電磁波レーダによる RC 床版上面の状態評価に関する

実験的検討および現場適用事例

永塚竜也*, 小林大**, 橋本竜也*, 田代大樹**

*ニチレキ株式会社(〒343-0824 埼玉県越谷市流通団地 3-3-1) ** 大日本コンサルタント株式会社(〒170-0003 東京都豊島区駒込 3-23-1)

RC 床版は、舗装をとおして交通荷重を直接支持する重要な部材である. RC 床版上面に生じる損傷は、舗装の破損に繋がり交通事故など第三者被害 を招きかねない.しかし、RC 床版は舗装に覆われていることから、目視で 上面の損傷を発見することは困難である.そこで筆者らは、RC 床版上面の 非破壊調査システムを開発し、同システムの精度向上およびスクリーニン グ調査手法の開発に向けて、実物大の供試体を作製し実験を行った. 本報告は、実物大供試体実験に基づく RC 床版上面の状態評価アルゴリ ズムの検討内容と、現場での適用事例を報告するものである.

キーワード: RC 床版,砂利化,土砂化,非破壊,電磁波レーダ,長寿命化

1. はじめに

RC 床版は、舗装をとおして交通荷重を直接支持する 重要な部材である.また、橋梁の架替に関する調査¹⁾に よれば、床版の破損は、上部構造の損傷による架替理由 の上位であることなどから、床版の劣化・損傷を早期に 把握して長寿命化を図ることが望まれている.しかし、 RC 床版の上面に発生する劣化・損傷は、舗装で覆われ ていることから目視で発見することが困難であり、舗装 の異常として顕在化した時点では、打ち替えなど大掛か りな補修が必要となる場合がある.そのため、筆者らは、 平成26年より車載型電磁波レーダ装置(写真-1)を用 いて RC 床版上面の状態評価システムの開発に取り組ん できた.本報告は、同システムの精度向上およびスクリ ーニング調査手法の開発に向けた基礎資料とすることを 目的とし、実際に見られる RC 床版上面の状態を模擬し

た実物大供試体を作製して 電磁波レーダ信号を取得し 考察を行なうとともに,現場 での適用事例を報告するも のである.

2. 実験の概要

車載型電磁波レーダ装置 ※1 アスファルト版, [※2 アスファルト版]

2.1 供試体および実験ケース

実験ケースを表-1 に示す.供試体は、昭和39年鋼

道路橋示方書²⁾ を参考として作製した 1.5m 四方,厚さ 19cm の鉄筋コンクリート版(以下, RC版)(写真-2) に対して表-1に示す RC 床版上面の状態を模擬し(写 真-3),その上に厚さ8cmのアスファルト版(密粒度ア スファルト混合物2層)を設置した.

ケース	RC版	上面の状態	アスファルト版 と RC版の接着	水分の寄与
1		防水なし	有	アスファルト 版上面乾燥
2	健全 ※1	塗膜系防水	有	アスファルト 版上面乾燥
3		シート系防水 t=2mm	有	アスファルト 版上面乾燥
4	0-4-11-4-3 (1996)	隙間 t=0mm		隙間乾燥
5	=====≈===============================	隙間 t=2mm		隙間乾燥
6	~2	隙間 t=4mm		隙間乾燥
7	砂利化 ※3 (ザグリ 有)	細骨材を充填		充填物乾燥
8		t=5mm		充填物滞水
9		粗骨材・細骨材		充填物乾燥
10		の混合物を充填 t=25mm		充填物滞水
11		嵌め込みコンク		充填物乾燥
12		リート版を破砕 t=25mm ※4		充填物滞水
13	水平クラッ ク ※5 (ザグ リ有)	d=30mm	無	クラック面乾 燥

表-1 実験ケース一覧表

※1 アスファルト版,防水, RC版を接着した供試体.

※2 アスファルト版と RC版を接着せず隙間を空けた供試体.防水はなし.※3 RC版中央部の 75cm 四方のザグリに骨材や嵌め込んだコンクリート版を破砕してアスファルト版を載せた供試体.防水はなし.

※4 水平クラックに伴うかぶりコンクリートのうきに発生した格子状のひびわれ を再現した初期の砂利化の供試体、防水はなし、

※5 RC版中央部の 75cm 四方のザグリに同寸法のコンクリート版を嵌め込んだ供 試体.防水なし.

写真-3 状態模擬例

No.11 砂利化

写真-2 砂利化および 水平クラック用の外観

2.2 実験方法

実験は、2.1で作製した 供試体の上を車載型レー ダ装置³⁾と同等の性能を 有する手押し型レーダで 走査し、電磁波レーダ信号

写真-4 実験状況

を取得した(写真-4). なお,計測時のパラメータ設定 (データ取得間隔等)は,車載型レーダで調査する場合 と同じ条件で計測を行った.

2.3 実験結果および考察

健全 (ケース 1) と砂利化 (ケース9) の信号波形と縦断 面コンター図を表 -2 に示す. ケース 1 の信号波形は, RC 版上面付近で一様 な信号強度を示し, 縦断面コンター図 では、鉄筋の円弧状 のコンターが明瞭 に確認できる.一方, ケース9の信号波形 は、ケース1と比較 して RC 版上面付近 の信号強度が極め て大きく,縦断面コ ンター図では、鉄筋

の円弧状のコンターが確認できない.以上より,RC版上 面付近の信号強度と鉄筋の円弧状のコンターは,RC版上 面の状態に応じて違いが見られることがわかった.そこ で本実験では、この2点に着目し実験ケース毎に整理し たところ、以下の事項を確認できた(表-3).

(1) 健全

健全な供試体は、いずれも信号強度が同程度かつ鉄 筋の円弧状のコンターが明瞭であった.

(2) 舗装剥離

舗装剥離は、健全と比較して信号強度が小さく、隙 間が狭い方がより小さかった.また、鉄筋の円弧状の コンターが不明瞭であった.なお,隙間に水分が寄与 する場合は,砂利化と同様に評価される可能性がある.(3)砂利化

ケース7は、健全と比較して信号強度がやや大きく、 鉄筋の円弧状のコンターが不明瞭であった。ケース 11,12 は、健全のケースと比較してレーダ信号取得範 囲において信号強度が一様ではなく、平面コンター図 においてマダラ模様を呈した(表-4).また、鉄筋の 円弧状のコンターは確認できなかった。ケース 8~10 は、健全と比較して信号強度が極めて大きく、水分が 寄与するケースが一段と大きかった。また、鉄筋の円 弧状のコンターは確認できなかった。

(4) 水平クラック

健全と比較して信号強度が同程度であったが,鉄筋の円弧状のコンターが不明瞭であった.なお,隙間に 水分が寄与する場合は,砂利化と同様に評価される可 能性がある.

ケース	RC版上面の状態		水 分 ※1	RC版上面付近の 信号強度		All the an
				計測範 囲内の バラツ キ	No.1 との比較 (※2)	鉄筋の 円弧状の コンター
1	健全	防水なし	無	無		明瞭
2		塗膜系防水	無	無	同程度 (1.0)	明瞭
3		シート系防水	無	無	同程度 (1.0)	明瞭
4	舗装 剥離	隙間 t=0mm	無	無	やや小 (0.6)	不明瞭
5		隙間 t=2mm	無	無	やや小 (0.6)	不明瞭
6		隙間 t=4mm	無	無	やや小 (0.9)	不明瞭
7	砂利化	細骨材 t=5mm	無	無	やや大 (1.3)	不明瞭
8		細骨材 t=5mm	有	無	極めて大 (2.9)	なし
9		細・粗骨材 混合 t=25mm	無	無	極めて大 (2.3)	なし
10		細・粗骨材 混合 t=25mm	有	無	極めて大 (3.1)	なし
11		破砕コン版 t=25mm	無	有	一様でない	なし
12		破砕コン版 t=25mm	有	無	一様でない	なし
13	水平 クラ ック	d=30mm	無	無	同程度 (1.0)	不明瞭

表-3 実験結果の整理

<u>ック</u> ※1 水分の寄与に関する詳細は表1を参照。

※2 ケース1との信号強度比率の概略値.

3. 実験のまとめ

今回の実験で得られた知見を以下にまとめる.

- ・鉄筋の円弧状のコンターにより,健全な範囲をおよそ 特定可能である.
- ・信号強度や鉄筋の円弧状のコンターについて健全な範囲と比較することにより、水分が寄与する場合や骨材状(細骨材や粗骨材の充填物)の深い砂利化の範囲をおよそ特定可能である.一方、乾燥した浅い骨材状の砂利化は、舗装剥離と同様に評価される可能性がある.
- ・同様に乾燥した舗装剥離の範囲をおよそ特定可能であ るが,隙間に水分が寄与する場合は,砂利化と同様に 評価される可能性がある.
- ・水平クラック(ケース13)や水平クラックに伴うかぶ りコンクリートの格子状ひびわれ(ケース11,12)の 進展段階について電磁波レーダにより評価できる可 能性が分かった.今後は、実際の現場で確認される損 傷状態により近い供試体を用いた実験を行うなど、さ らなる検証が必要である.

4. RC 床版上面の状態グルーピングマトリックス

前述した実物大供試体実験により,鉄筋の円弧状のコ ンターの見え方に着目することで,RC 床版上面の状態 を3グループに分類可能であることが分かった.しかし, 鉄筋の円弧状のコンターの判断は,画像目視による定性 的な分類である.そこで,分類の安定化を図るため,実 物大供試体実験による知見に基づき,定量的なRC 床版 上面付近の信号強度にも着目することとし,評価者によ るバラつきを抑えるグルーピングの安定化を検討した (図-1).

具体的には, RC 床版上面付近の信号強度と鉄筋の円 弧状のコンターの見え方を判断項目とし, RC 床版上面 の代表的な状態を配置してマトリックスを考案した. な お, グループ内に含まれる具体的な状態については, 開 削調査などを行い特定する必要がある. 各グループの解 説を以下に示す.

(1) グループ1

「①健全(舗装, RC 床版に損傷がなく密着した状態)」 のみが該当し, RC 床版上面付近の信号強度が一様に取 得される.なお,当該グループにおいて取得される RC 床版上面付近の信号強度が,グループ2や3を区分する 基準となる.

(2) グループ2

「②隙間が乾燥した舗装剥離」や「③乾燥した浅い骨 材状の砂利化(実物大供試体実験では深さ 5mm におい て確認)」が該当するグループである.なお,実物大供 試体実験や実橋での調査結果を考慮すると,「④クラッ ク面が乾燥した水平クラック」も該当する可能性がある. また,損傷状態が不均一な場合に RC 床版上面付近の信 号強度が一様ではない可能性があり,平断面コンター図 において実物大供試体実験で確認されたマダラ模様を 呈する可能性がある.

(3) グループ3

「⑤滞水した骨材状の砂利化」や「⑥乾燥した深い骨 材状の砂利化(実験では深さ25mmにおいて確認)」が 該当するグループである.なお、実物大供試体実験や筆 者らによる実橋の調査結果を考慮すると、「⑦隙間に滞 水した舗装剥離」、「⑧クラック面に滞水した水平クラッ ク」や「⑨水平クラックにより、ういたかぶりコンクリ ートが格子状のひびわれに進展したケース」も該当する 可能性がある.また、グループ2と同様に平断面コンタ 一図において、実物大供試体実験で確認されたマダラ模 様を呈する可能性がある.

図-1 RC 床版上面の状態グルーピングマトリックス

5. RC 床版上面の状態グルーピングアルゴリズム

RC 床版上面の状態グル ーピングアルゴリズムを フロー化したものを図-2 に示す.

グルーピングは, グルー プ1の信号強度がグルー プ2や3を特定する際の 基準となることから, はじ めにグループ1の範囲の 特定作業を行う.

次に,グループ3の範囲

の特定作業を行い、残りの範囲がグループ2となる.

実橋における RC 床版上面のグルーピング事例と 開削調査結果

実橋梁(昭和49年建設)でRC床版上面の状態をグルーピングし、開削調査を実施した事例を紹介する.

6.1 RC 床版上面の状態グルーピング

(1) グループ1の特定

得られた電磁波レーダ信号から、鉄筋の円弧状のコ ンターが明瞭に確認でき、床版上面付近の信号強度が 一様に取得された範囲を特定した.この範囲がグルー プ1となる(図-3).

(2) グループ2,3の特定

次に、グループ1を除く範囲で鉄筋の円弧状のコン ターが確認されない範囲をグループ3の候補とし、信 号強度の確認を行なった(図-3).基準信号強度と比 較して、極めて信号強度が大きい地点を確認したが一 様ではない状況であり、平断面コンター図においてマ ダラ模様を呈した(図-4).当該範囲は、解説に基づ きグループ3として特定し、それ以外の範囲をグルー プ2に区分した(図-3).

6.2 開削調査による具体的な状態の確認

6.1で特定したグループ1~3において1箇所ずつ,図 -3に示す箇所で開削調査を行なった(写真-5).その 結果,グループ1と特定して開削を行った①は,健全で あり,整合を確認した.グループ2と特定して開削を行 なった②は,分類された状態のうち「乾燥した水平クラ ック」であり,整合を確認した.グループ3と特定して 開削を行なった③は,分類された損傷のうち「滞水した 砂利化」,「滞水した水平クラック」であり,整合を確認 した.

7. 7橋17箇所における整合性判定結果

整合率は8割程度であった.

本グルーピングアルゴリズムを適用して調査を行な った実橋梁のうち、あわせて開削調査を行なった7橋17 箇所について整合性を判定し、表-5 に整理した.表よ り、電磁波レーダ法により重篤な損傷が疑われるグルー プ3と評価された箇所は、整合性が高い結果であった. 整合数は、総数17箇所に対して15箇所であり、その

表-5 状態グループ評価と開削調査結果の対応

	~ 0		> 11 104		
No.	管轄	開削による 確認箇所No.	電磁波レーダによる グループ評価結果	開削調査結果	
1 新潟県内某橋		1	グループ1	健全	0
	新潟県内某橋	2	グループ2	水平クラック	0
		3	グループ3	滞水した砂利化、滞水した水平クラック	0
2 新		1	グループ1	健全	0
	如此1月1日日十十十年	2	グループ2	切削による鉄筋露出(写真-9)	0
	机高乐门米筒	3	グループ2	かぶり不足	0
		4	グループ3	湿潤状態の砂利化(写真-10)	0
3	富山県内某橋	1	グループ3	滞水した水平クラック	0
4	自時间由世橋	1	グループ3	床版上面の滞水	0
	局以乐P1未1面	2	グループ3	断面修復下面の滞水した砂利化	0
5 1		1	グループ1	乾燥した水平クラック	
	宫城県内某橋	2	グループ2	健全	
		3	グループ2	乾燥した水平クラック	0
6	秋田県内甘橋	1	グループ2	床版上面の切削跡	0
	朳田県内杲憍	2	グループ3	滞水した砂利化(写真-11)	0
7 滋賀	逆加且由甘露	1	グループ2	舗装と床版の剥離	0
	公 員州11米間	2	グループ3	断面修復下面の砂利化(写真-12)	0

8. おわりに

電磁波レーダは、交通規制が不要かつ非破壊で RC 床 版上面のおよその損傷種類・範囲を特定できる.しかし、 状態評価の詳しい分類に限界があることより、RC 床版 の診断にあたっては、ASR、塩害や凍害と言った劣化ポ テンシャルを含め実際の RC 床板上面の損傷実態を熟知 したうえで総合的に行なう必要があると考える.また、 RC 床版上面の状態グルーピングアルゴリズムを実橋梁 に適用した結果、グルーピング結果と実際の整合を確認 することができた.このことから、状態評価のひとつの 指標である RC 床版上面付近の基準信号強度数値に着目 するこで、人間の目視に頼らず注意すべき橋を安価にス クリーニングできる可能性があり、長寿命化に対して一 層の寄与が期待されるものと考える.

参考文献など

- 1)橋梁の架替に関する調査結果(IV)国土技術政策総 合研究所資料 NO.444
- 2) 鋼道路橋設計示方書 昭和 39 年(社) 日本道路協会
- 3) 3D-RADAR 社の DX-Series Multi-Channel Air Launched Antenna Arrays (Tipe DX1821) (2016 年 7 月 18 日受付)