論文

鋼床版 U リブ溶接部補強のための CFRP 成形材接着部の

疲労強度確認試験

安田翼*, 大垣賀津雄**, VINH PHAM NGOC***, 秀熊佑哉****, 櫻井俊太****, 紫桃孝一郎*****

*ものつくり大学大学院,ものつくり学研究科(〒361-0038 埼玉県行田市前谷 333)
**工博,ものつくり大学教授,技能工芸学部建設学科(〒361-0038 埼玉県行田市前谷 333)
***工博,ものつくり大学特任講師,技能工芸学部建設学科(〒361-0038 埼玉県行田市前谷 333)
****工修,日鉄ケミカル&マテリアル株式会社,コンポジット事業部(〒103-0027 東京都中央区日本橋 1-13-1)
*****東日本高速道路株式会社,関東支社建設事業部(〒330-0854 埼玉県さいたま市大宮区桜木町 1-11-20)

近年,重交通路線を中心に鋼床版の疲労き裂が報告されている.日々の 交通量と積載荷重の増加によって,1980年代半ばより鋼床版の損傷事例が 報告され始めた.疲労き裂は,デッキプレートUリブ溶接部に発生した場 合に,デッキを貫通するケースがあり,車両走行に影響を及ぼすことがあ る.鋼床版疲労耐久性向上を目的として,Uリブ溶接部に CFRP 成形材を 接着することを検討している.CFRP 成形材と鋼材の間の接着方法をパラメ ータとして,疲労によるはく離に着目し振動疲労試験を実施した. キーワード:鋼床版,Uリブ,CFRP 成形材,補強,接着,振動疲労試験

1. はじめに

コンクリート床版に比べて軽量であり,工場製作 による一定の品質が確保できることから,鋼床版は 都市内高架橋や長大橋の床版として広く用いられ てきている.近年,その鋼床版が重交通路線を中心 に,疲労き裂の発生が報告されている^{1),2)}.鋼床版 デッキプレートの疲労き裂は,Uリブ溶接部からの 車両交通荷重によるき裂進展によるものであり,そ の予防保全や補強を目的に鋼繊維補強コンクリー ト SFRC による上面からの舗装対策工法が行われ ている.しかしながら,路面の交通規制が必要なこ とから,重交通路線においては施工が困難な場合が ある.

一方,炭素繊維強化ポリマー(以下 CFRP と呼ぶ) は鋼材に比べて,軽量で同等以上の弾性係数を有す る材料であり,腐食しないという特長を有する.ま た,鋼材の当て板工法のようにボルト孔を開ける必 要がないこと等,施工においても大掛かりな機材を 必要としないことから,近年,鋼構造物の補修・補 強材料として注目されている.このような状況の中 で,近年,炭素繊維シートによる鋼構造物の補修・ 補強工法設計施工マニュアル³⁾や,FRP 接着による 鋼構造物の補修・補強指針(案)⁴⁾等が発刊され, 実用化の段階にある. 鋼床版のUリブ溶接部周辺を、下面からCFRP成 形材を接着することにより補強した際に、どの程度 の繰返し載荷によって接着部のはく離が発生する かの検討に関しては、未解明な部分がある.以上を 踏まえ、本研究では、Uリブ溶接部にCFRP成形材 を接着して補強した部分模型試験体に対して、振動 疲労試験^{5),6)}による長期接着特性を明らかにした. 本研究では、接着部の疲労耐久性を確保するため、 鋼材とCFRP成形材の間に挿入する高伸度弾性パ テ材^{3),4),7)}を適用しており、その施工範囲等をパラ メータとしている⁸⁾.

2. 試験概要

2.1 試験供試体

試験供試体は、図-1に示す通り、輪荷重によっ てデッキプレート、Uリブに板曲げの応力が作用す

図-1 試験供試体と疲労はく離の着目点

る場合をモデル化したものである. 実橋と同様にデ ッキ厚は 12mm, U リブのサイズは 320×1240× 6mm であり, 材質 SM400 である. デッキプレート U リブ溶接部を CFRP 成形材で補強したものであ る.

2.2 ひずみ計測位置

振動疲労試験における CFRP 成形材のはく離着 目箇所を図-1に示す.着目点は,Uリブ溶接部と FRP 成形材の両端部の3箇所として,それぞれの 箇所に生じる最大と最小応力度を FEM 解析によ り求め,その応力範囲で振動疲労試験を実施した. また,各試験体の寸法やひずみゲージ計測位置を 図-2に示す.各ケースとも動的なひずみ計測点は 8 点として,それぞれの着目点を中心に長さ 1mm のひずみゲージを貼付けた.

2.3 振動疲労試験方法

図-3 に加振機を用いた振動疲労試験状況を示 す.同図からわかるように,試験体のUリブ部等 を固定して片持ち板状態で振動を与える.その際 に,偏心錘を回転させ加振力を与えており,逆L字

図-3 振動疲労試験装置

ケース	供試体 (着目点)	FRP	バ	デ材		
CASE1			7	なし		
CASE2	パターンA	L 型	デッキのみ有			
CASE3	(U リブ溶接部)		Uリブのみ有※			
CASE4			全	長に有		
CASE5			なし			
CASE6	パターン B	L 型	デッキのみ有			
CASE7	(Uリブ側端部)		Uリブのみ有※			
CASE8			全長に有			
CASE9	2 H C		7	なし		
CASE10	(デッキ側提部)	平板	デッキ	成形材側		
CASE11	(ノント側姉部)		のみ有	鋼材側		

表-1 供試体パラメータ

注) ※印は試験を中止した.

型の治具と試験体の間にコイル状の調整バネを取 り付け,その調整バネで上方か下方に押すことで 試験体に静的な曲げ(予荷重)を与えて,片振り疲 労試験を行うことが可能となる.本試験では,200 万回を目標に R=0(片振り)で試験を実施してい る.振動疲労試験における試験体パラメータを表 -1に示す.

2.4 ひずみ調整方法

試験に際しては,試験体に貼り付けたひずみゲ ージにより,発生するひずみを動的に観測し,調整 バネによりその発生ひずみを FEM 解析から得ら れた目標値に近づける.各着目点位置は溶接ビー ド近傍や CFRP 成形材接着部の境界であるため, 直接ひずみゲージを貼付けして発生するひずみや 応力度を知ることができない.そこで片持ち板試 験体に生じる応力分布が線形であり,鋼床版 FEM 解析モデルにおける着目点もほぼ線形分布のひず みが生じることから,ひずみゲージで計測可能な 着目点近傍の2点の値より,着目点のひずみが目 標値となることを確認して振動疲労試験を行い, 試験終了まで継続的に動的なひずみ計測し,ひず みの変化を記録している.

2.5 炭素繊維(CFRP)成形材

CFRP 成形材の積層構成は、FEM による検討から、 橋軸直行方向(90度方向)だけでなく、橋軸方向(0 度方向)にも剛性がある方が補強効果を得られるた め90度方向と0度方向を積層させた直交異方性材 とした.また、積層中央にガラス繊維を、表面付近 に炭素繊維を積層し、引抜き成形により製作してい る.表-2に示す通り、直交異方性は繊維長手方向 (L方向)、繊維直行方向(T方向)、厚さ方向(Z 方向)の物性がそれぞれ異なり、CFRP 成形材に使 用した材料特性を示している.

CFRP 成形材の繊維長手(90 度)方向の弾性係数 は 1.63×10⁵MPa で鋼材とほぼ同等であり,厚さは U リブよりやや厚い 9mm に成形している.比重は 2.0 で軽量であり,引張強度は 2,400MPa と強靭な 部材である.

表-2 CFRP 成形材に使用した材料の諸元

強化繊維種類	繊維方向の 弾性係数 EfL (MPa)		繊維直交方向の 弾性係数 E _{fT} (MPa)	繊維の せん断弾性係数 G _{fLT} (MPa)	目付 (g/m²)	密度 (g/mů)	設計厚さ (mm)
炭素繊維 Carbon XN60	0 640,000		20,600	28,700	660	2.1	0.314
ガラス繊維 Glass E	70,000		70,000	26,923	660	2.6	0.254
マトリックス樹脂の種類			排の弾性係数 Em (MPa)	樹脂のせん断弾性係数 Gm(MPa)		密度 (g/mů)	
主剤:CBZ,硬化剤:MEKパーオキサ イド促進剤:コバルト			3,700	1,321		1.13	

表-3 使用樹脂材料の基本性能

	-	-	-			
T百日	高伸度弾性パテ用プライマー	高伸度弾性パテ	耐熱型エポキシ樹脂接着剤			
項口	FP-UL1	FU-Z	FB-E9S			
材質	ウレタン樹脂	ポリウレア樹脂	エポキシ樹脂			
引張強度	-	11N/mm ²	-	-		
引張弾性係数		$74 \mathrm{N/mm^2}$	-	-		
引張伸び		300%以上, 500%未満	-	-		
圧縮強度			103N	J/mm ²		
圧縮弾性係数			2,690	N/mm²		
引張せん断強度	-		9.8N/m	å以上		
鋼材接着強度	1.5N/mm ²	7.4N/mm ²	20.8N/mm ²			
ガラス転移点温度	70℃以上	-15℃以下	70℃以上			
適用温度(℃)	5-35	5-35	15-35	5-20		
可使時間 (分)	-	25	40	15		
硬化時間(時間)	0.5	6	3.5	2.5		
主剂:硬化剂	1 . 1	1 · 2	4 : 1			
(重量比)	1.1	1.5	4.	1		
性状	溶剤系	無溶剤系	無溶	削系		

2.6 樹脂接着剤

接着接合に用いた樹脂接着剤は、2 液混合型のエ ポキシ樹脂接着剤である.使用したエポキシ樹脂お よび高伸度弾性パテ材の基本性能を表-3 に示す. また本研究では、CFRP 成形材の疲労はく離に対し て,接着剤塗布面である鋼材および CFRP 成形材表 面を#100 のサンドペーパーで粗く仕上げ,接着表 面の油分をアセトン溶剤で除去したあとプライマ ーを塗布している.その後,必要箇所に高伸度弾性 パテ材を塗布し,耐熱型エポキシ樹脂接着剤を使用 し、CFRP 成形材を鋼材に接着して試験体を準備し た.

3. 解析概要

3.1 FEM 解析

今回の解析では,載荷位置をパラメータとした FEM 解析検討を実施することにより,デッキプレ ートとUリブにおける着目点A,B,C,の発生応 力を評価した.解析モデルを図-4に示す.

本解析は凡用非線形 FEM ソフトである DIANA を使用し,表-4 に示す通り,下フランジ,横リブ, 補剛材を8節点シェル要素で,Uリブ,デッキプレ ート,Uリブ溶接部,CFRP 成形材,エポキシ樹脂 と高伸度弾性パテ材を20節点ソリッド要素でモデ ル化している.

ここで, CFRP 成形材の構成は, 外側に 2.51mm, 内 側に 5.66 mm の炭素繊維層(橋軸直角方向の弾性 係数 1.63 × 10⁵ MPa) があり, その間にガラス繊維 層(橋軸直角方向の弾性係数 0.205 × 10⁵ MPa)のハ イブリッド部材であり, それぞれをソリッド要素で モデル化している.

解析での載荷位置と応力評価位置を図-5 に示 す.荷重載荷ケースはダブルタイヤ(70kN)が4ケー スとシングルタイヤ(50kN)が2ケースである.図-6で解析モデルデッキ面の図に,CFRP成形材設置 位置および荷重載荷位置を描いている.

図-4 CFRP 成形材による補強鋼床版解析モデル

表 — 4	解析エデ)	レの概要
1 4	ガモルト レノノ	P V M 女

部材	板厚 (㎜)	要素	材料			
補剛材	12	8 節点曲げ				
下フランジ	12	シェル要素				
横リブ	9	(CQ4OS)	弾性体			
Uリブ	6		$E_S = 2 \ge 10^5 \text{ MPa}$			
デッキプレート	12					
Uリブ溶接部	2.4					
CFRP 成形材	_	20 節点 ソリッド要 素 (CHX60)	CFRP 成形材の構成 CF 外/GF/CF 内 2.51 /1.02 /5.66 mm CF= 1.63 × 10 ⁵ MPa GF = 0.205 × 10 ⁵ MPa			
エポキシ樹脂層	0.5		E=2500 MPa			
高伸度弾性パテ材	1		E=80 MPa			

図-5 載荷位置と応力評価領域

図-6 CFRP 成形材による補強位置

図-7 着目点の応力評価方法

着	補強仕様			載荷位置						最小	最大	広力簕			
目点	ケース パテ材		テ材	1	2	3	4	5	6	応力 o _{max}	応力 o _{min}	囲	応力比	試験値	
A	無補強			-197	-173	-101	-89	-129	-145	-197	0	197	-∞	—	
		CASE1	t_{c}	2L	-168	-133	-96	-130	-44	-189	-189	0	189	-∞	154
	補強有	CASE2	デッキ	テのみ有	-174	-141	-96	-121	-62	-180	-180	0	180	-∞	196
		CASE3	Uリフ	「のみ有	-170	-134	-96	-129	-47	-188	-188	0	188	-∞	—
		CASE4	全面	記有	-178	-148	-96	-110	-80	-167	-167	0	167	-∞	182
	無補強				-18	-21	-12	4	-36	13	-36	13	49	-2.77	—
		CASE5	t_{c}	2L	-27	-29	-12	8	-53	16	-53	16	69	-3.31	68
в	補	CASE6	デッキ	テのみ有	-27	-32	-10	18	-67	30	-67	30	97	-2.23	70
	強 有	CASE7	Uリフ	のみ有	-22	-23	-11	5	-41	11	-41	11	52	-3.73	—
		CASE8	全面に有		-25	-29	-11	12	-57	22	-57	22	79	-2.59	56
	無補強			105	92	4	-21	181	-30	-30	181	211	-0.17	—	
С	補	CASE9	t_{c}	2L	62	57	-8	-32	127	-40	-40	127	167	-0.31	114
	備 強 有	CASE10	デッキ	成形材側	73	66	-2	-21	132	-27	-27	132	159	-0.20	136
		CASE11	のみ有	鋼材側	73	66	-2	-21	132	-27	-27	132	159	-0.20	137

表-5 各供試体をモデル化したケースの最小・最大応力度,応力範囲等

3.2 解析結果による振動疲労試験条件

FEM 解析によりデッキ下面の橋軸直角方向応力 を図-7にまとめて示す.各着目位置での発生応力 から応力範囲を設定し,振動疲労試験載荷条件を抽 出した.表-5に各供試体をモデル化したケースの 最小・最大応力度,応力範囲等を示した.この応力 範囲を振動疲労試験における目標値とした.

4. 試験結果

図-8~10 に振動疲労試験による応力範囲計測結 果を示す. それぞれ, 載荷回数 200 万回を目標に試 験を行っている. 図-8 のパターン A (R 部着目) では, CASE4 の全面に高伸度弾性パテ材を塗布し たケースで約 80 万回においてデッキ貫通き裂が発 生した.

図-9に示すパターンB(Uリブ側端部着目)では、すべてのケースではく離は見られず、200万回までほとんど変化が無かった.

図-10 に示すパターン C (デッキ側端部着目)の では、高伸度弾性パテ材無しの CASE9 場合、1 万 回未満ではく離が発生した.このことからデッキ側 に高伸度弾性パテ材が無いとはく離が生じること が分かった.以上のことから、デッキ側に高伸度弾 性パテ材を設けていない CASE3 と CASE7 の試験

図-8 振動疲労試験応力範囲(パターンA)

図-9 振動疲労試験応力範囲(パターンB)

を中止している.

図-11 にこれらの振動疲労試験後の状態を示す. このようなき裂やはく離が生じた理由については, 検討が不十分である.今回実施した FEM 解析は試 験条件を設定するための発生応力を確認するため に実施したものであり,高伸度弾性パテ材のはく離 や鋼材の疲労という観点での照査まで至っていな い.これらについては,より詳細な検討を行う必要 がある.

5. 結論

U リブを有する鋼床版の CFRP 成形材による補 強する工法を対象に,Uリブを有する試験体のUリ ブ溶接部,Uリブ側 CFRP 設置端部,およびデッキ 側 CFRP 設置端部に着目して,高伸度弾性パテ材設 置位置をパラメータとした振動疲労試験を行った. 本研究結果得られた知見は以下のとおりである.

- (1)CFRP 成形材による U リブ溶接部の補強では, 成形材貼付け部全体に高伸度弾性パテ材の使用 した場合,補強効果が小さくデッキ貫通亀裂等の 疲労破壊が生じる可能性がある.
- (2)CFRP 成形材の U リブ側端部においては, エポ キシ樹脂による直接接着でもはく離は見られな かった.
- (2)CFRP 成形材のデッキ側端部において, エポキシ 樹脂で直接貼付けたケースでは, 早期にはく離が 生じた.このような補強では, 成形材のはく離防 止として, デッキ側に高伸度弾性パテ材の使用が 必要であることが確認できた.

今後の課題としては、デッキ側に高伸度弾性パテ 材を適用した場合に応力低減効果が低下するので、 CFRP成形材の端部から極力短い範囲の適用を想定 した振動疲労試験を行うことである.また、FEM 解

a) CASE4 b) CASE9 図-11 各 CASE の試験後の状態

析による U リブ溶接部に生じる応力の低減効果等 を明らかにすることである.

謝辞

本試験を遂行するに際して,関西大学・石川敏之 教授から,ご指導頂きましたことを深く感謝いたし ます.

参考文献

- 1) 土木学会:鋼床版の疲労〔2010 年改訂版〕,鋼構 造シリーズ 19, 2010.12
- 2) 日名誠太,平野秀一,:首都高速道路における鋼 床版の疲労損傷と対策,橋梁と基礎,2020.8
- 3)(株)高速道路総合技術研究所: 炭素繊維シート による鋼構 造物の補修・補強工法設計施工マニ ュアル,2013.10
- 4) 土木学会: FRP 接着による構造物の補修・補強 指針(案), 複合構造シリーズ 09, 2018.7
- 山田健太郎,小薗江朋尭,小塩達也:垂直補剛材 と鋼床版デッキプレートのすみ肉溶接の曲げ疲 労試験,鋼構造論文集,14巻,55号,pp.1-8, 2007.
- 6) 山田健太郎, Ya Samol: U リブすみ肉溶接のルートき裂を対象とした板曲げ疲労試験,構造工学論文集, vol.54A, pp.675-684, 2008.
- 7) 西野晶拡, 大垣賀津雄, 秀熊佑哉, 宮下剛, 奥山 雄介, 小森篤也: 鋼材と CFRP の接着強度に関 する実験的研究, 第13回複合構造の活用に関す るシンポジウム, pp.257-262, 2019.11
- 8) 大垣賀津雄, Pham Ngoc Vinh, 安田翼, 秀熊佑哉, 櫻井俊太, 紫桃孝一郎:鋼床版Uリブ溶接部補 強のための CFRP 成形材接着部の疲労強度確 認実験, 第77 回土木学会年次学術講演会, 2022.9

(2022年7月8日受付) (2022年9月9日受理)