論文

コンクリート床版を有する弾性合成桁の頭付きスタッドの

バネ定数に関する実験研究

大垣賀津雄*, PHAM NGOC VINH**, 平木航介***, 今川雄亮****, 石川敏之*****, 大久保宣人******

*工博,ものつくり大学教授 技能工芸学部建設学科(〒361-0038 埼玉県行田市前谷 333 番地)
**工博,ものつくり大学特任講師 技能工芸学部建設学科(〒361-0038 埼玉県行田市前谷 333 番地)
**** ものつくり大学 技能工芸学部建設学科(〒361-0038 埼玉県行田市前谷 333 番地)
*****工博,大阪工業大学准教授 工学部都市デザイン工学科(〒535-8585 大阪市旭区大宮 5-16-1)
*****工博,関西大学教授 環境都市工学部都市システム工学科(〒564-8680 大阪府吹田市山手町 3-3-35)
*******工博,高田機工株式会社 技術本部(〒556-0011 大阪市浪速区難波中 2-10-70)

コンクリート床版を有する鋼橋の設計には合成桁と非合成桁の設計法があ る.一方で古くから弾性合成桁設計法が研究されているものの実用化には至 っていない.床版と鋼桁間に配置される頭付きスタッドについて,その軸径 と軸方向間隔をパラメータとした大型の押抜き試験を実施し,ずれ止めのバ ネ定数(フレキシビリティ定数)を求めた.今後,合成効果を無視した非合成 桁として設計している橋梁を,適切に合成効果を考慮した弾性合成桁設計法 に見直すため,頭付きスタッドの合成度合いを設定するために資するもので ある.

キーワード: 合成桁, 弾性合成, ずれ止め, 頭付きスタッド, 押抜き試験

1. はじめに

1.1 弾性合成桁設計法

1960~1970年代にかけて,各種連続合成桁が開発され 建設された^{1),2)}.しかしながら,1980年代にはRC床版の 劣化損傷事例が顕在化したことを受けて,コンクリート 床版の取替えを念頭に入れるため非合成桁が主流となっ てきている²⁾.一方で,非合成桁として設計している橋 梁においてもスラブアンカー等でコンクリート床版と結 合されており,適切に合成効果を評価する必要があり³⁾, 不完全合成桁として設計すべきである⁴⁾¹⁰⁾.不完全合成 桁という言葉から受けるイメージがよくないので,ここ では弾性合成桁と呼ぶことにする^{1),2),4),9)}.これまで弾性 合成桁は各種研究が行われているが^{4),10)},設計に採用さ れるに至っていない.この理由として,計算方法が煩雑 であることと,ずれ止めのバネ定数の評価が困難なこと などが挙げられる.

1.2 弾性合成桁設計法開発の意義

上述した事項を踏まえ,鋼桁とコンクリート床版の合 成度合いを実挙動に近い弾性合成桁として計算できれば, 以下のような設計上の課題を克服できる.

(1) 非合成桁設計を行った場合でも、弾性合成桁として 考えることが実挙動に即しており、コンクリート床版 と鋼桁との合成作用を適切に評価できる.

- (2) プレキャスト床版を用いた場合においても、これまで配置に苦慮した箇所でも、比較的容易にずれ止め配置ができる可能性がある.
- (3) 支間部のずれ止めを減らしても、合成桁設計として 照査可能となり、新設桁の経済設計や、既設鋼桁の補 強量を少なくすることができる.
- (4) 中間支点部の設計は、プレストレスしない連続合成 桁と同様に、鋼桁+鉄筋断面の桁として設計できる.

1.3 検討すべき課題

弾性合成桁設計法を確立するために,整理すべき課題 は、①正曲げモーメント領域の設計法、②負曲げモーメ ント領域の設計法、③FEM 解析による弾性合成桁挙動の 評価法、④弾性合成桁設計計算システム、⑤桁端部ずれ 止め用水平せん断力算出法、⑥ずれ止めのバネ定数の設 定方法等が挙げられる.

1.4 本研究の目的

上述の課題のうち,最後に記載したずれ止めのバネ定 数については,道路橋でよく使用されている頭付スタッ ドの押抜き試験データを整理して^{11,12},設計最大荷重載 荷状態等,ある程度変形した時のずれ止めのバネ定数を 与えることができれば、弾性合成桁を適切に評価できる ものと考えられる^{4,13}.しかしながら、頭付きスタッド の強度や本数をパラメータとした試験は行われているが、 橋軸方向間隔をパラメータとした試験は見当たらないの が現状である.そこで本研究では、頭付きスタッドの径 と橋軸方向間隔をパラメータとした押抜き試験を行い、 弾性合成桁設計を行う際の頭付きスタッドのバネ定数や フレキシビリティ定数を明らかにした.

2. 試験概要

2.1 試験体

押抜き試験に用いる試験体を図-1 に示す.本試験で は、 $600 \times 300 \times 2000$ mm と $600 \times 300 \times 1400$ mm の場所打 ちコンクリート床版を想定したコンクリートブロックを 製作し、 $300 \times 16 \times 2000$ mm、 $300 \times 16 \times 1400$ mm の鋼桁を 想定した部材を頭付きスタッド ϕ 13×150mm(SS400)、ま たは ϕ 22×150mm(SS400)で一体化させる.供試体の高さ は、同図に示すようにスタッドの間隔を考慮して設定し ている.スタッドは橋軸直角方向に 100mm の間隔をあ けて 2 本配置とする.試験体は 2 種類の頭付きスタッド を 300mm、600mm、1000mm、03 パターンの橋軸方向 配置した 6 体を製作した.

コンクリートブロックは、呼び強度 24N/mm²の普通コ ンクリート(粗骨材の最大寸法 20mm)を用いて、実構 造と同様に正立の状態で鋼部材と一体化するように打設 する.床版の設計においては、破壊モードをスタッドの せん断破壊となるようにする.そのため、床版のせん断 耐荷力がスタッドのせん断耐荷力より大きくなるように、 床版寸法、鉄筋量、コンクリートの設計基準強度を決定 した.

鋼部材のコンクリート打設面はジンクリッチペイント 塗装を行い,打設前にグリースを塗布して付着が無視で きるようにした.

表-1 に使用した材料の特性を示す.また,本試験に おけるパラメータを表-2 に示す.コンクリートの材料 特性の値は材令28日圧縮強度試験の平均値を示す.ただ し,本実験は材令35日から50日の間に実施している.

鋼桁および頭付きスタッドの材料特性は、ミルシートの 値を記載している.また、表-2 に示す理論計算最大荷 重は、文献 12)を用いてこれらの材料特性値から計算し ている.

2.2 相対ずれ変位の測定位置

鋼桁とコンクリートブロックの相対ずれ変位を計測する. 試験体ごとの計測位置を図-2 に示す. CASE A1, B1 はスタッドの位置ごとに, CASE A2, B2 はスタッドの位置とその中点の位置, CASE A3, B3 はスタッドの位置とそのスパンを4 等分する3 点に変位計を配置した.

(c) CASE A3, B3

図-1 押抜き試験に用いる試験体

表-1 使用材料特性

	コン	日形綱	スタッド		
使用材料	クリートブ ロック	11//26	φ13	φ22	
弾性係数(MPa)	31,618	205,000			
ポアソン比	0.2	0.3	0.3	0.3	
圧縮強度(MPa)	33.6	-	_	-	
降伏点(MPa)	-	303	414	361	
引張強度(MPa)	1	443	472	451	
伸び (%)	_	23	28	30	

表-2 試験体パラメータ

試験体	スタッド の軸径 (mm)	スタッド の長さ (mm)	本数 (本)	配置 間隔 (mm)	理論計算 最大荷重 (kN)
A1			16	300	850
A2	$\phi = 13$	150	12	600	637
A3			8	1000	425
B1			16	300	2433
B2	$\phi = 22$	150	12	600	1825
B3			8	1000	1216

2.3 試験方法

図-3 に押抜き試験方法を示す. H 形鋼とコンクリー トブロックとの相対ずれを計測しながら, 各列の残留ず れ量の最小値が 0.1mm となるまで, 増分載荷と除荷の繰 返しを行った. ここで, 荷重増分は文献 11)に準拠して, 想定される最大荷重の 1/20(5%)程度としている.

荷重増分は, CASE_A1 は 40kN, CASE_A2 は 30kN, CASE_A3 は 20kN, CASE_B1 は 120kN, CASE_B2 は 90kN, CASE_B3 は 60kN, 残留ずれ量の最小値が 0.1mm を超えてからは, 破壊するまで単調載荷とした.

また、コンクリートブロックと載荷定盤との隙間や不 陸を無くすため、設置時に超速硬無収縮モルタルでコン クリートブロックの小口面全体で荷重支持できるよう に設置調整を行った.また、試験体の下部に単管パイプ を設置して、終局段階での開き止めの措置を講じている.

3. 試験結果

試験結果一覧を表-3~5 に示す. 同表には, 各試験体の最大荷重, 最大せん断耐力 Qsmax, 最大ずれ量*S*max, 破

壊モード,バネ定数等を示した.試験結果に対する主な 評価検討項目(着目点)は以下の通りである.

- ・配置間隔を広げても耐力に影響がないか
- ・多列配置の破壊過程(作用せん断力の伝達,分担)や各 列のバネ定数の違い
- ・各荷重レベルにおけるバネ定数の変化
- ・試験体のフレキシビリティ定数

3.1 最大せん断耐力と破壊モード

図-4には、すべての試験ケースの最大せん断耐力と配 置間隔の関係を示す. 同図から、スタッド配置間隔が 300mmの場合では、コンクリート床版の破壊が先に発生 したため、最大せん断耐力が小さくなったと考えられる. また、最大せん断耐力は軸径の差で大きく変化すること がわかるが、配置間隔が大きくなるにつれて少しずつ大 きくなっている. これは、合成桁設計における桁端部の ように密な配置間隔とした場合、コンクリートの破壊が 先行することで最大せん断耐力が低下することある. 弾 性合成桁として配置間隔を大きくすることは、最大せん 断耐力の観点からも利点があると考えられる.

図-3 押抜き試験方法

試験体	最大荷重 (kN)	最大せん断耐力 Q_{smax} (kN/本)	最大平均ずれ量 δ_{max} (mm)	破壊モード
A1	977.4	61.1	6.7	コンクリートの破壊
A2	738.5	61.5	7.8	スタッドのせん断破断
A3	544.2	68.0	10.0	スタッドのせん断破断
B1	2292.5	143.3	7.8	コンクリートの破壊
B2	1954.0	162.8	16.8	スタッドのせん断破断
B3	1378.8	172.4	15.7	スタッドのせん断破断

表--3 試験結果一覧

	测定	最大	最大せん	最大	バネ定数 k	フレキシ	降伏せん	限界せん断	$Q_s/Q_{sc} = 1$
試験体	例定 位置	荷重	断耐力	ずれ量	(kN/mm/	ビリティ	断耐力 Q,	耐力 Q_{sc}	時のバネ定数
	1业.0.	(kN)	(kN/本)	(mm)	本)	定数 S	(kN/本)	(kN/本)	(kN/mm/本)
A1 -	1		61.1	6.6	111.9	1.62	35.6	26.0	156.1
	2	077.4		6.7	157.8	1.36	35.0	32.0	145.6
	3	977.4		6.7	146.5	1.42	35.6	32.0	137.3
	4			6.8	135.7	1.47	35.6	31.0	132.8
A2	1		61.5	8.0	128.2	2.14	35.0	31.0	122.9
	2			7.7	153.1	1.96	35.0	31.0	150.6
	3	738.5		7.6	153.7	1.96	34.5	31.0	152.9
	4			7.7	154.2	1.95	35.0	31.0	151.3
	5			7.8	141.5	2.04	34.5	29.0	163.3
A3	1	544.2	68.0	10.5	146.3	2.59	35.0	32.5	122.0
	2			9.9	162.0	2.46	35.0	33.0	140.6
	3			9.6	174.4	2.37	35.0	32.0	162.7
	4			10.0	174.4	2.37	34.0	31.0	151.6
	5			10.0	162.0	2.46	35.0	32.0	141.6

表-4 Φ13 試験体の試験結果

表-5 Ф22 試験体の試験結果

試験体	測定 位置	最大 荷重	最大せん 断耐力	最大ず れ量	バネ定数 k (kN/mm/	フレキシ ビリティ	降伏せん 断耐力 Q,	限界せん断 耐力 Qsc	<i>Qs/Qsc</i> =1 時のバネ定数
		(kN)	(kN/本)	(mm)	本)	定数 S	(kN/本)	(kN/本)	(kN/mm/本)
B1 -	1		143.3	7.6	222.1	1.15	85.0	76.0	205.6
	2	2202.5		7.9	251.4	1.08	83.8	76.0	233.8
	3	2292.3		8.0	298.5	0.99	85.0	78.0	265.2
	4			7.6	294.8	1.00	85.5	78.0	270.4
B2	1		162.8	16.7	192.5	1.75	83.2	72.0	201.9
	2	1954.0		16.3	271.4	1.47	83.2	77.5	245.5
	3			16.4	261.0	1.50	83.2	76.0	257.3
	4			17.5	249.0	1.54	83.2	69.0	274.7
	5			17.0	241.2	1.56	83.2	68.5	273.0
B3	1	1378.8	172.4	16.2	221.0	2.11	87.6	78.5	213.5
	2			15.6	258.8	1.95	87.6	80.0	245.5
	3			15.3	272.3	1.90	87.6	78.5	271.7
	4			15.8	261.1	1.94	88.0	79.0	254.7
	5			15.7	244.5	2.00	88.0	79.0	239.7

破壊モードは、CASE_A1, B1 以外はスタッドのせん 断破壊で押抜くことができたが、スタッドの配置間隔が 狭い CASE_A1, B1 はコンクリートの破壊が起こってい ることが推定できる.特にスタッドの軸径が大きいB1 は、 載荷時に左側のスタッドがせん断破壊したものの、右側 のスタッドがせん断破壊する前にコンクリートブロック 下部に大きなひび割れが発生して、左に傾く形で破壊し ている.

せん断破壊したスタッドの様子は、どれも一様に根元 において引き千切られた状態であった.ただし、スタッ ド根元部において、支圧力を受けたコンクリート部に圧 縮破壊がみられていた.

3.2 バネ定数

図-5 には、最大せん断耐力 P_{max} の 1/3 から求められ るバネ定数と、 $Q_s Q_{sc} = 1$ の時のバネ定数を示す。一般的 にバネ定数は $P_{max}/3$ で算定されている¹¹⁾が、本試験では 各列の残留ずれ量が 0.1mm となるまで、増分載荷と除荷 の繰返し載荷を行っている。ここで、降伏せん断耐力は 初期割線に並行で残留ずれ 0.2mm の点を通る荷重と相 対ずれ曲線の交点の荷重である¹¹⁾. また、限界せん断耐 力 Q_{sc} (kN/本) は荷重と相対ずれ曲線の1サイクルの近似 直線が残留ずれ量 0.08mm に達する荷重として定義して おり*9、Q_s/Q_{sc}*=1 からバネ定数を算定している。

同図から、 P_{max} 3から求めたバネ定数は、 $Q_{sc} = 1 の$ 時にバネ定数とほぼ一致しており、 P_{max} 3によるバネ定数算定方法が有効であるといえる.

また図-5 から、すべてのケースにおいて載荷位置に 近い頭付きスタッドのバネ定数が最も小さく、その他の 位置のバネ定数がほぼ等しいことがわかる.載荷位置に 近いスタッドのバネ定数が最も小さい理由は、水平せん 断力を多く受け持ち、変形が大きくなる可能性がある. さらに、試験体下部はモルタルで設置して単管パイプに よる開き止め措置を行っており、下部の方がその拘束力 が載荷時に徐々に大きくなり、コンクリートブロックと H 形鋼の間の摩擦力が生じていることが考えられる.

図-6には、すべてのケースの *P_{max}/3* で算定されるバネ定数を示す. 同図から、スタッドの配置間隔や本数に関わらず、同じ軸径のスタッドのバネ定数はほぼ一定になることがわかる. このことから頭付きスタッドのバネ定数は軸径のみで求めてもよいといえる.

3.3 フレキシビリティ定数

本研究において、フレキシビリティ定数*s*は下式(1)で 与えられる^{8),9),13)}.ここに、*k*_o:基準バネ定数 1.96 (kN/mm/mm), *k*:スタッド1本当たりのバネ定数(kN/mm/ 本)、*m*:1列当たりのスタッドの本数、*L*_d:ずれ止め間隔 (mm)である.

$$s = \sqrt{\left(k_0 \times L_d\right) / \left(k \times m\right)} \tag{1}$$

フレキシビリティ定数 *s* が低いほど合成効果が高く なるということであり, *s* が約 1.0 以下の場合に完全合 成桁挙動に近い挙動を示し, *s* が約 2.0 以上の領域では 弾性合成桁の挙動を示すことを意味している⁴.

図-7 には、ずれ量の計測各位置におけるすべての試験ケースのフレキシビリティ定数を示す. 同図から、ス タッドの配置間隔が大きくなるほど、フレキシビリティ 定数が大きくなり、弾性合成桁挙動になることがわかる.

また、同図の Φ13 のグラフと Φ22 のグラフを比較す ると、スタッド軸径が小さい CASE_A1 はフレキシビリ ティ定数 s が約 1.5 で一定であるのに対し、軸径の大き い CASE_B1 の s は約 1.0 のあたりで一定である. Φ13 と Φ22 のフレキシビリティ定数 s の差は、0.5 程度であり、 スタッドの軸径にも影響を受けることがわかる.

以上のことから,スタッドの配置間隔と軸径によって フレキシビリティ定数 s を変化させることができ,この 際に軸方向計測位置の影響が少ないことがわかる.

4. まとめ

頭付きスタッドを検討の対象に,スタッド軸径とその 橋軸方向間隔をパラメータとして,大型の押抜き試験を 実施した.本研究の結果から,以下のことがわかった.

- (1) スタッドの橋軸方向間隔を広げることにより,フレ キシビリティ定数 s が 2.0 以上の弾性合成桁としての 領域になることがわかった.
- (2) スタッド軸径が小さいほど、フレキシビリティ定数*s* が大きくなり、 *Φ*13 と *Φ*22 のフレキシビリティ定数*s* の差は、 0.5 程度であることがわかった.
- (3) 各試験体における橋軸方向位置のスタッドのフレキ シビリティ定数はほぼ同じ値となった.

今後の課題として,頭付きスタッドの終局せん断耐力 を確保しつつも、フレキシビリティ定数を大きくする等 の制御方法を実験的に明らかにすることが挙げられる.

参考文献

- 1) 橘善雄:連続合成桁橋,理工図書, 1966.
- 2) 大垣賀津雄: 既設合成桁の床版取替えにおける設計・ 施工上の課題について, 土木学会, 第10回道路橋床版 シンポジウム論文報告集, pp.291-300, 2018.11.
- 3) 日本道路協会:道路橋示方書・同解説(II 鋼橋・鋼部 材編),丸善出版,2017.11
- 4) 土木学会:連続合成桁における床版取替技術の現状と 展開,複合構造レポート17,2021.9
- 5) 山本稔: 不完全合成桁の曲げ理論, 土木学会論文集, No.67, pp.1-10, 1960.3
- 6) 橘善雄, 安達義雄: 不完全合成桁について, 土木学会 論文集, No.112, pp.11~19, 1964.12
- 7)小松定夫,佐々木孝:不完全合成格子桁橋の理論と近 似計算法について,土木学会論文報告集,第329号, pp.27-37,1983.1

- 8) 佐々木孝,小松定夫:不完全合成桁橋の合理的設計, 橋梁と基礎, Vol.24, No.5, pp.23~28, 1986.5
- 9) 中井博,山内幸裕,袴田文雄,酒造敏廣,山本竜太郎: プレキャスト床版を用いた負の曲げモーメントを受け る弾性合成桁の実験研究,土木学会構造工学論文集, Vol.34A, 1988.3
- 10) 中島章典, 溝江慶久: 不完全合成桁の不完全度の簡 易推定法, 土木学会論文集, No.537/I-35, pp.89~96, 1996.4
- 日本鋼構造協会: 頭付きスタッドの押抜き試験方法 (案)とスタッドに関する研究の現状, 1996.8
- 12) 土木学会: 複合構造標準示方書 [2014年制定] 設計 編, 2015.5
- 13) 大垣賀津雄, PHAM NGOC VINH, 渡邉翔一朗, 石田 学, 赤江信哉, 今川雄亮, 石川敏之, 大久保宣人: プレキャスト床版を有する弾性合成桁のずれ止め性能に 関する実験研究, 土木学会第14回複合・合成構造の活 用に関するシンポジウム, (10), 2021.11

(2022年7月8日受付) (2022年9月9日受理)