるので,これらが使用限界として一つの限界状態となる.なお, 表中で鋼板の降伏に関しては()書きとしているが,各分野で見解が異なり降伏を使用限界とみなさ ない場合もあり、ここでは、このような書き方とした.

次に、このすべりや降伏が生じたのち、一度荷重は低下する場合や荷重がほぼ一定の場合もあるが、 その後、ボルト軸部が鋼板のボルト孔にあたり、支圧状態となり、荷重が上昇し、鋼板の降伏が進展 し、最終的には、第2ピークの点で荷重が最大値となる点がもう一つの限界状態(終局限界)となる. この第2ピークまで達すると、それ以後は荷重が減少し、鋼板もしくはボルトで破壊が生じ終局を迎 える. 第2ピーク時の限界状態は表中に示すようにいくつかの破壊モードが存在するが、これらの限 界状態や破壊モードは次の9.1.2で説明する.

以上は引張力が作用したときの限界状態の概要を示したものであるが、鋼部材の継手には部材軸方 向圧縮力や曲げによる圧縮力も作用するため、場合によっては圧縮力が作用したときの限界状態も考 える必要がある. 圧縮力が作用したときも, 先に述べた引張力を受けたときとほぼ同じ挙動をするが, 限界状態としては座屈も考慮する必要がある.

図9.1.2 にその荷重-変位関係の模式図を示しているが、すべりや降伏前に座屈する場合(座屈先行型)や、すべりや降伏が生じたのちに座屈が発生する場合(すべり先行型や降伏先行型)も考えられる.ただし、接合部には部材が接合されており、その部材そのものの座屈もあるため、それらを含めて考える必要がある.また、圧縮力作用下では当然ながら最終的に鋼板の破断は生じないが、鋼板の支圧破壊やボルトのせん断破壊は生じる可能性がある.このような圧縮限界に関しては、研究事例が少ないものの9.1.3 で既往の研究事例を交えて説明する.

図 9.1.2 圧縮力を受ける継手の荷重-変位関係(すべり先行型の例)

以上までは引張もしくは圧縮の単調載荷時の限界状態であるが、地震などにより、繰返し圧縮および引張力が継手に作用した場合の限界状態も想定できる.限界状態の種類としては、表9.1.1にも示しているように、上に述べた引張力もしくは圧縮力が作用し時とほぼ同様のものが想定されるが、それ以外に考えられる限界状態としては極低サイクル疲労などが考えられる.また、繰返しすべりが発生することで、すべり面の状態が変化しすべり係数が変化することも考えられる.このような繰返し荷重作用下に関しても、圧縮同様に研究事例が少ないものの9.1.4 で既往の研究成果の紹介も含め説明する.

9.1.2 引張力を受ける継手の限界状態

(1) すべり限界

高力ボルト摩擦接合継手は、接合面における摩擦抵抗力によって外力に抵抗するため、外力が摩擦 抵抗力を上回った時、接合面ですべりが発生する.その荷重をすべり荷重もしくはすべり耐力として 以下のような一般的な式(9.1.1)で定義される.この式より、すべり耐力 *F*_{slip}はすべり係数: *µ*,ボルト 本数: *n*, 摩擦面数: *m*, ボルト軸力: *N*によって決まることがわかる.

$$F_{\rm slip} = \mu \cdot m \cdot n \cdot N \tag{9.1.1}$$

摩擦面数 m は 1 面の場合や 2 面の場合の 2 種類のみが考えられるが,ボルト軸力 N は使用するボルト強度やボルト径によって導入される値が変わってくる.また,すべり係数は接合面処理によって大きく変化する.土木学会¹⁾では,以下のような**表 9.1.2**ですべり係数の設計値が規定されている.

接合面の処理	すべり係数μ	備考		
赤錆状態	0.55	粗面仕上げの後に、健全な赤錆を発生させたもの.		
薬剤による発錆	0.45	化学薬品によって、健全な赤錆を発生させたもの.		
	0.25	ディスクグラインダーによって粗面とし、錆がないもの.		
Jat J Is Jul.	0.35 (表面粗さ指定なし)	ショットブラストまたはグリッドブラストによって粗面とし、錆がない もの たお P は質症平均組さのことである		
租面状態	0.40 (10 $\mu m > R_a \ge 5 \mu m$)			
	0.45 $(R_a \ge 10 \ \mu m)$			
無機ジンクリッチ	0.40(塗膜厚≤ 65 µm)	標準塗膜厚(母板+連結板の合計)を150 µm とする.		
ペイント	0.50(塗膜厚>65 μm)	塗料中の乾燥亜鉛含有量は80%以上を原則とする.		
有機ジンクリッチ ペイント*		*鋼構造(鋼橋)設計標準の国際整合化ガイドライン[日本鋼構造協会.		
溶融亜鉛めっき*	個別にすべり試験行うなど、継	2004」には、「すべり係数の短期的値」として具体的な値が提示され ている。なお、長期的持続荷重によりすべりが有害な結果をもたらす 構造物については、長期的実験から設計推奨値を求めるか、国内基準		
金属溶射*	- 手の性能を確認して決定する.			
機械的な粗面加工*	-	における推奨値を適用すると良いと示されている.		

表 9.1.2 土木学会におけるすべり係数の設計値¹⁾

また,道路橋示方書²⁾では無機ジンクリッチペイントを施した接合面の場合,0.45 という設計値が 使われており,それ以外の接合面ではすべり係数 0.4 を確保することが規定されている.さらに,日 本建築学会³⁾, AASHTO⁴⁾や Eurocode⁵⁾でも接合面の処理状態でクラス分けがされており,日本建築学 会では 0.23~0.45, AASHTO では 0.3~0.5, Eurocode では 0.2~0.5 の範囲で規定されている.

なお、すべり耐力は、すべり/降伏耐力比β(次の項目で説明するためここでは省く)、ボルト列数、

肌隙,フィラープレート,拡大孔や長孔などによって変化すると考えられ,以下の表9.1.3に示すような補正係数(低減係数)が定められている⁹. なお,肌隙やフィラーに関する補正は現状では考慮されていないが,建築学会³⁾では,肌隙に関してすべり耐力の減少を 10%程度まで認めるとすると 1mm まで許容できること,それ以上の場合はフィラープレートを用いることが記述されている.

	道路橋示方書 2)	建築学会 3)	AASHTO ⁴⁾	Eurocode ⁵⁾
ボルト列	8本以下:1.00	10 列以上の場合以下の	-	-
数	9本:0.98	低減係数βを参考とす		
	10本:0.96	ると記述有		
	11本:0.94	$\beta=1(L<15d)$		
	12本:0.92	β =1.08-L/(200d)		
		(15 <i>d</i> < <i>L</i> <65 <i>d</i>)		
		$\beta = 0.75(65d \le L)$		
拡大孔	-	0.85	0.85	0.85
長孔	-	-	短い:0.85	短い(直角*): 0.85
(スロッ			長い(直角*):0.7	短い(平行*):0.76
ト孔)			長い(平行*):0.6	長い(直角*): 0.70
				長い(平行*):0.63
肌隙	許容しない	1mm まで許容と記述有	-	-
フィラー	-	-	-	-

表 9.1.3 すべり耐力の補正係数

*直角とは長孔の長手方向と荷重方向が一致しない、平行は一致する

(2) 降伏限界

高力ボルト摩擦接合継手は鋼板で構成されているため、引張力が作用し荷重が大きくなると降伏が 生じるが、この時の荷重が降伏荷重もしくは降伏耐力であり、この状態が降伏限界となる.この降伏 耐力 F_y を計算する際、以下の式(9.1.2)が用いられる.この式の中で、引張荷重時は孔引きの純断面積 A_n を使用するが、摩擦抵抗力の影響も加味し、道路橋示方書²⁾では簡単に1割増しとして降伏耐力を 算定する.一方、建築分野³⁾では式(9.1.3)a,b の計算式が用いられ、a 式では摩擦抵抗力の影響を考慮 していることがわかる.b式では総断面での降伏耐力を求めており、最終的には a,b式とすべり耐力 との比較を行い、最小値として継手の降伏耐力(使用限界)を定めている.また、鉄道標準³⁾ではこ の摩擦抵抗の影響は考慮されておらず(式(9.1.2)で α =1.0)、さらに部材係数_{7b}として1.05~1.1の値で F_y を割った形の式となっている.なお、AASHTO や Eurocode では、継手の使用限界として鋼板の降 伏に関する規定はなく、すべり耐力のみ考慮しているが、終局限界を検討する際、総断面降伏耐力を 算定している.

$$F_{\mathbf{y}} = \boldsymbol{\alpha} \cdot A_{\mathbf{n}} \cdot \sigma_{\mathbf{y}} = \boldsymbol{\alpha} \cdot (b - d) \cdot t \cdot \sigma_{\mathbf{y}}$$
(9.1.2)²)

$$F_{y} = A_{n} \cdot \sigma_{y} + \frac{1}{3} \cdot \mu \cdot n \cdot m \cdot N \qquad (9.1.3)a^{3}$$

$$F_{\rm v} = A_{\rm g} \cdot \sigma_{\rm v} \tag{9.1.3} b^{3}$$

ここで, a: 補正係数(道路橋示方書では 1.1), oy: 鋼板の降伏点, b: 板幅, d: 孔径, t: 板厚である.

次に、先に述べたすべりの発生前に降伏が生じる場合、もしくはすべり発生後に鋼板とボルトが支 圧状態になったのちに鋼板に降伏が生じる場合もある.これらを計算上判定するために、以下の式 (9.1.4)で示されるすべり/降伏耐力比 β という値が用いられる.この β とすべり係数変化率の関係性を 示したのが図 9.1.3 である.なお、図 9.1.3 の縦軸は、すべり先行型(β =0.7 より小さいもの)のすべ り係数の平均値で無次元化したすべり係数変化率としている.また、図中のプロットは解析的な検討 結果を示しており、板厚や板幅などを変化させ β を変化させた結果である.この図 9.1.3 より、すべ り係数は β が 0.7 程度から減少しているのがわかる.このすべり係数変化率もしくはすべり係数と β との関係は、いくつかの式が提案されており、それらを式(9.1.5)~(9.1.6)で示す.建築分野³⁾でも、こ の β に相当する値として ζ が定義されており、すべり係数低下率 λ と ζ との関係が同様の関係性とし て以下の式(9.1.7)が提案されている.

図 9.1.3 すべり係数変化率とすべり降伏耐力比 β との関係⁸⁾

$$\mu_{e} / \mu_{ave} = 1.00 \qquad (\beta < 0.70) \\ \mu_{e} / \mu_{ave} = 1.02 - 0.054\beta \qquad (0.70 \le \beta < 0.85) \\ \mu_{e} / \mu_{ave} = 1.21 - 0.277\beta \qquad (\beta \ge 0.85)$$

$$(9.1.6)^{(8)}$$

$$\begin{array}{c} \lambda = 1.0 & (\zeta < 0.8) \\ \lambda = 1.2 - 0.25\zeta & (0.8 \le \zeta \le 2.8) \\ \lambda = 0.5 & (2.8 < \zeta) \end{array} \right\}$$
 (9.1.7)³⁾

なお、図 9.1.3 より、 β =0.7 付近以降はすべり係数が小さくなることがわかる.引張力を受ける場合、ポアソン効果により板幅方向や板厚方向に鋼板が小さくなるため、特に降伏後はその影響が顕著 となり、すべり係数が小さくなることがわかっている.また、 β =1.0 で減少しない理由としては、すべ り先行型の継手でβ=0.8 程度であっても、すべりが発生する前にボルト孔付近の局所的な降伏が生じ、 それにより想定より小さい荷重ですべりが発生しているためである.これらのことから、降伏先行型 では、鋼板に降伏が生じ、その後も変形が進むと想定より小さい荷重ですべりが生じる可能性がある. このことは、設計上すべらないようなボルト本数を設定していても、このすべり係数の低下を考慮せ ずにボルト配置した場合、地震などで部材が降伏すると、その後すべりが発生する可能性を示唆して いる.

(3) 終局限界

図9.1.1に示した終局限界(第2ピーク)となるときには、図9.1.4に示すような破壊モードが存在する.大きく分けると①鋼板の引張破壊、②鋼板のせん断破壊、③鋼板の支圧破壊、および④ボルトのせん断破壊がある.さらに②の鋼板のせん断破壊の中では、はしぬけ破断、なかぬけ破断(ブロックせん断)およびそとぬけ破断と3つの破壊モードが存在する.

道路橋示方書²⁾や鉄道標準⁷⁾では、③④に関する設計式や記述があるが、構造細目によって孔の位置の規定があるため、①②の限界状態を照査することは求められていない.一方、建築分野³⁾では③の支圧破壊以外、海外の基準^{4),5)}ではこれらすべての限界状態を求める照査式が提示されている.これらの設計式を以下に紹介する.なお、間違いが無いよう式中の記号は各基準のものをそのまま用いた.

<道路橋示方書・同解説(平成29年度版)2)>

・ボルトのせん断: $V_{\text{fud}} = \xi_1 \cdot \xi_2 \cdot \Phi_{\text{MBsl}} \cdot \tau_{\text{tuk}} \cdot A_{\text{s}} \cdot m$ (9.1.8) (ここで、 ξ_1 : 調査・解析係数、 ξ_2 : 部材・構造係数、 Φ_{MBsl} : 抵抗係数、 τ_{tuk} : 摩擦接合用高力ボルト のせん断破断強度の特性値、 A_{s} : ねじ部の有効断面積、m: 接合面数) ・支圧に関しては次の記述のみあり:「限界状態3の制限値は、ねじ部有効径を直径とする断面積を 用いて算出したせん断力の制限値及び支圧力の制限値のうち小さい方の値とする。この場合、ボルト の有効支圧面積はねじ部有効径と使用する鋼材の厚さとの積とする。」

<鉄道構造物等設計標準・同解説(平成21年度版) ⁷>

- ・ボルトのせん断: $P_{ju}=n \cdot m \cdot f_{bud}/\sqrt{3} \cdot A_e$ (9.1.9) (ここで, n: 継手を構成するボルトの数または設計する断面の接合線の片側にあるボルトの数, <math>m:ボルト軸部のせん断面の数, $f_{bud}: ボルトの設計引張強度, A_e: ボルトの有効断面積)$
- ・鋼板の引張破壊: P_{ju}=f_{sud}・A_n (9.1.10)
 (ここで, f_{sud}:継手を構成する鋼板(母材または添接板)の設計引張強度, A_n:継手を構成する鋼板(母材または添接板)の純断面積)

<日本建築学会・鋼構造接合部設計指針(第4版)³⁾>

・ボルトせん断: $P_{ul} = n \cdot q_{bu}$ (9.1.11)

- (ここで,n:ボルト本数, q_{bu} :高力ボルト1本あたりの最大せん断耐力) ・鋼板の引張: $P_{u2}=A_n \cdot F_u$ (9.1.12)
- (ここで, A_n:ボルト孔引き断面積, F_u:母材または添接板の引張強さ)
 - ・鋼板のせん断: $P_{u3} = (A_{nt} + 0.5A_{ns})F_u$ (9.1.13)

Ansは以下のように算定する.

なかぬけ、そとぬけ: $A_{ns}=2\{(n_1-1)p+e_1\}t$ (9.1.14)a はしぬけ: $A_{ns}=2n_2\{(n_1-1)p+e_1\}t$ (9.1.14)b

(ここで, A_{nt} :局所的なちぎれ破断のうち,なかぬけ破断またはそとぬけ破断を想定した場合の引張 応力の作用する部分の有効断面積, n_1 :荷重載荷方向のボルト列数,p:ボルトピッチ, e_1 :縁端距 離,t:母材または添接板の板厚, n_2 :荷重載荷直角方向のボルト行数)

<AASHTO · LRFD (9th Edition) ⁴)>

・ボルトせん断: R_{n} =0.56 A_{b} ・ F_{ub} ・ N_{s} (ねじ部含まない)	(9.1.15)a
---	-----------

: $R_{\rm n}$ =0.45 $A_{\rm b}$ ・ $F_{\rm ub}$ ・ $N_{\rm s}$ (ねじ部含む) (9.1.15)b

(ここで、 A_b : ボルトの呼び径に対する断面積、 F_{ub} : ボルトの引張強度、 N_s : 1 つのボルトに対する せん断面の数)

・鋼板(ボルト)の支圧: R_n=2.4d・t・F_u(ボルト間隔,縁端距離 2.0d 以上) (9.1.16)a

: R_n=1.2L_c・t・F_u(ボルト間隔,縁端距離 2.0d 以下) (9.1.16)b

(ここで,d:ボルトの呼び径,t:鋼板の板厚, F_u :鋼板の引張強度, L_c :支圧力作用方向のボルト孔間もしくはボルト孔と部材端との純間隔)

・鋼板のせん断: $R_r = \varphi_{bs} \cdot R_p (0.58F_u \cdot A_{vn} + U_{bs} \cdot F_u \cdot A_{tn})$

 $\leq \varphi_{\rm bs} \cdot R_{\rm p}(0.58F_{\rm y} \cdot A_{\rm vg} + U_{\rm bs} \cdot F_{\rm u} \cdot A_{\rm tn}) \tag{9.1.17}$

(ここで、 φ_{bs} : ブロックせん断に対する抵抗係数、 R_{p} : ボルト孔に対する低減係数、 F_{u} : 引張強度、 A_{vn} : せん断応力に抵抗する面に沿う純断面積、 U_{bs} : ブロックせん断破壊に対する低減係数、 A_{u} : 引 張応力に抵抗する面に沿う純断面積、 F_{y} : 降伏強度、 A_{vg} : せん断応力に抵抗する面に沿う総断面積)

・鋼板の引張: $P_r = \min\{\varphi_y \cdot F_y \cdot A_g, \varphi_u \cdot F_u \cdot A_n \cdot R_p \cdot U\}$ (9.1.18) (ここで、 φ_y : 引張部材の降伏に対する抵抗係数、 F_y : 降伏強度、 A_g : 総断面積、 φ_u : 引張部材の破断 に対する抵抗係数、 F_u : 引張強度、 A_n : 純断面積、 R_p : ボルト孔に対する低減係数、U: せん断遅れ に対する低減係数)

<Eurocode3⁵)>

・ボルトせん断: $F_{v,Rd} = \alpha_v \cdot \beta_{LF} \cdot f_{ub} \cdot A/\gamma_{M2}$ (9.1.19)a

 $\beta_{\rm LF} = 1 - (L_{\rm j} - 15d)/200d \qquad (0.75 < \beta_{\rm LF} < 1.0)$ (9.1.19)b

(9.1.20)a

(ここで, *a_v*: 0.6 (強度クラス 4.6~8.8), 0.5 (強度クラス 4.8~10.9), *f_{ub}*: ボルトの引張強度, *A*: ボルトの総断面積, *γ_{M2}*: ボルトの抵抗に対する部分安全係数, *β_{LF}*: 複数ボルトに対する低減係数, *L_j*: 継手両端のボルト孔間隔, *d*: ボルト呼び径)

・鋼板(ボルト)の支圧: $F_{b,Rd}=k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t/\gamma_{M2}$

$k_1 = \min\{2.8e_2/d_0-1.7, 1.4p_2/d_0-1.7,$	2.5}	(端部のボルト)	(9.1.20)b
$\min\{1.4p_2/d_0-1.7, 2.5\}$	(端	部以外のボルト)	(9.1.20)c
$\alpha_{\rm b} = \min\{\alpha_{\rm d}, f_{\rm ub}/f_{\rm u}, 1.0\}$			(9.1.20)d
$\alpha_{\rm d}=e_1/3d_0$	()	端部のボルト)	(9.1.20)e
$=p_1/3d_0-1/4$	(端	部以外のボルト)	(9.1.20)f

(ここで, f_u:鋼板の引張強度, t:鋼板の板厚, e₁:荷重方向の縁端距離, e₂:荷重直角方向の縁端距 離, p₁:荷重方向のボルト間隔, p₂:荷重直角方向のボルト間隔, d₀:ボルト孔径)

・鋼板のせん断: $V_{\text{eff},1,\text{Rd}} = f_u \cdot A_{nt} / \gamma_{M2} + (1/\sqrt{3}) f_y \cdot A_{nv} / \gamma_{M2}$ (9.1.21)a

 $V_{\text{eff},1,\text{Rd}}=0.5f_{\text{u}} \cdot A_{\text{nt}}/\gamma_{\text{M2}}+(1/\sqrt{3})f_{\text{y}} \cdot A_{\text{nv}}/\gamma_{\text{M2}}$ (偏心荷重あり)(9.1.21)b

- (ここで、 f_y :鋼板の降伏強度、 A_{nt} :引張を受ける純断面積、 A_{ny} : せん断を受ける純断面積)
 - ・鋼板の引張: $N_{t,Rd} = \min\{N_{pl,Rd} = A \cdot f_y/\gamma_{M0}, N_{u,Rd} = 0.9A_{net} \cdot f_u/\gamma_{M2}\}$ (9.1.22)
- (ここで,A:鋼板の総断面積, ymo:断面積の抵抗に対する部分係数,Anet:鋼板の純断面積)

(4) ガセットプレート

鋼構造物のボルト接合部には、①桁同士を接合するような部材を平行に接合する場合と、②トラス 部材同士を接合するような部材同士に角度がついているものを接合する場合の2つがある。①の接合 部では、上述したような考え方で設計が考えられているが、②の接合ではガセットプレートという鋼 板を介してボルト接合されるため、ガセットプレート特有の設計の考え方があるためそれも紹介する。 なお、日本建築学会の接合部設計指針³⁾でもブレース接合部(ガセットプレートを含む)の設計につ いては、継手の設計法と別で記載がある。

特徴的な考えとしては、板幅を計算する際に、有効幅という考えを用いることである。有効幅の概 念を以下の図9.1.5に示す.ガセットプレートは桁の接合部に比べ角度をつけて部材を接合すること から板幅を広く設ける.その場合、どこまでが継手強度に影響する範囲となる板幅なのか設計式で定 義されている.以下に各基準で定められている有効幅の考え方を示す.また、この有効幅を検討した

(a) 鉄道標準および本四基準

(b) 建築学会および AASHTO

図 9.1.5 有効幅 b_e(赤点線)の考え方

研究として,文献 11)がある.この研究では載荷実験および FE 解析を実施し,それにより,ガセット プレートの降伏耐力の算定には *be=b+1.0d* とすること,破断耐力に関しては下記の式で算定すること が良いという結論を示している.

鉄道標準⁷⁾および本四基準¹⁰⁾

9.1.3 圧縮力を受ける継手の限界状態

(1) すべり限界

圧縮力を受ける高力ボルト摩擦接合継手の力学的挙動を検討した研究は少ないが,表9.1.4 に示す ように,引張に比べ,すべり係数が1.1 倍程度高くなる傾向があることが文献12)で実験的に検討され ている.また,文献13)では,この実験的な検討を再現した FE 解析を実施しており,引張と同じ摩擦 係数に設定した圧縮の解析モデルでも1.08 倍程度のすべり係数となることが報告されており,これら の結果よりすべり係数が大きくなることが実証されている.すべり係数は載荷直前のボルト軸力によ り算定されるが,このすべり係数が大きくなる原因としては,鋼板に圧縮力が作用すると,ポアソン 効果により板厚方向もしくは板幅方向に鋼板が大きくなることで,引張時よりボルト軸力の減少が小 さくなり,すべり荷重が大きくなると考えられている.したがって,継手のすべり係数は引張側で決 まる値を採用すれば安全側となると言える.また,文献13)では,多列継手の場合に関する検討を実施 しており,引張力を受ける場合,多列となるとすべり係数の低減が考慮されていたが,圧縮力を受け る場合,すべり係数がほとんど低下しないことが解析的に示されている.

検討方法	引張時すべり係数	圧縮時すべり係数	比率
実験的検討12)	0.436	0.477	1.09
解析的検討 ¹³⁾	0.436	0.469	1.08

表 9.1.4 圧縮力と引張力を受ける継手のすべり係数の比率^{12),13)}

(2) 降伏限界

圧縮力を受ける高力ボルト摩擦接合継手の降伏耐力の算定は、以下の式(9.1.25)で示される.

$$F_{\rm cy} = A_{\rm g} \cdot \sigma_{\rm y} \tag{9.1.25}$$

引張力を受ける場合と違い、継手の全断面積 A_g を掛け合わせ降伏耐力が算定されるところに注意が必要である.

また,引張力を受ける場合と同様に,式(9.1.25)を用いた降伏耐力ですべり降伏耐力比 β_c を算定すると,図9.1.6に示すように,引張力を受ける継手と同様に, β_c が0.7~1.0付近からすべり係数が低下する挙動を取ることが解析的に示されている.このため, β が大きい降伏先行型の継手であっても,引張力を受ける場合と同様のすべり係数の低減効果を考えればよいこととなる.

(3) 座屈限界

圧縮力を受ける継手の場合,上述したすべりや降伏が生じる前後で座屈が生じる可能性がある.継 手の座屈は①連結板での局部座屈,もしくは②継手全体での全体座屈が考えられるが,これらに関す る検討はほとんど行われていない.特に②に関しては,継手は母板と連結板とが重なっているため, 母板に比べ継手全体の板厚は大きく,継手全体が座屈する前に,母板側(部材側)で座屈する可能性 が高い.①に関しては,文献13)では,連結板が座屈する条件式を解析的に示しているが,解析のみで の検討であることや限定的な条件であるため,今後より詳細な検討が行われることが望まれる.

また、ガセットプレートで接合されている場合、ガセットプレートの座屈が考えられる.これに関 しては、道路橋示方書³では、ガセットプレートの座屈を考慮した板厚の設計式や長さの制限値(離 れ量1)、座屈設計ガイドライン¹⁴⁾にも式(9.1.26)が示されている.また、鉄道標準⁷⁾でも道路橋示方書 ²⁾とほぼ同じガセットプレートの板厚の算定式が記載されている.さらに、AASHTO⁴⁾では以下の式 (9.1.27)a~e でガセットプレートの座屈強度を照査することが規定されている.なお、これらの設計式 は比較的大型の橋梁で、2 面添接形式が想定されている.しかし、プレートガーダー橋などの横構な どが接合されている1面添接形式のガセットプレートに関してはこれらの適用性の検討はこれまでさ れていない.

$$\frac{l'}{t} \leq \sqrt{\frac{\pi^2 E}{12\sigma_{\mathrm{y}}}} \tag{9.1.26}^{14)}$$

$$P_{\rm r} = \varphi_{\rm cg} \cdot P_{\rm n}$$
 (9.1.27) $a^{4)}$

$$\Box \Box \heartsuit, \ P_{\rm o}/P_{\rm n} \leq 2.25 \ \mathcal{O} \geq \mathring{\Xi}, \qquad P_{\rm n} = \left[0.658^{\frac{P_{\rm o}}{P_{\rm e}}} \right] P_{\rm o} \tag{9.1.27} b^{4)}$$

それ以外のとき、
$$P_{\rm n}$$
=0.877 $P_{\rm e}$ (9.1.27) $c^{4/2}$

また,
$$P_{\rm e} = \frac{3.29E}{\left(\frac{L_{\rm mid}}{t_{\rm g}}\right)} A_{\rm g}$$
(9.1.27)d⁴)

$$P_{o} = A_{g} \cdot F_{y}$$
 (9.1.27)e⁴

 L_{mid} :, t_g : ガセットプレートの板厚, A_g : 有効幅を考慮した総断面積 (引張と同じ式(9.1.24)で算定), F_y : ガセットプレートの降伏点

図 9.1.6 すべり係数とすべり降伏耐力比 β c との関係¹³⁾

(4) 終局限界

圧縮力を受ける継手の終局限界としては、引張の場合と違い、①座屈が考えられ、また、②ボルトのせん断破壊や③鋼板の支圧破壊が考えられる.ただし、①に関しては上述したようにすべりや降伏前後に連結板の局部座屈が考えられるが、継手全体の座屈が生じる前に部材や板としての座屈が生じると考えられるため継手全体での座屈はほとんど起こらないと考えられる.また、②や③に関しては、引張と同様の考え方で検討できると考えられる.

最後にガセットプレートを介して接合する場合は、すべりや降伏前後に座屈が生じ終局状態となる 可能性はあると考えられる.ガセットプレートの座屈に関しては、上述した座屈限界とほぼ同様のこ とが言えるが、一面摩擦の場合など未だ解明されていないことも多く、今後これらの詳細な解明が今 後期待される.

9.1.4 引張・圧縮の繰返し荷重を受ける継手の限界状態

引張および圧縮の繰返し荷重が作用した継手の力学的挙動を検討した事例はいくつか存在する^{15)~}¹⁷⁾が,それらの検討で解明された挙動としては,繰返しすべりが発生することで,すべり係数やボルト軸力が大きく変化することである.また,すべり面の処理状態や載荷速度によって,その変化の傾

図 9.1.7 繰返し荷重を受ける継手のすべり荷重の変化 17)

向が違うことがわかっている.それらの一例として文献 17)で行われた載荷実験の荷重-変位関係を図 9.1.7 に示す.この結果より,近年,鋼橋でよく使われている無機ジンクリッチペイントを有する接 合面では,一度すべりが生じるとすべり荷重が大きく低下する一方でショットブラストや亜鉛メッキ ではすべり荷重が上昇していることがわかる.このことから,地震などの大きな外力が作用し継手で 一度すべりが生じると,継手の設計上のすべり耐力値が変化し,無機ジンクリッチペイント面ではす べり耐力が低下する可能性がある.

上述した繰返しによる検討は、そのほとんどがボルトと鋼板が支圧状態に至る前での繰返しであり、 より大変位における限界状態を検討した例はほとんどないが、文献 18)で行われたアーチ橋横構の部 材も含めたガセットプレート接合部で、終局まで検討されたものがある.ここでは、接合面のすべり や降伏が生じているが、最終的には部材座屈やガセットプレートの座屈が生じ終局となっており、接 合部を含めた部材の終局状態の解明を検討した貴重な研究成果である.また、文献 19)でも接合部を 含めたせん断パネルの終局挙動を検討しており、いくつかの接合方法を検討しているが、フランジ・ ウェブともに摩擦接合とした場合では、図9.1.8に示すように、最終的にウェブ接合部のボルト孔を 縫うような極低サイクル疲労破壊によるき裂が生じ終局となった.このように、繰返し載荷により生 じ得る接合部の終局状態としては、座屈以外に極低サイクル疲労も生じる可能性を検討する必要があ る.

(a) 載荷状況 (b) 載荷終了後 図 9.1.8 せん断パネルを接合した高カボルト摩擦接合部の破壊状況¹⁹⁾

9.2 鋼構造物の溶接部における低サイクル疲労評価の現状

低サイクル疲労は、塑性ひずみが数回~数十回程度繰り返し発生することによって鋼構造物中にき 裂が発生、進展し破壊に至る現象である.主に地震時のように塑性変形が繰り返される場合には低サ イクル疲労によるき裂が発生する可能性がある.過去の地震においても低サイクル疲労が原因と考え られるき裂が発見されている²⁰⁾.地震時に低サイクル疲労によるき裂が大きく進展すると、鋼構造物 の耐荷性能が大きく低減し、脆性的な破壊を招く可能性があることから、低サイクル疲労に関する照 査方法を確立することは喫緊の課題であると考えられる.

低サイクル疲労では、き裂が発生までに費やされる寿命に比べて、き裂進展段階での寿命が長い. そのため、前者のき裂発生寿命と後者のき裂進展寿命を分離して議論されることが多い.これまでに、 き裂発生寿命および進展寿命について、材料レベルや溶接継手単体での評価が行われており、その結 果を用いて部材レベルや構造物レベルでの低サイクル疲労の評価が行われている.以降では、低サイ クル疲労に関する研究の現状について示す.

9.2.1 材料・溶接継手レベルでの検討

(1) き裂発生寿命の評価

低サイクル疲労き裂はひずみ集中部である溶接部から発生することが多い.そこで、低サイクル疲 労に関する基礎的な研究として、突合せ溶接試験体に対して繰返し曲げ変形を与え、鋼素材、熱影響 部、溶接金属のそれぞれから発生する低サイクル疲労き裂の発生寿命の評価が行われている. 図 9.2.1 に試験方法を示す.き裂発生箇所の局所的なひずみの振幅を画像解析により計測し、き裂長約 0.5mm のき裂が発生したときの繰返し回数との関係が整理されている.その結果、図 9.2.2 に示すように、 き裂発生箇所の局部ひずみの振幅とき裂発生回数には対数軸上でほぼ線形の関係があることが明らか にされている²¹⁾.

図 9.2.1 突合せ溶接継手の低サイクル疲労試験(単位:mm)

図 9.2.2 鋼素材,熱影響部,溶接金属の低サイクル疲労強度曲線

また,より一般的な溶接継手として,T 字溶接継手を対象に,溶接部に繰返し塑性ひずみを与える 低サイクル疲労試験を行い,き裂発生寿命の評価を行っている²²⁾.**図9.2.3**に試験状況を示す.この 研究では,FEM 解析を用いて,き裂発生箇所である溶接止端のひずみ振幅を求め,実験から得られた き裂発生寿命を整理している.その結果,**図9.2.4**に示すように,上記の突合せ溶接の低サイクル疲 労試験から得られた低サイクル疲労強度曲線と同じ曲線を用いてき裂発生寿命が評価できることが示 されている.これらのことから,継手の種類によらず,低サイクル疲労き裂の起点となる溶接止端の ひずみ振幅を用いることで,き裂発生寿命が評価できることが示された.

図 9.2.3 T字溶接継手の低サイクル疲労試験

図 9.2.4 T字溶接継手から得られた低サイクル疲労強度曲線

(2) き裂進展寿命の評価

材料レベルのき裂進展寿命の評価として、図9.2.5に示すコンパクトテンション試験片を用いて、 低サイクル疲労き裂の進展則に関する検討が行われている²³⁾. 試験片に設けたノッチに繰返し塑性変 形を与え、与えた強制変位の大きさおよび繰返し回数と、試験体から計測したき裂長の関係が整理さ れている. また、母材の材質や、き裂が溶接金属内を進展するように試験体を製作した場合について も実験が行われている. 同時に、図9.2.6に示すように、有限要素解析によりき裂進展試験を再現し、 き裂の進展を支配するパラメータを検討している.その結果、き裂先端を囲む経路において得られる、 変位、応力、ひずみおよびそれらの差分から求められる破壊力学パラメータである繰返しJ積分によ り、図9.2.7に示すように1サイクルあたりのき裂進展量を整理できることを示している.

図 9.2.6 繰返し J 積分を求めるための解析モデル

図 9.2.7 き裂進展速度と繰返し J 積分の関係

9.2.2 部材への適用性の検討

(1) 鋼製橋脚基部溶接部への適用

これまでに、鋼製橋脚に対して正負交番繰返し載荷実験が行われており、橋脚基部のベースプレー ト溶接部、三角リブ溶接部から低サイクル疲労き裂が発生している.これらの既往の実験を対象に、 前項の材料、溶接継手レベルの低サイクル疲労試験から得た低サイクル疲労強度曲線を適用し、き裂 発生寿命を評価している²⁴⁾. 図9.2.8 に示すように、鋼製橋脚の解析モデルを作成し、き裂の発生起 点となる溶接止端では止端半径もモデル化されている.同様な解析により得られたき裂発生箇所のひ ずみ振幅と、前項で提案されている低サイクル疲労の強度曲線から推定されるき裂発生寿命の関係を 図9.2.9 に直線で示している.また、プロットは実験においてき裂が発生したときの繰返し数をプロ ットした場合の結果である.同図より、き裂発生寿命の推定結果は、実験においてき裂が発見された ときの繰返し数を精度よく推定できている.

図 9.2.8 鋼製橋脚の解析モデル

図 9.2.9 鋼製橋脚の解析モデル

(2) せん断パネルダンパー溶接部への適用

さらに、制振部材であるせん断パネルダンパーのスカラップから発生した低サイクル疲労き裂に対 して、材料、継手レベルの低サイクル疲労強度曲線を用いたき裂発生寿命の評価および、き裂の進展 量の評価が行われている.せん断パネルダンパーは、ウェブパネルに低降伏天点鋼を用いて製作され た部材であり、地震時に積極的に塑性変形することによりエネルギーを吸収する部材である.しかし、 大きな塑性変形が繰返し発生することから、既往の研究ではウェブパネル角部に設けたスカラップか ら低サイクル疲労き裂が発生、進展した.図9.2.10に示すように、鋼管集成橋脚およびそれらの間に 設置されたせん断パネルダンパーを解析でモデル化し、き裂発生箇所であるスカラップ回し溶接部の ひずみ振幅を求めた.ひずみ振幅と、前項の低サイクル疲労強度曲線から、き裂発生寿命を推定した. さらに本検討では、その後のき裂の進展についても検討を行っている.スカラップ回し溶接部に長さ 1mmの初期き裂を導入し、そのき裂先端を囲む経路の繰返しJ積分を求めることで、き裂の進展量を 推定し、実験結果との比較が行われている.その結果、実験において、長さ数ミリのき裂が発見され た繰り返し数において、き裂長の指定結果は2.4mmであり、おおよそき裂長を推定できている²⁵⁾.

これらのことから、材料、継手レベルで構築した低サイクル疲労き裂発生寿命に関する強度曲線お よびき裂進展則を部材レベルの低サイクル疲労の評価に適用できることが明らかになっている.

図 9.2.10 鋼製橋脚の解析モデル

図 9.2.10 鋼製橋脚の解析モデル

9.2.3 低サイクル疲労発生寿命の簡易推定

前項において、材料、継手レベルで構築した低サイクル疲労強度の評価方法を用いて、部材レベル の低サイクル疲労を評価できることを示した.一方で、実際の構造物において、溶接部の極めて局所 的な領域のひずみ振幅を求めるには多大な労力および計算コストを要するため、実務的でない.そこ で、溶接部の低サイクル疲労寿命を簡易に推定する方法が検討されている.具体的には、対象とする 部材の溶接部周辺における公称ひずみ振幅と溶接部における局部ひずみ振幅の関係をあらかじめ構築 しておく.さらに、図9.2.2で示した局部ひずみ振幅とき裂発生寿命の関係を用いることで、公称ひ ずみ振幅とき裂発生寿命の関係式を構築することができる.公称ひずみ振幅は、骨組解析等の比較的 容易な解析から求めることができるため、き裂発生寿命を容易に推定することが可能となる.

(1) 鋼製橋脚基部溶接部

これまでに、鋼製橋脚の寸法をパラメータとして、橋脚基部の有効破壊長領域における公称ひずみ 範囲と、基部溶接止端の局部ひずみ範囲の関係が検討されている²⁴⁾. 図 9.2.11 は幅厚比パラメータ および細長比パラメータを検討した結果であり、幅厚比パラメータに比べ幅厚比パラメータが支配的 であることが分かる.このことから、細長比パラメータ $\overline{\lambda}$ を用いて、公称ひずみ範囲 $\Delta \varepsilon_n$ と局部ひずみ 範囲 $\Delta \varepsilon_l$ の関係式として次式が提案されている.

$$\Delta \varepsilon_l = B \cdot \Delta \varepsilon_n^{0.859} \tag{9.2.1}$$

ここに,

$$B = \alpha \cdot \overline{\lambda}^{\beta} \tag{9.2.2}$$

姜日位置	止端半径	$B = \alpha \cdot \overline{\lambda}^{\beta}$	
省口匹區	(mm)	α	β
	0.2	6.71	-0.488
ベースプレート	0.5	3.79	-0.488
溶接部	1	2.88	-0.488
	2	2.04	-0.488
	0.2	7.91	-0.526
三角リブ	0.5	4.47	-0.526
溶接部	1	3.39	-0.526
	2	2.40	-0.526

(a) 幅厚比パラメータの影響(細長比一定) (b) 細長比パラメータの影響(幅厚比一定) 図 9.2.11 三角リブ溶接部止端の局部ひずみ範囲と公称ひずみ範囲の関係

さらに、材料レベルの低サイクル疲労強度曲線を用いることにより、公称ひずみ基準の低サイクル疲労強度曲線が次式の通り提案されている.

$$\Delta \varepsilon_n \cdot N^{0.684} = 0.235 \cdot \left(\alpha \cdot \overline{\lambda}^{\beta}\right)^{-1.16}$$
(9.2.3)

ここに, N: き裂発生寿命.

(2) せん断パネルダンパースカラップ回し溶接部

せん断パネルダンパーについて、せん断パネルダンパーの寸法をパラメータとし、せん断パネルの 全体的なせん断変形(平均せん断ひずみ範囲)とスカラップの回し溶接部の関係が検討することでき 裂発生寿命を簡易に推定する方法が検討されている.幅厚比パラメータおよび板厚を変化させて平均 せん断ひずみ範囲と局部ひずみ範囲の関係を検討した結果、板厚が支配的となることが明らかとなっ ているこのことから、板厚を変数とした、スカラップ回し溶接部の局部ひずみ範囲Δε_lと平均せん断ひ ずみ範囲Δγの関係式として、次式が提案されている.

$$\Delta \varepsilon_l = 1.4774 \cdot \left(\Delta \overline{\gamma} - 2 \overline{\gamma_y} \right)^{\beta} \tag{9.2.4}$$

ここに,

$$\beta = -0.004490 \cdot t_w + 0.6539 \tag{9.2.5}$$

$$\overline{\gamma}_{y} = \frac{1}{G} \cdot \frac{\sigma_{y}}{\sqrt{3}} \tag{9.2.6}$$

*t*_w :き裂発生寿命,

G : せん断弾性係数,

σ_v :降伏応力.

さらに、材料レベルの低サイクル疲労強度曲線を用いることにより、平均せん断ひずみ基準の低サイクル疲労強度曲線が次式の通り求められる.

$$1.4774 \cdot \left(\Delta \overline{\gamma} - 2\overline{\gamma_{\gamma}}\right)^{\beta} \cdot N^{0.587} = 0.261 \tag{9.2.7}$$

9.2.4 結言

これまでの研究から、材料、継手レベルで構築した疲労強度曲線、き裂進展則を部材中の溶接継手 に適用して、低サイクル疲労の評価が可能であることが分かった.また、あらかじめ、骨組解析等の 比較的簡易な解析から得られる公称ひずみ範囲と、き裂発生箇所のひずみ範囲の関係を構築しておく ことで、比較的容易に低サイクル疲労の発生寿命を推定できる.一方で、発生寿命によって部材の低 サイクル疲労寿命を決定すると過度に安全側の評価となる可能性がある.許容しうる限界のき裂長を 定め、その進展寿命を考慮した照査方法を確立することが今後の課題である.

参考文献

- 1) 土木学会: 2022 年制定鋼·合成構造標準示方書, 設計編, 2022.
- 2) 日本道路協会:道路橋示方書・同解説,Ⅱ鋼橋・鋼部材編,2017.
- 3) 日本建築学会:鋼構造接合部設計指針, 2021.
- 4) AASHTO: AASHTO LRFD Bridge Design Specifications, Ninth Edition, 2020.
- European Committee for Standardization (CEN): Eurocode 3: Design of Steel Structures Part 1-8: Design of Joints, EN1993-1-8, 2005.
- 6) 土木学会:高力ボルト摩擦接合継手設計・施工・維持管理指針(案), 2006.
- 7) 鉄道総合技術研究所編:鉄道構造物等設計標準・同解説,鋼・合成構造物編,2009.
- 8) 山口隆司,森猛,橋本国太郎:高力ボルト摩擦接合継手のすべり強度/降伏強度比とすべり係数に 関する検討,土木学会,構造工学論文集,Vol.51A,pp.1737-1748,2005.
- 9) 秋山寿行,西村宣男,亀井義典,池端文哉:高力ボルト摩擦接合引張継手の限界状態の区分,鋼構造年次論文報告集,日本鋼構造協会,第3巻,pp.289-296,1995.
- 10) 本州四国連絡橋公団:トラス格点部格点構造設計指針(案), 1976.
- 11) 山口隆司,吉田晋侑,橋本国太郎,杉浦邦征:高力ボルト摩擦接合された2面添接形式鋼トラス 橋ガセットプレートの終局挙動および有効幅算定法に関する2,3の考察,日本鋼構造協会,鋼 構造論文集,Vol.18, No.71, pp.27-42, 2011.
- 12) 久保全弘: 圧縮力を受ける高力ボルト摩擦継手のすべり挙動と耐力, 鋼構造論文集, 第 21 巻 84 号, pp.47-56, 2014.
- 13) 橋本国太郎: 圧縮力を受ける高力ボルト摩擦接合継手の限界状態に関する解析的検討,構造工学 論文集, Vol.66A, pp.475-485, 2020.
- 14) 土木学会:座屈設計ガイドライン改訂第2版[2005年改訂版],鋼構造シリーズ12,2005.
- 15) 久米健一, 吹田啓一郎:高力ボルト摩擦接合部の繰り返し載荷実験を反映した履歴モデルによる 検討,日本建築学会構造系論文集,76巻667号,pp1713-1720,2011.
- 16) 辻岡静雄:過大応力を受ける高力ボルト摩擦接合部の力学挙動,日本建築学会構造系論文集,518
 号,pp.103-109,1999.
- 17) 石原靖弘,小林剛,皆田理,西村宣男:地震被害を受けた高力ボルト摩擦接合継手の特性調査と 繰り返しすべり実験,土木学会論文集,745巻65号,pp.53-64,2003.
- 18) 山田忠信,野中哲也,馬越一也,吉山純平,鈴木森晶,嶋口儀之:既設上路式鋼アーチ橋のブレース材の終局強度およびガセットプレート補強方法に関する検討,構造工学論文集,Vol.68A, pp.69-81, 2022.
- 19) 篠原聖二,杉山裕樹,金治英貞,橋本国太郎,杉浦邦征:鋼管集成橋脚における実大せん断パネルの損傷過程と終局モードの実験的評価,土木学会論文集 A1, Vol.71, No.3, pp.402-415, 2015.
- 20) 土木学会鋼構造委員会,長周期・長時間地震動下における鋼構造物の力学挙動に関する調査研究 小委員会報告書,2017.
- 21) 舘石和雄, 判治剛: 画像計測を用いた試験システムによる突合わせ溶接継手の低サイクル疲労強度の検討, 土木学会論文集, No.752, I-66, pp.277-287, 2004.
- 22) 判治剛, 舘石和雄, 南邦明, 鬼頭和也:局部的なひずみを基準とした溶接継手の極低サイクル疲労強度評価, 土木学会論文集 A, Vol.62, No.1, pp.101-109, 2006.
- 23) 判治剛, 寺尾名央, 舘石和雄, 清水優: 繰返し大ひずみ下の鋼材の疲労き裂進展速度式と溶接継 手のき裂進展予測への適用, 鋼構造論文集, 第23巻, 第89号, pp.85-95, 2016.
- 24) 判治剛, 舘石和雄: 鋼製橋脚基部を対象とした低サイクル疲労強度曲線の提案, 鋼構造論文集,

第16巻, No.64号, pp.21-30, 2009.

25) 清水優, 舘石和雄, 判治剛, 杉山裕樹, 曽我恭匡, 足立陸, 野田拓史: 鋼管集成橋脚に設けられ たせん断パネルダンパー溶接部の低サイクル疲労評価手法, 鋼構造論文集, 第24巻, 第96号, pp.17-29, 2017.