軽量化を図ったサンドイッチ型複合床版の輪荷重走行試験
Wheel Running Test on Sandwich Slab with Lightweight Concrete

上條宏1, 柳本泰雄2, 遠山忠夫1, 中川敏之1
Takashi KAMIO, Yasutomo YAGIMOTO, Yoshisaka TOYOYAMA and Toshiyuki NAKAGAWA

1 住友金属工業株式会社 土木構造部（〒104-6111 東京都中央区新橋1-8-11）
2 住友金属工業株式会社 本所構造部（〒541-0041 大阪府大阪市中央区北浜4-5-33）

Recently, the continuous composite girder bridge with a steel-concrete composite slab has been attracting attention because of economical efficiency, roadablility and load carrying capacity. Authors have developed a steel-concrete sandwich slab. The sandwich slab is composed of upper steel plates, lower steel plates, H-beams and filled concrete. By applying the sandwich slab to continuous composite girder bridge, the design of superstructure becomes more rational. However, the sandwich slab is slightly heavier than the ordinary composite slab that consists of bottom steel plates and concrete, because the amount of steel material of the sandwich slab is large. So, we are trying to lighten the sandwich slab by using the lightweight concrete. This paper describes the result of a wheel running test carried out to check the fatigue durability of the sandwich slab with lightweight concrete.

Key Words: sandwich slab, fatigue durability, composite slab, hybrid structure

1. まえがき
近年、合成床版を用いた連続合成橋が注目されている。著者らは、経済性、走行性、耐荷力に優れた合成床版としてサンドイッチ型複合床版（以下、サンドイッチ床版）を提案し疲労耐久性を実験検討している。サンドイッチ床版の概要を図1に示す。いまのところ、サンドイッチ床版の設計では床版厚をオープンサンドイッチ型合成床版の最小コンクリート厚を定める方法で定めているが、サンドイッチ床版は上下2枚の鋼板を有しているのでコンクリート厚を一般的合成床版と同じにすると合成床版よりも重量が大きくならない。

既往の実験から、十分に板厚を確保したサンドイッチ床版ではRC床版や他の合成床版のようにコンクリートのひび割れ進展が支配的な損傷モードにならないうことが確認されている。これは、サンドイッチ床版は上下2枚の鋼板を有するにも関わらず、一般的な合成床版と同等のコンクリート厚を採用しているために、耐荷力や床版各部の発生応力の余裕が大きいためと考えられる。

そこで著者らは、サンドイッチ床版の充填材に軽量コンクリートを用いることにより、従来よりも床版厚を低減することでサンドイッチ床版の軽量化を検討中であること。

2. 試験内容
2.1 実験供試体
供試体は床版支間3.0mの連続版として設計したサンドイッチ床版であり、上下鋼板の板厚を9mm、コンクリート厚を150mmとした。上下鋼板の間隔は構造変角方向に配置されたH型鋼（H150x150x7x10）により一定に保たれており、上下鋼板とH型鋼がなる鋼材内に高流量コンクリートを充填した。供試体のコンクリート厚は、同じ床版支間に対して底鋼板1枚の合成床版（TRC床版）で設計した場合の曲げ剛性を、サンドイッチ床版の曲げ剛性が下回らない範囲で低減した。供試体形状を図2-1に既往の実験と本研究の供試体の曲げ剛性を図2に示す。
図-2 供試体形状と支持条件

表-1 引張試験結果の比較

<table>
<thead>
<tr>
<th></th>
<th>床版全厚 (mm)</th>
<th>コンクリート厚 (mm)</th>
<th>鋼板厚 (mm)</th>
<th>断面二次モーメント (mm²)</th>
<th>区画直径方向</th>
<th>区画垂直方向</th>
</tr>
</thead>
<tbody>
<tr>
<td>サンドイッチ床版 (本研究)</td>
<td>160</td>
<td>150</td>
<td>9 + 9</td>
<td>0.125 × 10⁶ (1.29)</td>
<td>0.125 × 10⁶</td>
<td></td>
</tr>
<tr>
<td>サンドイッチ床版 (文献 2)</td>
<td>218</td>
<td>200</td>
<td>9 + 9</td>
<td>0.267 × 10⁶ (2.35)</td>
<td>0.212 × 10⁶</td>
<td></td>
</tr>
<tr>
<td>TRC 床版 (文献 4)</td>
<td>206</td>
<td>200</td>
<td>6</td>
<td>0.135 × 10⁶ (1.00)</td>
<td>0.085 × 10⁶</td>
<td></td>
</tr>
</tbody>
</table>

※1) 断面二次モーメントはヤング係数を E1/E2 = 10 として計画換算で表示。
※2) 断面二次モーメントは引張荷重のコンクリートを無視した断面で算出。() は TRC 床版に対する比。

表-2 コンクリートの配合

| コンクリート種類 | 目標強度 (N/cm²) | 目標空気量 (%) | W/C (%) | 水分 W | セメント C | 細骨材 S | 粗骨材 G | 高性能 AE 廃棄材
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>軽量高強度</td>
<td>65 ± 5</td>
<td>4.5 ± 1.5</td>
<td>40</td>
<td>175</td>
<td>458</td>
<td>827</td>
<td>547</td>
<td>1.0</td>
</tr>
</tbody>
</table>

性の比較を表-1に示す。

供試体の橋梁方向中央には上鋼板継手（パネル継手）を設け、これに上鋼板と絞り目が完全に剥離した状態を模倣した充填区画を設け（上鋼板内面にグリースを塗布してコンクリートを充填）、これらの部位が疲労荷重の面で弱点となるか否かを検討した。

下鋼板継手は高速ボルト引張接合方式を採用した。下鋼板継手の詳細を図-3に示す。

充填コンクリートは施工系人工高強度骨材を用いた軽量 I 則コンクリートであり、コンクリートを挿入鋼板内に充填する必要性から単位セメント量を高くして高流動コンクリートとしている。このため、一般的な床版コンクリートよりも圧縮強度が高めである。なお、供試体のコンクリートの配合は実橋床版に適用する配合と同等とした。コンクリート配合表を表-2に、コンクリートの材料試験結果を表-3に、素材の引張試験結果を表-4に示す。供試体の鋼板とコンクリートとの溶接方法を図-4に示す。溶接する上鋼板総片および上鋼板と H 形鋼上フランジとの溶接はⅡ形荷重の突合せ溶接（図-4(a)）を基本としたが、一部の溶接線（図-2のa 部）、上鋼板と鋼板の一部を H 形鋼とすみ肉溶接する方法（図-4(b)）を採用した。図-4(a)の溶接方法は、上鋼板が橋梁方向に連続しているので上鋼板の橋梁方向応力は溶接する上鋼板同士で直接に伝達される。一方、図-4(b)の溶接方法では上鋼板の橋梁方向応力はすみ肉溶接を介して H 形鋼上フランジへ伝達される構造である。図-4(b)の溶接方法は製作誤差、施工誤差への対応が容易であるものの、すみ肉溶接に溶接線直交方向のせん断力が作用するので、図-4(a)よりは疲労強度が劣ると考え、供試体に両方式の溶接部を設けることで溶接方法の差異によって

-310-
表-3 コンクリートの材料試験結果

<table>
<thead>
<tr>
<th></th>
<th>材齢 (日)</th>
<th>压縮強度 f_c (N/mm²)</th>
<th>ヤング係数 E_c (N/mm²)</th>
<th>ポアソン比 ν</th>
<th>引張強度 f_y (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>走行試験開始時</td>
<td>32</td>
<td>49.2</td>
<td>2.26×10⁵</td>
<td>0.205</td>
<td>3.30</td>
</tr>
<tr>
<td>走行試験終了時</td>
<td>54</td>
<td>51.1</td>
<td>2.19×10⁵</td>
<td>0.210</td>
<td>2.66</td>
</tr>
</tbody>
</table>

表-4 鋼材の引張試験結果

<table>
<thead>
<tr>
<th></th>
<th>材質</th>
<th>降伏応力 f_y (N/mm²)</th>
<th>引張強さ f_u (N/mm²)</th>
<th>破断伸び (%)</th>
<th>使用部位</th>
</tr>
</thead>
<tbody>
<tr>
<td>鋼板 t=9mm</td>
<td>SS400</td>
<td>285</td>
<td>441</td>
<td>43.2</td>
<td>上下鋼板</td>
</tr>
<tr>
<td>鋼板 t=22mm</td>
<td>SS400</td>
<td>264</td>
<td>422</td>
<td>51.8</td>
<td>繰手板</td>
</tr>
<tr>
<td>H-150×150×7/10</td>
<td>SS400</td>
<td>305</td>
<td>439</td>
<td>42.4</td>
<td></td>
</tr>
</tbody>
</table>

図-3 下鋼板維手

図-4 上下鋼板と形鋼との溶接方法

図-5 荷重パターン

疲労亀裂発生時期に差が生じるか否かを検討した。しかし、結果的に今回の実験で検出された範囲ではいずれの溶接維手にも損傷は生じなかった。

2.2 荷重方法

供試体は2.5m 間隔の主補で単純支持し供試体の横軸方向端部は主補と絶縁された横軸（H300x300x10/15）で弾性支持した。

載荷パターンは階段状荷重重ね増載荷（図-5）とした。供試体上面の載荷重走行レーンには横軸直角方向500mm×横軸方向200mmの載荷ブロックを並べ、載荷ブロックを介して載荷重を供試体に作用させた。

3. FEM解析

3.1 解析ケース

実験結果と比較するため、シェル要素による弾性解析を実施し板巻の断面力ならびに各部の応力度を計算した。解析パラメータは以下とした。解析ケースを表-5に示す。

- a) 床版本体の曲げ剛性
- b) 下鋼板維手の変形の影響
- c) サンドイッチ床版のコンクリート完固区画（セル）のせん断変形の影響

サンドイッチ床版は横軸直角方向にだけH形鋼を配置しているので、横軸方向と横軸直角方向の曲げ剛性に差がある。このため、解析では床版を材料変性性を有する均質板として扱った。モデルに与える材料定数は以下の手順で設定した。

1) Huber の式で床版の板剛性（曲げ、ねじり）を算出。
2) 解析モデルの板厚は供体板板厚と同一とし、1)で求めた板剛性と均質板の板剛性が等しくなるように弾性係数とポアソン比を調整。
3) 解析モデルの構せん断弾性係数には充填コンクリートのせん断弾性係数を与える。ただし、セルのせん断変形を考慮するcase3は3.3の方法に従う。

上記1), 2)の具体的な計算方法は文献6)を参考にした。
実験では床版上面に500×200mm の寸法の載荷重を載荷しているが、解析ではこれに床版厚の1/2深さまでの車重分散効果を加味して横軸直角方向 668mm×横軸方
向 368mm の寸法で等分布荷重をモデル中央に載荷した。

3.2 下鋼板縁手の回転ばね
下鋼板の連続に用いた高力ボルト引張接合では、縁手板の板的弹性変形により縁手板下端に目開きが生じ、圧しあうと縁手部にわずかだが角変形が生じて板の歪みが増大する。

FEM の case 2, case 3 では、高力ボルト引張接合による圧縮板継手を以下の手順で回転ばねに置換しモデルに考慮した。下鋼板縁手のモデル化手法を図-6 に示す。

縁手板のボルト位置の離間が生じていない場合、縁手板の変形はボルト位置を固定端とする片持ち工事で計算でき縁手板下端の目開き量は式(1)で表される。

\[
\delta_i = \frac{3d}{E_i \cdot t_j} \cdot \tau_j \tag{1}
\]

\[
T_j = \frac{M}{L_v} \left(d - x - \frac{t_i}{2} \right) \cdot \tau_i \tag{2}
\]

ここに,

- \(E_i\): 材料のヤング係数
- \(d\): 板厚全厚
- \(t_j\): 縁手板の板厚
- \(t_i\): 下鋼板の板厚
- \(L_v\): 縁手板の板厚
- \(d\): 縁手板下端の目開き長さ

\(\delta_i\) を用いて縁手断面の回転角度 \(\theta_i\) を式(2)で表す。

\[
\theta_i = \delta_i / d \tag{3}
\]

縁手ばねの回転剛性を \(K_u\) とし、縁手断面の単位幅当たりの作用曲げモーメント \(M\) と \(\theta_i\) との関係を \(M=K_u * \theta_i\) と表すと \(K_u\) は式(4)により求まる。

\[
K_u = \frac{E_i \cdot L_v \cdot d \cdot t_j \cdot \tau_j}{4d \cdot (2d - 2x - t_i) \cdot \tau_i} \tag{4}
\]

3.3 セルのせん断変形の影響
一部材直角方向にのみせん断補強鋼板が配置されたサンドイッチ鋼板では、せん断補強鋼板によりコンクリートが断面を伝達しているため、一部材方向のせん断力は上下鋼板を骨材、せん断補強鋼板を梁材、充填コンクリートを圧縮斜材とするトラス機構により伝達される。

トラス機構の概要を図-7 に示す。

プレ剃直角方向にせん断補強鋼板が配置されたサンドイッチ床板では、充填コンクリートはセル間でせん断力を直接に伝達しないので、板としての鋼板方向のせん断性は充填コンクリート単体のせん断剛性よりも低下する。

FEM case 3 では、このようなサンドイッチ構造に特有の耐荷機構を考慮し、トラス方向のせん断剛性を設定した。FEM では床板を均質板として扱ったので、式(5)により鋼板方向のトラス機構と等価な横向せん断弾性係数を求めモデルに与えた。

\[
G_v = \frac{p \cdot L_v}{\kappa \cdot \delta \cdot d} \tag{5}
\]

ここで,

- \(\kappa = 5/6\)
- \(L_v\): せん断補強鋼板の幅
- \(\delta\): 図-7において荷重 \(p\) に対応する変形量

ここで、図-7 から明らかのようにセルのせん断剛性は充填コンクリートに形成される圧縮スラットの断面積に合うとする。ここでは、文献 8) を参考にセルの対角線からセルのコーナーへ下ろした垂線の長さをスラット幅（図-7 の \(W_v\)）に採用し、スラット断面積を求めた。

なお、充填コンクリートは鋼板直角方向には連続していっているので、解析モデルの鋼板直角方向のせん断弾性係数には充填コンクリートそのものの機構せん断性係数を用いた。

4. 実験結果と解析結果

4.1 たわみ性状
たわみと走行回数の関係を図-8 に、荷荷重の大きさを
157kNに換算した活荷重をたわみの推移を図-9に、供試体中央部たわみの分布を図-10に示す。

図-8には既往実験データとして、H8年版のRC床版と218mm版厚で実施したサンドイッチ床版の結果を示している。また、図-9および図-10にはFEMの結果を示した。

今回実施した168mm版厚サンドイッチ床版は、52万回・396kNを未破壊で終了した。图-8のよ、52万回走行時点での残留たわみは1.07mm、載荷時たわみは3.32mmであり、供試体に破壊の兆候は認められなかった。

図-9、図-10において、走行回数36万回以前では換算活荷重たわみの実験値はFEM case2（維手の変形考慮）とFEM case3（維手の変形とセルのせん断変形考慮）の間に推移しており、換算荷重とセルのせん断変形の影響がみられたものと考えられる。図-9において走行回数10万回未満で、換算活荷重たわみがFEM case3と一致しその後、換算荷重たわみが減少する傾向があるが、これは実験初期段階において供試体と支持架との間のなじみの影響が表れたものと考えられる。走行回数36万回を超えると、換算荷重たわみはcase3よりも大きくなったが、これは、充填コンクリート内部にひび割れが進展し、版全体の曲げ剛性が低下したことによると考えられる。なお、図-2に示したように、供試体には上鋼版内面にグリースを塗布してコンクリートとの付着を切ったセルを設けたが、実験後、供試体を切断してひび割れを観察した結果、グリースを塗布したセルと付着しなかったセルのひび割れ発生状況に相違は無かった。グリースを塗布しなかったセルについても転荷重の走行に伴って鋼板とコンクリートとの付着が徐々に消失するので、実験初期から付着が切れていたセルであっても弱点にはならないものと考えられる。

次に、図-9、図-10の解析値を着目すると、FEM case1（全断面有効）とFEM case0（引張域コンクリート無視）のたわみには大きな差が無いことが確認できる。これは、サンドイッチ床版が上下2枚の鋼板を有しておりRC床版や一般的な合成床版と比較すると鋼材量が大幅に多いので、コンクリートにひび割れが生じても床版の曲げ剛性はあまり変化しないことが理由である。このことから、サンドイッチ床版の充填コンクリートは、床版鋼板を補剛し版としての形状を保持する効果を、転荷重を直接受けける上鋼版の局部応力を低減する効果をも兼ねているといえ、充填コンクリートの役割はRC床版や合成床版のコンクリートのそれらとは相違している。

RC床版の損傷過程のコンクリートのひび割れ進展と
その後生じる貫通ひび割れのすり引き現象に支配されることから、RC床版ではたわみが引張コンクリート無視の計算値に一致した時点を使用限界状態と定義し床版の劣化度を評価する方法が有るが、したがって、サンドイッチ床版では、コンクリートのひび割れ進展に伴うたわみの増加が小さいこと、床版の曲げ剛性や耐荷力に対する充填コンクリートの寄与が小さく、床版の最終破壊は鋼材材の破壊に支配されるものと考えられることから、これからに応じた劣化度の指標が必要と考えられる。

4.2 ひずみ状態

荷重方向中央位置における、下鋼版のひずみ分布を図-11に示す。同図から、下鋼版のひずみは実験開始時ではFEMケース0（床版の曲げ剛性は全断面有効）の約2倍程度であるが、その後、走行回数の増加に伴って、下鋼版ひずみが増加してゆく傾向が認められる。

これは、充填コンクリートと上下鋼板の剥離や、充填コンクリートのびび割れが徐々に進展することで、鋼板の応力分担が増して行くためと考えられる。

4.3 接合部の挙動

下鋼板接合部の目聞き（157kN 換算荷重成分）の推移を図-12に示す。実験では載荷初期段階から走行回数が32万回まではFEMケース2にて一致して推移し、その後、接合部の増大に伴って目聞きが増大した。図-12の解析者はFEMケース3の目聞きはFEMケース2よりも小さく計算されているが、これは、FEMケース3では荷重方向の曲げ剛性を低下させたので曲げ方向の曲げモーメント分布を低下するためである。

実験で32万回以降に目聞きが増大した理由は、充填コンクリートのびび割れにより接合部の回転剛性が低下したことが理由と考えられる。これは式(4)において、I_pが低下した状態に相当しており、走行回数や載荷荷重の増

大に伴って充填コンクリート内びび割れが進展してコンクリートの弾性係数が徐々に低下したことの現われとみられる。

5. まとめ

実験結果と解析結果より以下の知見を得た。

(1) サンドイッチ床版の充填コンクリートは主に鋼材を補強する機能を担っているので、充填コンクリートの軽量コンクリートを用いても床版の疲労耐久性が大きく低下することはない。

(2) サンドイッチ床版のコンクリート厚は一般的な底鋼板一枚の合成床版よりも低減し得る。

(3) 厚さを小さくしたサンドイッチ床版では、接合の変形の影響やセロのせん断変形の影響により、破壊全体のたわみが大きくなる傾向が認められる。接合の影響は回転挙動として評価できる。

(4) 走行回数の増大に伴い、コンクリートから鋼材へ応力が移行する傾向が認められた、今回実験した荷重と走行回数の範囲では床版の破壊までは確認できなかったが、さらに載荷を継続する場合や今回の供試体よりもコンクリート厚を減じた場合には、充填コンクリートの劣化に応じて鋼材各部の発生応力が増してゆき、最終的には鋼材材に疲労損傷が生じて破壊に至ると考えられる。

謝辞：本実験の実施にあたり、試験機貸与を受けた独立行政法人土木研究所に感謝を申し上げます。

参考文献

1) 松井、池田、阿部、井澤：サンドイッチ型複合床版の移動荷重に対する疲労強度特性、土木学会年次学術講演会第1部(A)，Vol.52，pp.340-341，1997

2) 中川、井澤、阿部：サンドイッチ型複合床版の製作段階荷重増載荷による軽荷重走行疲労試験、土木学会年次学術講演会第1部(A)，Vol.55，pp.180-181，2000

3) 土木学会：鋼コンクリート構造設計指針 PART B 合成構造物，1997

4) 中川、井澤、阿部：トラス鉄筋により補強された型枠付合成床版（TRC床版）製作段階荷重増載荷による軽荷重走行疲労試験、土木学会年次学術講演会 共通セッション，Vol.54，pp.342-343，1999

5) 井澤、遠藤、中川、上条、土田：サンドイッチ型複合床版に充填する軽量高流動コンクリートに関する実験，第三回床版コンポジット講演論文集，pp.253-258，2003

6) 国土交通省土木研究所：道路橋床版の荷重走行試験における疲労耐久性評価手法の開発に関する共同研究報告書(その5) - 評価編 -，2001（引渡個人）pp.123-124

7) 土木学会：鋼コンクリートサンドイッチ構造設計講座，1992

8) 鬼頭、山崎、園田：鋼コンクリートサンドイッチ床版材のせん断耐荷機構、土木学会論文集，No.591/I-43，pp.53-69，1998

9) 松井隆之，前田幸雄：道路橋 RC床版の劣化度判定法の提案，土木学会論文集 第374号／I-6，pp.419-426，1986

-314-