最大支間長 143m を有する曲線トラス橋の耐震補強(高知自動車道 曽我部川橋)

Report on Seismic Retrofitting Work of curved truss bridge with a maximum span of 143 meter

宮定 龍司*, 宮田 弘和** Ryoji MIYASADA and Hirokazu MIYATA

ABSTRACT The Sogabe River Bridge is 3+4 Span continuous truss bridge with a maximum span of 143 meter. In this work, seismic retrofitting of this bridge was carried out. In the superstructure, replacement of existing steel bearing to seismic isolation bearing and reinforcement of truss members were performed. In the substructure, aramid fiber sheet reinforcement and concrete jacketing method were performed. This paper reports seismic retrofitting work of the Sogabe River Bridge.

KEYWORDS: 耐震補強, 支承取替

seismic retrofitting, replacement of bearing

1. はじめに

高速道路では、大規模地震の発生確率等を 踏まえ、落橋防止対策、路面の段差防止対策、 支承の補強や取替等を行う耐震補強対策が 進められている。その中でも、四国の8の字 ネットワークを構成する「命の道」の一部で ある高知自動車道においては、南海トラフ地 震への備えとして、平成31年から順次、耐 震補強工事を着手している。曽我部川橋(写真 -1)は、この高知自動車道の大豊IC~南国 IC間に位置し、橋長705m・最大支間143m、 橋梁の約6割がR=400mの曲線部を有する 鋼3+4径間連続トラス橋であり、設計反力 が最大で20,000kNを超える支承を有する特 殊橋梁である¹⁾。

写真-1 曽我部川橋 全景

本稿では,高知自動車道大豊 IC~南国 IC 間に位置する曽我部川橋(以下,本橋と略す)の耐震補 強設計及び工事のうち,耐震補強設計では既設橋の耐震性能照査,それを踏まえた支承取替工,主桁 断面補強工の設計・架設計画について述べる。また,耐震補強工事では,供用中のジャッキアップ作 業における安全対策や荷重,変位の管理要領について述べる。

*(株)横河ブリッジ 設計本部 大阪設計第二部設計課(〒592-8331 大阪府堺市西区築港新町2-3) **西日本高速道路(株) 技術環境部 構造技術課

(〒530-0003 大阪府大阪市北区堂島 1-6-20 堂島アバンザ 18 階)

2. 工事概要

 工事名:高知自動車道 大豊 IC~南国 IC 間耐震補強 I 工事
路線名:四国横断自動車道 阿南四万十線
工事箇所:高知県香美市土佐山田町
工期:平成31年1月30日~ 令和4年1月13日

本橋の耐震補強工事の概要を図-1に示す。工 事着手にあたり,動的解析による耐震性能照査を 実施し,耐震補強対策を決定した。上部工では, 全支点において,既設鋼製支承から免震支承への 支承取替(以下,支承取替工と略す),地震時に耐 力不足となる既設トラス部材への断面補強(以 下,主桁断面補強工と略す),桁端部A1,A2橋台 への制震ダンパーおよび緩衝ゴム装置の設置を 行った。下部工では,連続繊維シート巻立て工, RC巻立て工,アラミドロッド工を行った。平面 図を図-2に,断面図(代表としてP2橋脚)を図 -3に示す。主桁断面補強工については,図-1 に示した下弦材,斜材,垂直材の他に,下横構・ 下支材・対傾構に実施した。

耐震補強部材を既設部材に接合するにあたり,

図-3 断面図 (P2橋脚)

表-1 数量総括表

支承取替工 支承 免震支承(E) 基 3 支承取替工 支承補強材 (E) (E	工種			項目	単位	合計
東 支承取替工 ジャッキアップ補強材 t 24 支承取替工 支承補強材 近 第 第 支承取替工 支承補強材 下部エブラケット (P1~P3) t 6 小計 t 400 小影 t 400 小計 t 400 小計 t 400 小計 t 400 小計 1 400 小計 第材 5 約材 部材 5 約核 部材 3 重直材 部材 3 下支材 部材 1 小計(部材数) 1 1 小計(部材数) 1 1 「日本 ダンパー 2000kN±300mm 基			支承	免震支承(E)	基	36
東京取替工 支承報強材 鋼製台座 t 8 下部エブラケット (P1~P3) t 6 小計 t 40 単成 第4 第4 3 重直材 部材 3 重直材 部材 3 重直材 部材 3 「「「「「「」」」」」 第4 部材 3 「「「」」」」 「「」」」」 第4 3 「「」」」」 「「」」」」 第4 3 「「」」」 「」」」」 「」」」」 第4 1 「」」」」」 「」」」」 1 小計(電量) t 1 「」」」」 「」」」」」 1 1 「」」」」 「」」」」」 1 1 「」」」」 「」」」」」」 1 1 <		支承取替工		ジャッキアップ補強材	t	245
上部工 支承補強材 下部エブラケット (P1~P3) t 6 小計 t 400 小計 mbd 55 斜材 部材 33 垂直材 部材 33 垂直材 部材 33 手 新樹 33 手 新樹 33 手 新樹 33 手 新材 33 手 新材 33 「 市 34 1 小計(部材数) 38材 1 小計(電量) t 20 制震ダンパー設置 グロープレンゴム 第 1 小計(重量) t 20 1 「 グロープレンゴム 第 1 「 クロープレンゴム 第 1 「 クロープレンゴム 第 1 <td></td> <td>鋼製台座</td> <td>t</td> <td>89</td>				鋼製台座	t	89
上部 一 小計 t 40 小計 ボ村 5 第材 部材 5 約材 部材 3 垂直材 部材 2 方横構 部材 2 下枝構 部材 3 下支材 部材 1 小計(部材数) 1 1 「小計(部材数) 1 1 「計() 「 20 「 グロコノレンゴム 1 6 「 7 1 第 7 2			支承補強材	下部エブラケット (P1~P3)	t	66
上部工 下弦材 部材 5				小計	t	400
上部 工 主析断面補強工 綿材 部材 3 垂直材 部材 3 垂市 第前面補強工 補強部材 一 対傾構 部材 2 下横構 部材 33 下支材 部材 3 下支材 部材 1 小計(部材数) 部材 1 小計(部材数) 部材 1 小計(部材数) 部材 1 小計(部材数) 部材 17 小計(部材数) 1 1 小計(部材数) 部材 17 小計(部材数) 1 1 小計(部材数) 部材 17 小計(部材数) 1 1 小計(部材数) 部材 17 1 1 1 小計(部材数) 第 1 1 1 1 1 「計(部力 グリー 200kN±300mm 基 1 1 「「「「「」」」」 グロープレンゴム 箇所 1 1 1 「「」」 第 327 1 1 1 「「」」」」 第 1 1 1<		主桁断面補強工		下弦材	部材	59
上部 エ 垂桁断面補強工 垂直材 部材 2 抽強部材 対傾構 部材 2 下機構 部材 3 下支材 部材 1 小計(部材数) 部材 1 小計(部材数) 部材 17 小計(部材数) 14 1 小計(部材数) 14 1 小計(部材数) 14 1 小計(部力 1 1 小計(部力 1 1 小計(部力 1 1 小計(部力 1 1 小計(電量) t 20 「方 グリーー 2000kN±300mm 基 「方 グロープレンゴム 1 1 「方 「日 本 3827 「 「 アンウリート 本 4986 取込数法 1 1				斜材	部材	31
上部 エ 主析断面補強工 補強部材 対傾構 部材 2 下模構 部材 3 下支材 部材 1 小市(部材数) 部材 17 小市(部材数) 17 小市(部材数) 部材 17 小市(部材数) 17 小市(部材数) 部材 17 小市(部力数) 17 小市(重量) t 20 1 小市(重量) t 20 1 検索グンパー設置 ダンパー 2000kN±300mm 基 1 「商加工品力式込置 クロロプレンゴム 1 6 1 「市施工高力ボルト TCB, HTB 本 327 「市施工高力ボルト TCB, HTB 本 4986 既設赦去 既設支承等 t 25 アクリート RC参立て m³ 40 中詰めコンクリート m³ 37 連続繊維シート巻立て工 235g/m² m² 246 525g/m² m² 111 700g/m² m² 74 830g/m² m² 622				垂直材	部材	6
部工 下横構 部材 3 下支材 部材 1 小計(部材数) 部材 1 小計(電量) t 20 制震ダンパー設置 ダンパー 2000kN±300mm 基 1 横面ゴム設置 クロロプレンゴム 6 6 緩衝ゴム設置 クロロプレンゴム 6 7 「市施工高力ボルト 72.947ドボルト 本 4986 既設放去 12.923 1 20 「計画施工高力ボルト 72.947ドボルト 4 4986 丁ンクリート RC巻立て m³ 40 中詰めコンクリート m³ 37 連続繊維シート巻立てエ 235g/m² m² 246 525g/m² m² 111 700g/m² m² 74 830g/m² m² 622 アラミドロッドエ 6-7.4 φ L=5.2m 本 4	上			対傾構	部材	29
下支材 部材 1 小計(部材数) 部材 17 小計(部材数) 14 20 制震ダンパー設置 ダンパー 2000kN±300mm 基 1 爆衝ゴム設置 クロロプレンゴム 6 6 緩衝ゴム設置 クロロプレンゴム 6 6 緩衝ゴム設置 クロロプレンゴム 6 7 「市施工高力ボルト アンサイドボルト 本 4986 既設抜去 既設支承等 t 25 アンクリート パート RC巻立て m³ 40 中詰めコンクリート m³ 37 235g/m² m² 246 支25g/m² m² 235g/m² m² 246 支25g/m² m² 111 700g/m² m² 74 830g/m² m² 622 74 830g/m² m² 622 アラミドロッドエ 6-7.4 0 L=	部工		作用う虫ロドイク	下横構	部材	31
小計(部材数) 部材 17 小計(重量) t 200 制震ダンパー設置 ダンパー 2000kN±300mm 基 1 樹震ダンパー設置 ダンパー 2000kN±300mm 基 1 横震ゴム設置 クロロプレンゴム 1 6 緩衝ゴム設置 クロロプレンゴム 1 6 高力ボルト TCB, HTB 本 3827 片面施工高力ボルト ワンサイドボルト 本 4986 既設撤去 既設支承等 t 25 調力クリート RC巻立て m³ 307 車続繊維シート巻立て工 235g/m² m² 246 525g/m² m² 111 700g/m² m² 74 830g/m² m² 622 アラミドロッドエ 6-7.4 φ L=5.2m 本 4	-			下支材	部材	19
小計(重量) t 200 制震ダンパー設置 ダンパー 2000kN±300mm 基 1 潮震ダンパー設置 ダンパー 2000kN±300mm 基 1 爆衝ゴム設置 クロロプレンゴム 1 6 緩衝ゴム設置 クロロプレンゴム 1 6 高力ボルト TCB, HTB 本 3827 片面施エ高力ボルト ワンサイドボルト 本 4986 既設撤去 既設支承等 t 25 アンクリート RC巻立て m³ 40 中詰めコンクリート m³ 37 遅続繊維シート巻立てエ 235g/m² m² 246 525g/m² m² 111 700g/m² m² 74 830g/m² m² 622 アラミドロッドエ 6-7.4 φ L=5.2m 本 4				小計(部材数)	部材	175
構震ダンパー設置 ダンパー 2000kN±300mm 基 1 ダンパー補強材 t 6 緩衝ゴム設置 クロコプレンゴム 箇所 高力ボルト TCB, HTB 本 3827 片面施工高力ボルト TCB, HTB 本 4986 既設撤去 ワンサイドボルト 本 4986 取設撤去 既設支承等 t 25 コンクリート RC巻立て m³ 40 中詰めコンクリート m³ 37 連続繊維シート巻立てエ 235g/m² m² 246 525g/m² m² 111 700g/m² m² 74 830g/m² m² 622 アラミドロッドエ 6-7.4 φ L=5.2m 本 4				小計(重量)	t	204
image > ブパー設置 ダンパー補強材 t 6 緩衝ゴム設置 クロロプレンゴム 箇所 高力ボルト TCB, HTB 本 3827 片面施工高力ボルト アンサイドボルト 本 4986 取設撤去 のンサイドボルト 本 4986 取設撤去 取設支承等 t 255 コンクリート RC巻立て m³ 40 中詰めコンクリート m³ 37 235g/m² m² 246 F m 直続繊維シートを立てエ 235g/m² m² 111 700g/m² m² 74 アラミドロッドエ アラミドロッドエ アラミドロッドエ <		判霊が、パニ凯罢	ダンパー	2000kN±300mm	基	16
緩衝ゴム設置 クロロプレンゴム 箇所 高力ボルト TCB, HTB 本 3827 片面施工高力ボルト ワンサイドボルト 本 4986 既設撤去 ワンサイドボルト 本 4986 取扱撤去 既設支承等 t 25 コンクリート RC巻立て m ³ 40 車詰めコンクリート m ³ 37 連続繊維シート巻ェーエ 235g/m ² m ² 246 525g/m ² m ² 111 700g/m ² m ² 74 830g/m ² m ² 622 アラミドロッドエ 6-7.4 φ L=5.2m 本 4		利辰ダンハー設直	ダンパー補強材		t	63
高力ボルト TCB, HTB 本 3827 片面施工高力ボルト ワンサイドボルト 本 4986 既設撤去 既設支承等 t 25 コンクリート RC巻立て m ³ 40 中詰めコンクリート m ³ 37 連続繊維シート巻立て工 235g/m ² m ² 246 525g/m ² m ² 111 700g/m ² m ² 74 830g/m ² m ² 622 アラミドロッド工 6-7.4 φ L=5.2m 本 4		緩衝ゴム設置	クロロプレンゴム		箇所	8
片面施工高力ボルト ワンサイドボルト 本 4986 既設撤去 既設支承等 t 25 コンクリート RC巻立て m³ 40 中詰めコンクリート m³ 37 連続繊維シート巻立て工 235g/m² m² 246 525g/m² m² 111 700g/m² m² 74 830g/m² m² 622 アラミドロッド工 6-7.4 φ L=5.2m 本 4		高力ボルト		ТСВ, НТВ	本	38274
既設撤去 既設支承等 t 25 コンクリート RC巻立て m³ 40 中詰めコンクリート m³ 37 235g/m² m² 246 525g/m² m² 111 700g/m² m² 74 830g/m² m² 622 アラミドロッドエ 6-7.4 φ L=5.2m 本 4		片面施工高力ボルト		ワンサイドボルト	本	49860
コンクリート RC巻立て m³ 40 中詰めコンクリート m³ 37 運続繊維シート巻立てエ 235g/m² m² 246 525g/m² m² 111 700g/m² m² 74 830g/m² m² 622 アラミドロッドエ 6-7.4 φ L=5.2m 本 4		既設撤去		既設支承 等	t	253
中詰めコンクリート m³ 37 下 部 工 連続繊維シート巻立てエ 235g/m² m² 246 525g/m² m² 111 700g/m² m² 74 830g/m² m² 622 アラミドロッドエ 6-7.4 φ L=5.2m 本 4		コンクリート		RC巻立て	m³	402
下部工 235g/m ² m ² 246 525g/m ² m ² 111 700g/m ² m ² 74 830g/m ² m ² 622 アラミドロッドエ 6-7.4 \$\phi\$ \$\screwtherd{L}=5.2m\$ 本 4	下部工			中詰めコンクリート	m ³	376
部工 連続繊維シート巻立てエ 525g/m ² m ² 111 700g/m ² m ² 74 830g/m ² m ² 622 アラミドロッドエ 6-7.4 \$\phi\$ \$\L=5.2m\$ 本 4				235g/m ²	m²	2464
エ アラミドロッドエ 6-7.4 φ L=5.2m 本 4		演編繊維シ━−ト巻立	7T	525g/m ²	m²	1116
830g/m ² m ² 622 アラミドロッドエ 6-7.4 φ L=5.2m 本 4		足が咳嗽ノークエ		700g/m ²	m²	747
アラミドロッドエ 6-7.4 <i>φ</i> L=5.2m 本 4				830g/m ²	m²	6228
		アラミドロッドエ		6−7.4¢ L=5.2m	本	48
付 _{検査路改良工} 新設 t 2	付属物	桳杳路改良工		新設	t	28
				撤去	t	4
12 排水装置改良工	170J 工	排水装置改良工		<u> </u>	m	269

トルシア形高力ボルト,もしくはワンサイドボルトを用いて接合した。また,既設の付属物工(上下部 排水装置,検査路)と耐震補強部材が干渉する箇所については,付属物の改良工を行った。

本工事における施工数量を表-1に示す。支承取替工における支承補強材の鋼重については,ジャ ッキアップ補強材,鋼製台座,下部工ブラケットの鋼重を合算したものである。それぞれの構造概要 については,次章の耐震補強設計にて後述する。

3. 耐震補強設計について

3.1 動的解析

3.1.1 概要

本橋は、A1橋台から P4橋脚付近までの 450m の区間(全体の約6割)が R=400m の曲線部となってお りまた、急峻な谷に位置することから、橋脚高さが 14m~70m と不揃いであった。そのため、特異な地 震時挙動を示す可能性が高いため、図-4に示すような上下線、下部工を一体とした三次元立体骨組 モデルを用いた動的解析にて耐震性能照査を行った。動的解析における解析条件を表-2に示す。上 部工は、鋼部材の塑性化を考慮しないことから、材料線形はり要素としてモデル化している。なお、 耐震性能照査にあたっては、建設時は昭和 55 年道路橋示方書(以下,道示と略す)が適用されていた が、本設計では平成 24 年道示を適用した。

耐震性能照査のフローを図-5に示す。はじめ に,建設時の支承条件での耐震性能照査結果では, 特に固定沓であるA1,A2橋台近傍の上部工部材・ 下部工の応力超過があったことから,既設鋼製支 承から免震支承への支承取替により荷重分散を行 うこととした。次に,支承取替により地震時変位 が大きくなったことから,桁端部に制震ダンパー を設置して変位制御を行うこととした。このよう に耐震デバイスを決定したのち,動的解析を実施 し,上部工,下部工補強の耐震性能照査を繰り返 し行った。

3.1.2 上部工の耐震性能照査

上部工の耐震性能評価は、動的解析により得ら れた最大応答値を安全率1.7にて割戻し、道示 II 「4.3軸方向力と曲げモーメントを受ける部材」 に基づく照査²⁾を行った。ここで、最大応答値に ついては、同時性(①軸力、②面内曲げ、③面外曲 げ、④面内せん断、⑤面外せん断が最大、最小と なる全10ケース)を考慮したものとした。レベル

図-4 3次元立体骨組モデル

表-2 動的解析 解析条件

解析方法		時刻歴応答解析			
固有值解析		サブスペース法			
積分手法		Newmark β 法(β =0.25)			
減衰の評価方法	法	Rayleigh 減衰			
積分時間間隔		0.001sec			
収束計算		行わない			
不釣り合い力の	り処理	次のステップに持ち越す			
要素条件	上部工	線形はり要素			
	RC床板	線形はり要素			
橋脚 免震支承 粘性ダンパー		非線形はり要素			
		非線形バネ要素			
		非線形バネ要素			
	緩衝材	非線形バネ要素			
	基礎	非線形バネ要素			

図-5 耐震性能照査フロー

2 地震動の橋軸方向加振時の A1~P3 間の応力超過分布を図-6 に示す。図中の赤系着色部材は許容応 力度を超過した部材であり、固定端である橋台部、支間中央部に応力超過箇所が生じていることが分 かる。照査結果の傾向としては、建設年次の古い下り線の方が応力超過部材の数が多くなっているこ とが分かる。

応力照査にて許容応力度を超過した部材について,主桁断面補強を行った。主桁断面補強部材については,断面剛 性の増加を目的とする部材と,パラメータ改善(局部座屈に対する許容応力度を大きくする)を目的とする部材で考え方を分類している。

図-7は断面剛性の増加を目的とした補強 部材の例である。補強部材はベースプレート にリブプレートを溶接したT型部材とし,補 強部材と既設部材とをワンサイドボルトにて 接合する構造とした。なお,補強部材の有効断 面として考慮しているのは,リブプレートの みであり,ベースプレートは考慮していない。 これは,部材を連続化させるにあたり,既設部 材の添接板を跨ぐ位置について,リブプレー ト同士を図-8に示すようなバイパス材にて 連続しているが,ベースプレートについては, 既設添接板の他に,既設の板継位置で連続し ていないためである。

図-9については、パラメータ改善を目的 とした補強部材の例である。下支材・下横構部 材は、ウェブの板厚が小さく、局部座屈に対す る許容応力が小さくなっていた。ここに、L型 の補強部材を設置することで、局部座屈に対 する許容応力度を大きくした。補強部材はパ ラメータ改善を目的とした補剛材としての扱 いとしており、解析上有効断面には見込んで いない。

図-6 橋軸方向加震時の応力超過分布

図-7 補強部材(下弦材)

3.1.3 下部エの耐震性能照査

下部工では,最大応答曲率の照査,せん断耐力の照査,鉄筋段落とし部曲げ耐力の照査を行い,耐 震補強対策を決定した。照査結果を受けて,図-1で示したように,橋脚高の低い P3, P6 橋脚では RC 巻立て工法,その他の脚高の高い橋脚では連続繊維シート巻立て工法による補強を行うこととした。

P1 橋脚では、照査結果にて橋脚基部の最大応答曲率が超過したことから、じん性の向上を目的とし た補強工法を検討することとなった。その際、P1 橋脚にて適用可能な鋼板巻立て工法とアラミドロッ ド工法(以下,AWS 工法と略す)を比較し、発錆せず高強度であり維持管理性や経済性で優位となるAWS 工法を採用した。AWS 工法は図-10 に示す補強概要図の通り、壁式橋脚の中間拘束材として PC 鋼棒 に代わりアラミド FRP ロッドを用い、壁厚方向にプレストレスを与えることにより軸方向鉄筋のはら み出しを防止し、内部コンクリートの拘束効果を高めて、じん性の向上を図るものである。また、設 計においては文献 3)に基づき、有効プレストレスを中間拘束筋断面積の増加として評価した。

図-10 AWS 工法 (P1 橋脚)

3.2 支承取替工

支承取替にあたり,橋体の荷重をジャッキに受け替えるために,ジャッキ設置位置の上部工側には ジャッキアップ補強部材,下部工側には下部工ブラケットを設置し,既設部材の補強・改良を行った。 また,取替えた支承部には,主構から免震支承への反力伝達を確実に行うために,主構と支承の間に 鋼製台座を設置した。支承取替工の要領図(代表として P2 橋脚)を図-11 に示す。本項では,この支承 取替工おける各構造の設計検討項目や,部材の実測反映要領,部材の取込設備等について述べる。

図-11 支承取替工 要領図

3.2.1 ジャッキアップ補強

ジャッキアップを行うにあたり,適切なジ ャッキアップ補強方法の選定及びジャッキア ップ作業の安全性確保が求められた。本橋で は、ジャッキアップ補強方法として、拡幅ガセ ット方式と追加部材方式を適用した。表-3 にジャッキアップ補強方法の比較表を示す。 例えば中間支点 P2橋脚では、拡幅ガセット方 式を採用した場合、ガセットとジャッキ受け 点の離隔が大きく、拡幅ガセットが大きくな ることで、接続する斜材に常時荷重による二 次応力が発生する。そのため、拡幅ガセット方 式を適用が困難であると考え、追加部材方式 を採用することとした。

追加部材方式では,追加部材を設置する斜 材の剛性が低いことで,ジャッキアップ時の 応力・変形が大きくなる懸念があった。そのた め FEM 解析を実施し,死荷重+活荷重のケー ス(最大反力時)で許容応力が超過しないかの 確認を行った。図-12 に最大反力時における 応力コンター図(von mises)を示す。また,ジ ャッキアップ時の変形量についても把握を行 い,後述するジャッキアップ時の施工にも反 映した。

3.2.2 鋼製台座

支承部の概要図を図-13 に示す。既設支承 から免震支承への支承取替により,幅970mmの 下弦材から幅 2670mm の免震支承に,高さ 350mm 程度の鋼製台座で 20,000kN の反力を円 滑に伝達させる必要があった。これに対して, 鋼製台座の支圧のみでは反力伝達が不十分の ため,下弦材ウェブに設けた補強ブラケット のせん断により,鋼製台座に反力を伝達でき る構造に改良した。

3.2.3 下部エブラケット

P2 橋脚では、支承取替時の作業スペースを 確保するために、橋脚前面に下部エブラケッ トを設置し、支承から離れた位置でジャッキ アップを行う計画とした。ジャッキアップ荷 重が大きいため、下部エブラケットのアンカ ーボルト本数については、ブラケット1箇所 あたり最大で110本となった。

表-3 ジャッキアップ補強方法

	拡幅ガセット方式	追加部材方式
特徵	既設ガセットを補強・拡幅するこ とで格点部でのジャッキアップ を実現する。	部材を追加し, 格点部以外での ジャッキアップを実現する。
長所	コンパクトであり、ガセットに接 続される部材の応力状態が変 化しない。	支点から離れた位置でのジャッ キアップが可能になり、支承取 替時の作業スペースを確保でき る。
短所	補強によりガセットが大きくなる と、接続される部材に二次応力 が作用する。ガセットをあまり大 きくすることができず、支承取替 時の作業スペースが制約され る。	追加部材により既設部材の応 力性状が変化する。トラス部材 は剛性が低いことから、ジャッ キアップ時の変形が大きくなる ため、変形量に留意したジャッ キアップ計画が必要となる。
本工事 適用	端支点 : 一 中間支点 : P4~P6	端支点:A1, P3, A2 中間支点:P1, P2

図-12 応力コンター図(von mises)

3.2.4 部材の実測反映要領

(1) ジャッキアップ補強

既設トラス橋は,主構高が11mと大きく,特に P1,P2支点部は変断面のため主構高さが橋軸方向 に変化する構造であった。また,曲線トラスのた め,弦材は平面的に格点で折れ曲がった複雑な構 造となっていた。そのため,如何に既設トラス橋 の形状を正確に実測し,それを補強部材の製作に 精度良く反映させるかが課題となった。そこで, 支承取替の部材取付けを精度よく行うため,3次 元レーザースキャナー(以下3DLSと略す)により, 既設桁の形状を計測した。3DLSにより得られた支 点部の点群データを図-14に示す。ジャッキアッ プ補強については,全支点にて点群データを得た 後,設計図との誤差量を確認したうえで,部材の 製作,施工に反映した。

(2) 鋼製台座

鋼製台座との接触面となる下弦材下面とガセ ットには、曲線トラスのため図面に表記のない縦 横断勾配や折れ線により、3次元的なねじれが生 じていたことから、如何にその形状を把握し、鋼 製台座を精度よく密着させるかが課題となった。 そこで、鋼製台座との接触面となる下弦材下面と ガセットについて、ジャッキアップ補強と同様 に、3DLSによる計測を行い、ねじれを含めた平面 形状を把握した。さらに、図-15 に示すように、 鋼製台座の3次元モデルと既設桁3次元モデル を重ね合わせ、部材どうしの密着性をモデル上で 確認したうえで製作、施工を行った。

(3) 下部エブラケット

アンカーボルト位置を精度よく下部エブラケ ットに反映するにあたり、アンカーボルト位置の 実測にはデジタルカメラによる3次元計測がで きる VFORM (NETIS 登録番号:KT-140108-VE)を用い ることとした。VFORM とは、写真-2に示すよう に、下部工に施工済みのアンカーボルトの先端に ターゲットを貼り付けて撮影することで、図-16 に示すアンカーボルト位置のCAD 図面を自動生成 できるシステムである。これにより、実測作業を 効率化でき、かつアンカーボルト位置の実測反映 を精度よく行うことができた。

図-14 3DLS による点群データ

図-15 3次元モデルによる取り合い確認

図-16 VFORM による CAD データ出力

3.2.5 部材取込み設備

支承や補強部材の取込みや、撤去した既設支承の荷上げは、橋面上から実施した。部材取込み設備 図を図-17に示す。部材取込みは、供用中に行うことから、車線規制を実施した。その際、車両通行 方向が下り勾配 3.4%となっており、車両速度が出やすい下り線側の規制を行うと、上り勾配となる上 り線と比べて、車両事故のリスクが高くなる。また、下り線の直前にはトンネルがあるため、規制延 長が長くなることから、規制は極力上り線側で行い、部材取込みを行うように計画した。

上り線から部材を橋脚上に取込み、下り線へ部材移動させる方法を検討するにあたり、特に支承の 重量が最大で10tを超えることから、吊り替えによる部材移動が困難だった。そのため、橋脚の前面 に支持ブラケットを設置し、ブラケット上に軌条足場を配置した上で、上り線より取込んだ部材を下 り線の所定の位置まで軌条足場上の台車設備で移動させた(写真-3)。台車設備を使用することで、 重量物の部材を安全かつ効率よく移動させることができた。

図-17 部材取込み設備図

3.3 付属物工

付属物の復旧にあたっては、主部材の耐久性や維 持管理性を考慮した。中間支点の排水装置系統図を 図-18に示す。既設の排水系統では、排水管が支承 周りを通る系統となっており、漏水が排水管を伝っ て既設支承を腐食させている状況だった。そのため, 支承取替作業のため撤去していた排水管を復旧する 際には、支承等の重要部材からなるべく離れた位置 に排水管を移設することとした。また、排水装置の 支持金具について,一般的には主構に削孔して普通 ボルトによる接合となるが、トラス桁の場合は片面 施工可能なワンサイドボルトによる接合となる。今 後,支持金具の取替が必要となった際に,ワンサイ ドボルトを使用していると、ボルトの撤去ができな い等により、取替が困難となる。そこで、図-19に 示すような支持金具が主構を囲む形状のブラケット 構造を検討し, 主構への削孔およびワンサイドボル トの使用を回避した。

また、本工事で設置した、下部工ブラケットのア ンカーボルトの状態や、免震支承のゴムの変状につ いて、今後にわたり点検できる経路を計画し、検査 路の設置を行った。

写真-3 支承取込み要領

4. 耐震補強工事について

本項では、支承取替によるジャッキアップ計画および施工結果について概説する。

4.1 支承取替中の安全対策について

支承取替は,一般交通を供用しながら橋体をジャッキアップする必要があったが,フレキシブルな ハイピアに支持された上路曲線トラス構造のため,支承取替が確実かつ安全に行えるように下記を考 慮した。

(1) 上部工の安定性の確保

新設支承はペデスタルフレームに現場溶接とするため、ジャッキアップ中は水平力に抵抗できない 状況となる。また、上部工は、A1・A2橋台の固定支承以外はフレキシブルなハイピアに支持された構 造である。そのため、ジャッキアップ中は上部工と橋脚の相対変位が生じやすく、支承の取替順序に よっては、上部工が橋軸方向に固定されていない不安定な状態となるリスクがあった。

そこで、上部工の安全性を確保するため、橋梁単位での支承取替順序は下記のとおりとした。

(A1-P3 橋梁) P2→P3※→P1→A1

(P3-A2 橋梁) P3※→P5→P4→P6→A2

※P3 支点部では2橋梁同時施工とした。

まず、ジャッキアップ時に上部工に作用する水平力をなるべく均等に橋脚に負担させるため、隣り 合う橋脚どうしがジャッキアップ状態とならないような取替順序とした。また、1橋梁単位で支承取 替順序を考えた際に、必ずどこかの支点で上部工が橋軸方向に固定されている状態とするため、A1-P3 橋梁および P3-A2 橋梁ともに A1・A2 橋台部(固定支承)の支承取替を最後に行うこととした。さら に、2橋梁の掛け違い部となる P3 支点部については、2橋梁同時施工として供用中である橋面の段差 が生じないよう配慮した。

(2) 1支承線内での水平力の確保

1 支承線あたり(計4支承)の支承取替は,概ね 2 カ月の期間を有することから,その期間中に作 用すると考えられる水平力に対して,安全性を確 [ステップ1] 保する必要があった。ここで,支承取替中に確保 する水平力としては,「鋼道路橋施工便覧(道路協 会)」や「鋼構造架設設計施工指針(土木学会)」 [ステップ3] および同種工事の実績を参考に,L1 地震動の 1/2 とした。

1支承線単位の施工ステップを図-20に示す。 各施工ステップで安全性に配慮した事項は下記 のとおりである。

【ステップ1(7)】ジャッキアップ(ダウン)は 両主構を同時に行い,橋体のねじれなどの影響を 最小限に抑えた。

ステップ 2~6】既設支承の撤去や新設支承の 設置は片主構ずつ行い,取替対象と反対側の支承 で支承取替中に考慮する水平力(L1 地震動の 1/2)を確保した。先行して取替を行う新設支承 は,上記水平力を考慮した仮固定(溶接)を行って から,反対側の既設支承を撤去した。上記のよう な施工ステップとすることで,支承取替中の水平 力に対する安全性を確保した。

図-20 支承取替 施工ステップ

4.2 ジャッキアップ設備

まず,ジャッキアップの要領図(代表として P2 橋脚)を図-21 に,ジャッキアップ反力表を表-4 に示す。G1 桁と G2 桁の支承反力に2倍程度の差があることから,各支承部での荷重状態を調整する ために,ジャッキの油圧系統を支承毎に分割した。また,ジャッキにおいて反力異常が発生すると, 許容値以上の応力が桁本体や下部工に発生するリスクがあることから,ジャッキ本体,上部工耐力, 下部工耐力を比較し,荷重限界値を設定した。

図-21 ジャッキアップ要領図

4.3 ジャッキアップ管理

ジャッキアップ作業フローを図-22 に示す。支 承反力が支承からジャッキへ移行する(以下,支承 の反力切りと略す)までは、ジャッキ荷重が荷重限 界値を超過しないこと、および各部材における異 常の有無を段階的に確認しながらジャッキを操作 する計画とした。支承の反力切り後は、支承部と 主構の隙間が目標値 3mm 確保できるまで、変位制 御に切り替えてジャッキ操作を行った。

表-5には、実際のジャッキアップ反力の計測 結果を示す。まず反力の小さいG2桁の支承部にお いて、死荷重反力の80%相当を加圧した時点で支 承の反力切りが生じた。次に、G2桁の支承部の荷

重状態を維持したまま, G1 桁の支 承部の加圧を続けた結果, G2 桁と 同様に死荷重反力の 80%相当の加 圧時に支承の反力切りが生じた。支 承の反力切り後は,変位制御に切り 替えて所要の隙間を確保し,ジャッ キアップ作業を終了した。

参考として,上下線のP2支点に おける実施工程を表-6に示す。な お,ジャッキアップ点と支承中心位 置が離れているため鉛直変位には 差が生じることから,支承中心位置 での鉛直変位を得るために必要と なるジャッキアップ量を FEM 解析 により算出した。FEM 解析値が G2 桁 5.9mm, G1 桁 7.9mm に対し,実測値

表-4 ジャッキアップ反力表

項目		番号等	単位	G2桁(外側)	G1桁(内側)	
死荷重	1	D	kN	8,520	15,998	
活荷重	2	L	kN	2,584	2,980	
不均等荷重	3	(D+L)x0.1	kN	1,110	1,898	
設計反力	4	1+2+3	kN	12,214	20,876	
ジャッキ台数	5	支承1基当り	台	4	4	
ジャッキ反力	6	4/5	kN/台	3,054	5,219	
使用ジャッキ能力	\overline{O}		kN/台	5,000	7,500	
ジャッキ耐力	8	5x7	kN	20,000	30,000	
上部工降伏耐力	9	FEM解析より	kN	16,372	31,748	
下部エブラケット耐力	10	アンカーせん断	kN	16,000	22,076	
荷重限界値	11	min(891)	kN	16,000	22,076	

図-22 ジャッキアップ作業フロー

表-5 ジャッキアップ反力計測結

	G2桁(外側)		G1桁(内側)			
作業状況	荷重	隙間	荷重	隙間	支承部の状態	
	(kN)	(mm)	(kN)	(mm)		
死荷重(G2桁側) 50%相当の加圧時	4,172	0	4,196	0		
死荷重(G2桁側) 80%相当の加圧時	6,661	0.9	<mark>6</mark> ,698	0	G2側支承の反力切り	
死荷重(G2桁側)100%相当の加圧時	6,725	1.0	<mark>8,</mark> 005	0		
死荷重(G1桁側) 80%相当の加圧時	6,725	1.1	12,865	0.5	G1側支承の反力切り	
ジャッキアップ(隙間3mm確保)完了時	8,344	4.8	15,959	6.6		
(参考)除荷後のジャッキロック完了時	(0)	4.6	(0)	6.1	なじみの0.5mm程度	

表-6 ジャッキアップ工程

ジャッキアップ準備には既設部材の補強・改良は含まなし

が G2 桁 9.3mm, G1 桁 11.0mm と大きくなったが,傾向は概ね一致することが確認できた。また,本工事では,写真-4に示すようなポータブルモニター機器を用いて,ジャッキの荷重値と計測変位の一元管理を行う仕組みを構築することで,作業指揮者とジャッキ操作者等の間で密に連携が図ることができ,着実な施工に繋がった。

5. おわりに

本工事は,特に支承取替工における設計から実測 反映,製作,部材搬入,ジャッキアップ作業までの 一連の設計・計画・施工検討に注力した。また,ジ

による計測管理

ャッキアップ作業は車両を供用しながら行うにあたり,ジャッキアップ時の部材の変位や応力につい てモニタリングを行い,ジャッキアップが確実かつ安全に行えるように配慮した。

支承取替 36 基を含む難易度の高い工事だったが,無事故無災害で工事を終えることができた。今後,本工事のような特徴を持つ耐震補強工事の一助となれば幸いである。

最後に、本工事に多大なるご指導を頂きました、西日本高速道路株式会社の皆様方に厚くお礼申し 上げます。

参考文献

- 1) 宮田・伊藤・後藤・藤島・宮定:高知自動車道 曽我部川橋耐震補強工事の設計と施工,橋梁と 基礎, Vol. 56, pp. 39-44, 2022.6
- 2) 日本道路協会:道路橋示方書·同解説, I共通編·Ⅱ鋼橋編,丸善株式会社,平成24年3月
- 3) 日本道路公団東京第一建設局:プレストレスを導入した壁式橋脚耐震補強工の設計・施工事例 (案),1998年3月