第11章 板要素

11.1 概説

本章では、鋼構造部材の構成要素である板および補剛板について、境界条件および荷重条件の解析上の取り扱いとモデル化、板の座屈挙動を概説する。さらに、種々の境界条件下での板要素の終局強度推定式を紹介する。なお、ここでは板要素のみを対象とし、全体座屈との連成効果については触れない。

鋼構造物は、一般に、板単独で構造物を形成するような場合はまれで、板を用いて棒部材や柱、桁などの部材を構成し、さらにそれらが組み合わされて橋脚または橋梁などの一つの構造物が成り立っているのが普通である。したがって、構造物の終局強度（耐荷力）は、部材を構成する板要素の強度、部材の強度、そして構造物全体の強度に依存することになる。高次不静定構造物などでは、板要素や部材が部分的に崩壊しても構造物全体が崩壊してしまうとは必ずしもいえないものの、構造物に要求される性能を低下させる要因となる。また、鋼製箱形単梁橋脚のような場合には、板パネルの座屈に起因する崩壊（局部座屈崩壊）と柱としての座屈（全体座屈崩壊）のどちらか、あるいは両者が相互に関連した崩壊（連成座屈崩壊）によって橋脚の耐荷力が決まる。

11.2 構造部材における板要素

図11.2.1に示す、箱形断面柱を例として板要素について説明する。柱は、フランジとウェブおよびダイアフラムの板要素から成り立っており、たとえば図a）のウェブの斜線部分は、その周辺でフランジとダイアフラムによって面外方向の変位（たわみ）が拘束されており、周辺が支持された補剛板とみなすことができる（図

![Diagram](image.png)

図11.2.1 箱型断面柱と板要素
11.2.1b)）。また、図 a) の薄墨部分はフランジとダイアフラムそして縦補剛材の位置でたわみが拘束されており、周辺が支持された板とみなすことも可能である（図 11.2.1c）。フランジやダイアフラムの曲げ剛性がウェブの曲げ剛性に比べて大きい場合は、ウェブの周辺はたわみのみならず回転角も拘束され、固定支持に近い挙動となる。逆に、フランジやダイアフラムの曲げ剛性が小さい場合には、それらはウェブの回転変位に対して十分に抵抗できないので、ウェブの周辺は単純支持に近くなる。実際の構造物では、フランジやダイアフラムあるいは補剛材の曲げ剛性とウェブの曲げ剛性の比によって回転拘束の度合いが異なるので、固定支持と単純支持の中間的な回転拘束状態になる。しかし、従来、安全側を与えるという意味から単純支持を仮定することが多い。曲げを受ける H 形断面ハリでは、圧縮フランジは、図 11.2.2b) に示すように、垂直補剛材とウェブで支持された 3 辺単純支持 1 辺自由の板と考えることができる。また、ウェブは、図 11.2.2c) に示すように、面内の曲げを受ける矩形板としてモデル化できる。

図 11.2.3 に示すようなコンクリートが充填された合成材の圧縮鋼板や図 11.2.4 に示すアーチ橋補剛桁の圧縮フランジなどの圧縮鋼板では、コンクリート側への鋼板の座屈たわみが拘束されるので、その座屈波形は周辺固定支持された圧縮板と考えることができる。また、プレートガーダーの圧縮フランジがコンクリート床版により拘束されるとき、図 11.2.5 に示すように、その座屈波形もコンクリート側に生じなくなるので、3 辺固定 1 辺自由の圧縮板と考えることができる。

垂直補剛材とウェブに
囲まれたフランジ

垂直補剛材とフランジに
囲まれたウェブ

a) 曲げを受ける H 形断面はり

Free
S.S. S.S. S.S.

b) 3 辺単純支持 1 辺自由の
圧縮を受ける板

S.S. S.S. S.S.

S.S.

c) 周辺単純支持された
曲げを受ける矩形板

図 11.2.2 曲げを受ける H 形断面はりと板要素
上記のように、鋼構造物を構成する板あるいは補剛板は、幅 b （補剛板の場合は幅 B）、長さ a の板あるいは補剛板にモデル化される。一般には、板幅 b は、図 11.2.1, 11.2.2 に示すように、支持している板の中心間隔を採るが、道路橋示方書 [2002] では、図 11.2.6 のように定められている。

ところで、昨今では材料学的非線形および幾何学的非線形を考慮した有限要素解析が比較的安定かつ容易に行えるようになっている。しかし、たとえば図 11.2.7 に示すように、面内方向の変位を拘束しない場合には図の縦方向の変位が現れるが、面内方向変位を拘束すると幾何学的非線形性にともなって吸引張応力が発生し、変位拘束しない場合よりも耐荷力は大きくなる [小松ら, 1978; 吉田ら, 1979]。このように、正確な耐荷力を得るためには、解析における境界条件を、板のたわみのみならず面内方向変位の拘束条件についても実構造物にできるだけ近い状態に設定する必要がある。

図 11.2.6 道路橋示方書 [2002] における板要素の支持間隔および自由突出幅
11.3 板の座屈挙動

11.3.1 壓縮を受ける無補剛板

(1) 座屈挙動

一般に、板はその周辺あるいは一部の辺でたわみ（面外方向の変位）が拘束されている。いま、図 11.3.1 に示すように、板の周辺が単純支持され、板面内方向の変位は拘束されていない矩形板（幅 b、長さ a、厚さ t）に一定圧縮変位を与えられると、板に初期たわみが無ければ、ある荷重 N まではたわみが発生することなく等分布圧縮応力 \(\sigma_c \) が発生し、ある荷重 N_c（座屈応力 \(\sigma_{cr} = \frac{N_c}{bt} \)）に達すると板は座屈し、たわみ始める。座屈応力 \(\sigma_{cr} \) は次式で与えられる [たとえば、Timoshenko,1961]。

\[
\sigma_{cr} = k\sigma_c
\] (11.3.1)

ここで、k は座屈係数と呼ばれ、板の縦横比（アスペクト比） \(\alpha (= a/b) \) の関数である。また、\(\sigma_c \) は、

\[
\sigma_c = \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{b} \right)^2
\] (11.3.2)

である。

板の周辺のたわみが強固に支持され、板が座屈後も弾性を保つならば、図 11.3.2 の曲線 (1) のように、荷重は \(\sigma_{cr} \) を越えてさらに上昇する。座屈後は側辺部に応力が集中し、図 11.3.1b）のような応力分布となる。座屈後も耐力が上昇する現象を後座屈挙動という。最終的には板の側辺部が降伏することによって最高荷重 N_max に達し、平均応力 \(\sigma(\approx N/ibt) \) は極限値 \(\sigma_u \) となる（図 11.3.2 曲線 (2)）。板に初期たわみ \(w_0 \) があると、その挙動は図 11.3.2 の曲線 (3) あるいは (4) のように、最終応力 \(\sigma_u \) は初期たわみのない場合よりも低下する。初期たわみが小さい場合には、曲線 (3) のように座屈応力 \(\sigma_{cr} \) 付近でたわみが急増する現象が現れるが、初期たわみが大きくなるとたわみの急増現象は明確には現れなくなる（曲線 (4)）。

一般に、構造物はいくつかの板要素を溶接して組み立てられるが、この場合には溶接過程で残留応力が発生する。溶接による残留応力がある場合、圧縮力が作用すると、圧縮残留応力が存在する領域では早期に塑性化して剛性低下が起こるために、弾塑性域で座屈が発生する。引張残留応力がある領域では弾性域のままであるが、座屈応力 \(\sigma_{cr} \) よりも小さい応力でたわみ始め、残留応力のない場合よりも小さい荷重で最高荷重に達する。
なお、板厚が極めて薄いとき（幅厚比が大きい場合）には、溶接によって発生する残留応力によって、圧縮力が作用しなくても板の座屈が発生する場合がある。

(2) 座屈後の軟化挙動

図 11.3.2 に示す圧縮板の平均応力-たわみ曲線のうち材料降伏を考慮した ③ ～ ④ では座屈により極限値 \(\sigma_u \) に到達後、荷重が減少するいわゆる軟化挙動を示す。この軟化挙動は、耐震設計などで圧縮板の変形能やエネルギー吸収能を規定する上で重要である。ここでは、軟化挙動に大きく影響する座屈モードの局所化現象について説明する[後藤ら 1995, 1996; Goto et al 1995]。

初期不整がない完全系の圧縮板の場合、図 11.3.3 の曲線 ⑥ のように第 1 分岐により座屈が発生した後、降伏によって極限値 \(\sigma_u \) に到達するが、アスペクト比が \(\alpha = a/b \geq \sqrt{2} \) のときには座屈たわみは形状の等しい 2 次以上の周期的波形から成り立っている。この場合、極限値 \(\sigma_u \) から軸方向～一向圧縮変位 \(u \) をさらに増加させると、図 11.3.3 に応力-軸方向変位関係を示すように、軟化領域で複数の波形のうち一つに変形が集中する座屈モードの局所化現象が生じ、荷重が急激に低下する。局所化現象は、周期的波形の座屈たわみ形状が保持できなくなることにより生じる第 2 分岐点での塑性分岐挙動 (4.3.3 参照) に起因するものである。図 11.3.3 に

図 11.3.1 圧縮を受ける周辺単純支持版（b/t が大きい場合）

図 11.3.2 圧縮板の挙動

図 11.3.3 完全系と周期的な初期たわみを持つ

不整系の応力-軸方向変位

\((\sqrt{2} \leq \alpha \leq \sqrt{6} \) のときの例)[後藤ら. 1996]
示す（5）のように、初期的な初期たわみのある構造においても極限値 \(\sigma_u \) 到達時の座屈モードが 2 以上の極限的な波形から成り立っている場合には、塑性分枝挙動により座屈モードの局所化現象が生じる可能性がある。この場合、初期不整のため極限値 \(\sigma_u \) への到達過程で分岐挙動は生じないので、座屈モードの局所化現象は第１分岐で発生する。座屈モードの局所化現象は、極限値 \(\sigma_u \) に到達後生じるので圧縮板の耐力を低下させるとはないが、変形能やエネルギー吸収能を著しく低下させる可能性がある。座屈モードの局所化現象は板のみならず補剛板にも生じるため、一般的の薄肉構造においては注意する必要がある。なお、繰り返し荷重を受ける場合には、座屈モードの局所化による変形能やエネルギー吸収能の低下はより顕著である。通常の構造では、荷重条件が対称で初期不整あることから、分岐挙動によらず局所化挙動が生じる場合が多い。したがって、幾何学的非線形性を正確に考慮したシェル要素による複合非線形解析を用いて転位領域の挙動を変位制御や弧長制御で追跡すれば、座屈モードの局所化現象を評価することが可能である。

11.3.2 圧縮を受ける補剛板

(1) 座屈挙動

図 11.3.4 に示すように、等間隔に配置された縦補剛材を有する周辺単純支持補剛板が、一様圧縮変位を受ける場合について述べる。

はじめに、補剛材の剛度が非常に大きい場合について述べる。この場合、補剛材間にいた板パネル（サブパネル）の挙動は前節の他補剛圧縮板の挙動に類似している。板パネルの幅 \(b \) と板厚 \(t \) の比、すなわち幅厚比 \(b/t \) が大きければ、まず板パネルが局部座屈し後座屈領域に入り、その応力分布は図 11.3.4(b) のような形となる。図 11.3.5 に示すように、板パネルの応力度を \(\sigma \)、その最大応力度を \(\sigma_{\text{max}} \) とし、次式を満足する有効幅 \(b_e \) を定義する。

\[
b_e = \frac{\int_0^b \sigma dx}{\sigma_{\text{max}}}
\]

(11.3.3)

有効幅 \(b_e \) は、応力レベルが低い時には、補剛材間隔 \(b \) にほぼ等しいが、板パネルが局部座屈した後、徐々に減少し始める。したがって補剛板の終局強度は、図 11.3.6 に示すように、板パネルの有効幅部分と補剛材からなる柱（有効補剛材という）の終局強度にほぼ等しくなる。すると、補剛材本数が多く補剛板の縦横比 \(\alpha_e = a/B \) （\(a \) ：縦補剛材間隔、\(B \) ：補剛板の全幅）が小さくなるほど、補剛板側辺の支持条件の終局強度に及ぼす影響は
小さくなり、有効補剛材を用いる方法（柱モデルアプローチ）は精度のよい終局強度の推定値を与える。

次に、補剛材刚度が非常に小さい場合について述べる。この場合は、補剛板全体が一枚の板（厳密には直交異方性板）として挙動するため、その特性は前節の圧縮を受ける無補剛板のそれに類似している。直交異方向板理論にしたがうと、補剛板の弾性座屈応力

\[
\sigma_{cr} = \frac{D\pi^2}{B^2 t_{eq}^2} \left(\left(\frac{1}{\alpha_t} + \frac{1}{\alpha_t} \right)^2 + \left(\frac{1}{\alpha_t} \right)^2 \eta \gamma \right) \]

(11.3.4)

ここで、\(D \) は板の曲げ剛度, \(n \) はサブパネルの数（\(n = n_1 + 1, n_1 \)：補剛材本数), \(t_{eq} \) は直交異方向板としての換算板厚, \(\alpha_0 \) は軸方向座屈波形数 1 の場合に座屈応力が最小となる長さ比（図 11.3.7 参照）、\(\gamma \) は補剛材の曲げ剛度と板パネルの曲げ剛度との比で補剛材剛比と呼ばれ、以上の記号は、それぞれ次のように与えられる。

\[
D = \frac{EI}{12(1 - \nu^2)} \]

(11.3.5)

\[
t_{eq} = \frac{t + \frac{A}{b}}{1} \]

(11.3.6)

\[
\alpha_0 = \sqrt{1 + \eta \gamma} \]

(11.3.7)

\[
\gamma = \frac{EI}{BD} \]

(11.3.8)

ここで、\(A, I \) はそれぞれ補剛材 1 本の断面積、断面 2 次モメントである。補剛材剛比 \(\gamma \) の増加につれて（\(\gamma = 0 \) のとき無補剛板の座屈応力低下なる）座屈応力は増加するが、補剛材剛比 \(\gamma \) がある大きさ \(\gamma^* \) になるとき補剛材位置で節となる座屈波形となり補剛材で挟まれたサブパネルの座屈応力に一致する。この補剛材剛比 \(\gamma^* \) は最適剛比と呼ばれ、補剛材設計の基準となる重要なパラメータである。補剛材剛比 \(\gamma \) が最適剛比 \(\gamma^* \) よりも大きくなっても理論的には座屈応力は上昇しなくなる。\(\gamma^* \) 以上の補剛材を配置してもその効果はなくなる（図 11.3.8 参照）。しかしながら、たとえば図 11.3.9 に示すように、座屈強度よりも終局強度が大きい場合（補剛板の板厚が薄く、後座屈強度がある場合）には、座屈強度 \(A \) を基準として求めた \(\gamma^* \) では終局強度 \(A' \) に対しては不十分で、終局強度を保証するためには \(A' \) に対応する補剛材剛比が必要である。また、鋼製箱形断面構脚の耐震設計などのように、変形能が要求されるような場合には、\(\gamma^* \) 以上の補剛材の効果が確認されており、宇佐美ら (1991) は\(\gamma^* \) の数倍以上の補剛材剛比が望ましいとしている。ただし、この場合、あまりに補剛材間隔が狭くなると補剛材寸法が大きくなり、製作できなくなるという問題が生じる。
(2) 補剛材の最適剛比 \(\gamma^* \) と必要最小剛比 \(\gamma_{req} \)

ここでは、弾性座屈理論の立場から、補剛材の最適剛比と示し、一つの目安としての補剛材の補剛材剛度の設計法について示す。

いま、図 11.3.10 に示すような経路に補剛された補剛板を考え、周辺 \(\overline{ab}, \overline{bc}, \overline{cd}, \overline{da} \) は単純支持されていると仮定する。直交異方性板理論を用いると、補剛板パネル \(abcd \) の弾性座屈応力度 \(\sigma_{cr} \) は次式で与えられる。

\[
\sigma_{cr} = \frac{Dn^2}{B^2t_{eq}} \left\{ \left(\frac{\alpha}{m} + \frac{n}{m} \right)^2 + \left(\frac{m}{\alpha} \right)^2 n\gamma + \left(\frac{\alpha}{m} \right)^2 n\gamma t \right\}
\] (11.3.9)

ここに、\(m \) は圧縮軸方向の座屈半波数、\(\alpha \) は全パネルの経路比 \(\alpha = L/B \)、\(n_\gamma \) は \(\overline{bc} \) 間に配置された横補剛材によって区切られたサブパネルの数（図 11.3.10 では、\(n_\gamma = 3 \)）である。弾性座屈応力度 \(\sigma_{cr} \) は、\(m \) を \(m < n_\gamma \) の範囲で変化させた場合の最小値にとるものとする。さらに、\(\gamma_t \) は横補剛材の剛比で、横補剛材の断面 2 次モーメントを \(I_t \) とすると。

\[
\gamma_t = \frac{EI_t}{LD}
\] (11.3.10)

である。補剛材の断面 2 次モーメントの評価法には 2 種類がある。1 つは、道路橋示方書に定められているように補剛材の取り付け位置まわりの断面 2 次モーメントを用いる方法であり、他は、DAS1 R012(1978) で採用されているように、板パネルの有効幅部分と補剛材からなる断面の図心軸まわりの断面 2 次モーメントを用いる方法である。ここでは、道路橋示方書 [日本道路協会、2002] で採用されている前者の方法で補剛材の断面 2 次モーメントを評価する。
実用上は図11.3.7に示すように、近似的に以下のσ_{crg}を用いることもできる。
① $\alpha \leq \alpha_0$ の時
式(11.3.9)において$m=1$とした場合のσ_{crg}を用いる。
② $\alpha \geq \alpha_0$ の時

$$\sigma_{crg} = \frac{2D\pi^2}{B^2l_{eq}} \left\{ 1 + \sqrt{(1 + n\gamma)(1 + n_t\gamma_t)} \right\}$$ (11.3.11)

ここに,

$$\alpha_0 = \frac{\sqrt{1 + n\gamma}(1 + n_t\gamma_t)}{2}$$ (11.3.12)

図11.3.10で、間の横補剛材ef, hgが無い場合には、縦補剛材のみで補剛された基準長さαの補剛板となり、この場合には、上の式に$L=\alpha$および$\gamma_t = 0$を代入して、縦補剛材のみを有する補剛板の座屈応力式(11.3.4)が得られる。縦補剛材のみを有する補剛板のサブパネル（縦補剛材間の板パネル）の幅厚比パラメータR_pは次のように与えられる。

$$R_p = \frac{1}{\pi t} \sqrt{\frac{12(1 - \nu^2)}{k}} \sqrt{\frac{\sigma_y}{E}}$$ (11.3.13)

一方、補剛板全体の幅厚比パラメータR_tは、式(11.3.4)のσ_{cr}を用いて,

$$R_t = \frac{\sigma_y}{\sigma_{cr}}$$ (11.3.14)

と与えられる。サブパネルの幅厚比パラメータR_pと補剛板全体パネルのそれR_tが等しいとおくと、補剛板パネルを設計する上で一つの基準となる。

$$R_p = R_t$$ (11.3.15)
上式を満たす補剛材剛比を最適剛比 \(\gamma^* \) と呼び、式 (11.3.13) の座屈係数 \(k = 4 \) において、式 (11.3.15) から最適剛比 \(\gamma^* \) は次式のように導出される。

\[
\gamma^* = 4\frac{\alpha t^2}{n(1 + n\delta)} - \frac{(\alpha t^2 + 1)^2}{n} \quad (\alpha t \leq \alpha_{\theta})
\]

\[
= \frac{1}{n} \left(\frac{2n^2(1 + n\delta) - 1}{n} \right) \quad (\alpha t \geq \alpha_{\theta})
\]

ここに、

\[
\delta = \frac{A}{Bt}
\]

である。

ただし、道路橋示方書 [日本道路協会, 2002] では、以下の条件から必要最小剛比 \(\gamma_{req} \) を定めている。

\[
R_t = \max(0.5 ; R_p)
\]

この式は、サブパネルの幅厚比パラメータ \(R_p \) が 0.5 より小さい場合には、サブパネルの耐荷力がすべて \(\sigma_Y \) であると仮定し、補剛板全パネルの \(R_t \) は、耐荷力が \(\sigma_Y \) であるサブパネルの \(R_p (=0.5) \) に等しくなるように補剛材の剛度を低減してよいことを意味する。

縦と横に補剛された補剛板パネルについては、次式の幅厚比パラメータ \(R_{d} \) を定義する。

\[
R_{d} = \max(R_t ; R_t)
\]

ここに、

\[
R_t = \sqrt{\frac{\sigma_Y}{\sigma_{cr}}}
\]

次式を満足する補剛材が、縦横に補剛された補剛板パネルの補剛材を設計する上での 1 つの基準となる。

\[
R_{d} = R_p
\]

ただし、道路橋示方書 [日本道路協会, 2002] の考え方を準用すると、

\[
R_{d} = \max(0.5 ; R_p)
\]

道路橋示方書では、縦横に補剛された補剛板パネルと縦方向のみ補剛された補剛板パネルの弾性座屈応力度が等しくなるように横補剛材が定められているので、横補剛材間隔が非常に狭くなると横補剛材寸法が大きくなりすぎることがあるが、式 (11.3.21) あるいは式 (11.3.22) を満足するように補剛材を設計すると、そのような不合理は起こらなくなる。

11.4 無補剛板の耐荷力

圧縮を受ける板の終局強度は、幅厚比パラメータ \(R \) の関数として与えられる。ここに、

\[
R = \sqrt{\frac{\sigma_Y}{\sigma_{cr}}}
\]

であり、 \(\sigma_Y \) は降伏応力、 \(\sigma_{cr} \) は弾性座屈応力で式 (11.3.1) で与えられる。幅厚比パラメータ \(R \) は、これらの式から、

\[
R = \frac{1}{\pi} \sqrt{\frac{12(1 - \nu^2)}{k}} \sqrt{\frac{\sigma_Y}{E}}
\]

と書くこともできる。ここに、 \(b \) は無補剛板の基準板幅で 11.2 に示す。
11.4.1 周辺単純支持板の終局強度

現在、国内外には膨大な数の圧縮板の強度に関するデータがあり、また、解析結果あるいは実験結果に基づいた多くの終局強度評価式が示されている。表11.4.1に評価式をまとめて示す。また、図11.4.1には表11.4.1の残留応力がある場合の周辺単純支持板の耐荷力曲線を比較して示す。図中、各曲線の説明における数字は表11.4.1に示す強度評価式番号と対応しており、各国の基準曲線もあわせて示している。

<table>
<thead>
<tr>
<th>No.</th>
<th>文献</th>
<th>強度評価式</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>(\sigma_u / \sigma_Y = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(= 0.968/R - 0.286/R^2 + 0.0338/R^3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \leq 0.571))</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fukumoto et.al.[1984]</td>
<td>(\sigma_u / \sigma_Y = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(= -0.174 + 0.968/R - 0.286/R^2 + 0.0338/R^3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \geq 0.571))</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>(\sigma_u / \sigma_Y = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(= 1.133/R - 0.384/R^2 + 0.0468/R^3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \leq 0.658))</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(\sigma_u / \sigma_Y = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(= -0.208 + 1.133/R - 0.384/R^2 + 0.0468/R^3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \geq 0.658))</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>三上[1980]</td>
<td>(\sigma_u / \sigma_Y = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(= (0.526/R)^{0.7})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \leq 0.526))</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Kármán [1932]</td>
<td>(\sigma_u / \sigma_Y = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(= 1/R)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \geq 1))</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>宇佐美ら [1981][1982]</td>
<td>(\sigma_u / \sigma_Y = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(= C/R)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \leq C))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(C=0.737:HT60 材)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(C=0.75:HT80 材)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>奈良ら [1988]</td>
<td>(\sigma_u / \sigma_Y = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(= (0.453/R)^{0.495})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \leq 0.453))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\sigma_{tc}/\sigma_Y = -0.4)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>(\sigma_u / \sigma_Y = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(= (0.451/R)^{0.511})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \leq 0.451))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \geq 0.451))</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>土屋ら [1988]</td>
<td>(\sigma_u / \sigma_Y = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(= (0.7/R)^{0.86})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \leq 0.7))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \geq 0.7))</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>宇佐美ら [1992][1996]</td>
<td>(\sigma_u / \sigma_Y = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(= 1/2R \cdot (\beta - \sqrt{\beta^2 - 4R}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \leq R_0))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>((R \geq R_0))</td>
<td></td>
</tr>
</tbody>
</table>

図11.4.1 周辺単純支持板の耐荷力曲線
表 11.4.2 無補剛板の耐荷力実験データ数[Fukumoto et al.,1984]

<table>
<thead>
<tr>
<th>供試体形状</th>
<th>ヨーロッパ</th>
<th>北アメリカ</th>
<th>日本</th>
<th>総計</th>
</tr>
</thead>
<tbody>
<tr>
<td>單板</td>
<td>362</td>
<td>55</td>
<td>93</td>
<td>417</td>
</tr>
<tr>
<td>溶接正方形箱形</td>
<td>74</td>
<td>8</td>
<td>-</td>
<td>83</td>
</tr>
<tr>
<td>正方形箱形鋼管</td>
<td>49</td>
<td>49</td>
<td>-</td>
<td>49</td>
</tr>
<tr>
<td>溶接長方形箱形</td>
<td>20</td>
<td>-</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>長方形箱形鋼管</td>
<td>22</td>
<td>22</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>十字断面</td>
<td>20</td>
<td>12</td>
<td>72</td>
<td>104</td>
</tr>
<tr>
<td>合計</td>
<td>476</td>
<td>20</td>
<td>297</td>
<td>793</td>
</tr>
</tbody>
</table>

Fukumoto et al.(1984) は、表 11.4.2 に示す総計 793 件の無補剛圧縮板の強度実験データを集めた数値データバンクを基に、残留応力を含む板（溶接したままの板要素および箱形短柱）と残留応力を除去した板の終局耐荷力 σ_u/σ_Y について、それぞれの耐荷力の平均値を表す曲線（M 曲線）および平均値から標準偏差の 2 倍を差し引いた値を示す曲線（M-2S 曲線）を提案した（表 11.4.1 参照）。ただし、これらの曲線は縦横比が 1.0 以上の板のみを考えている。図 11.4.2 および図 11.4.3 に、実験結果を示す。これらの図中の ω は、変動係数（標準偏差/平均値）を表す。これらの図から、M-2S 曲線は、実験値のほぼ下界曲線となっていることがわかる。Fukumoto et al.(1984) は、箱形短柱と単一板の実験結果から得られた強度の差は統計的に見てほとんど差がないとしている。

$$\frac{\sigma_u}{\sigma_Y} = \left(\frac{C}{R}\right)^n$$

(11.4.3)

図 11.4.2 周辺単純支持板の耐荷力曲線（残留応力有）[Fukumoto et al.,1984]
図 11.4.3 周辺単純支持板の耐荷力曲線 (残留応力無) [Fukumoto et al., 1984]

の形で与えられており、BS5400(1982) に採用されている形と同様である。初期不整を考慮した弾塑性有限変位解析結果では、幅厚比パラメータ R が 0.5〜1.0 付近の耐荷力がほぼ降伏応力に近いところ ($\sigma_u/\sigma_Y = 1$ 付近) で耐荷力曲線は上に凸となるが、式 (11.4.3) の形の曲線は上に凸の部分を表すことができず、常に下に凸となる。しかし式の形は非常に簡単である。

なお、Kármán (1932) の曲線は初期不整のない圧縮板に有効幅の概念を導入して誘導されたものであり、これに初期不整の影響を考慮したものが No.7 の宇佐美ら (1981, 1982) の評価式である。宇佐美らは、C の値として、HT80 材では 0.75、HT60 材では 0.737 を提案している。図 11.4.1 に示す曲線は、HT60 材 ($C=0.737$) である。

宇佐美ら (1992, 1996) は初期不整を考慮した評価式を提案した (表 11.4.1 の No.11)。式中、β は次式で与えられる。

$$\beta = 1 + C(R - R_0) + R$$ \hspace{1cm} (11.4.4)

ここに,

$$C = -157 \left(\frac{\Delta}{b} \right) \left(\frac{\sigma_{rc}}{\sigma_Y} \right) + 43 \left(\frac{\Delta}{b} \right) + 1.2 \left(\frac{\sigma_{rc}}{\sigma_Y} \right) + 0.03$$ \hspace{1cm} (11.4.5)

$$R_0 = \bar{A} - \bar{B} \ln \left(\frac{\Delta}{b} \right) \leq 1.0$$ \hspace{1cm} (11.4.6)

$$\bar{A} = -0.05 - 0.542 \exp \left(-11.9 \frac{\sigma_{rc}}{\sigma_Y} \right)$$ \hspace{1cm} (11.4.7)

$$\bar{B} = 0.09 + 0.107 \exp \left(-12.4 \frac{\sigma_{rc}}{\sigma_Y} \right)$$ \hspace{1cm} (11.4.8)
また、適用範囲は、

\[
0 \leq \frac{\sigma_{rc}}{\sigma_Y} \leq 0.5, \quad \frac{1}{3233} \leq \frac{\Delta}{b} \leq \frac{1}{150}
\] (11.4.9)

とされている。

上式で、\(\sigma_{rc} \) は圧縮残留応力、\(\Delta \) は最大初期たわみ（たわみ形状は正弦波状）である。残留応力のない場合とある場合について奈良ら (1987, 1988)、福本らの平均値曲線 [Fukumoto et al., 1984] と比較し、残留応力のない場合にはこの提案式は十分満足できることを示している。残留応力がある場合には、幅厚比パラメータが小さいときにはほぼ一致した値となるが、幅厚比が大きくなると差が大きくなる。なお、図 11.4.1 に示す曲線は、\(\sigma_{rc}/\sigma_Y = 0.4, \Delta/b = 1/150 \) の場合である。

図 11.4.1～11.4.3 から、種々の強度評価式はかなりばらついていることがわかる。これは初期たわみや残留応力あるいは降伏応力の違いなどに起因する。図 11.4.1 に示すように、道路橋示方書 [日本道路協会、2002] は、幅厚比の大きい範囲で、諸外国に比してかなり小さく、また、実験データの下限値を与える M-2S 曲線よりも控えめな値であることがわかる。

11.4.2 3 辺周辺単純支持 1 辺自由の板の終局強度

11.2 で述べたように、架設時の単純プレートガーデーの圧縮フランジ、あるいは連続プレートガーデーの中間支点付近の下圧縮フランジなどは 3 辺単純支持 1 辺自由の矩形板とみなすことができる。これらのフランジは、ねじりにともなうしぼり応力がない場合には、曲げモーメントによる圧縮応力が作用する。この終局強度に関する研究は少なく、フランジねじれ座屈を対象とした Basler et al. (1961) の式、Komatsu et al. (1983) の弾塑性有限変位解析、初期不整を考慮した宇佐美 (1996) の式がある。また、福本ら (1990) は、終局強度の統一評価の試みの中で、この境界条件における板の終局強度評価式を示している。これらの評価式はそれぞれ以下のようなである。なお、幅厚比パラメータ \(R \) の座屈係数 \(k \) は、その最小値すなわち幅厚比 \(\alpha (= a/b) = \infty \) のときの座屈係数 \(k = 0.425 \) を採る。

Basler et al. (1961) の式は、次式で与えられる。

\[
\frac{\sigma_u}{\sigma_Y} = 1 \quad (R \leq 0.45)
\]

\[
= 1 - 0.53(R - 0.45)^{1.36} \quad (0.45 < R < \sqrt{2})
\]

\[
= (1/R)^2 \quad (\sqrt{2} \leq R)
\] (11.4.10)

福本ら (1990) の式は、

\[
\frac{\sigma_u}{\sigma_Y} = 1 \quad (R \leq 0.7)
\]

\[
= (0.7/R)^{0.64} \quad (R > 0.7)
\] (11.4.11)

である。

また、宇佐美ら (1996) は、幅厚比パラメータ \(R \) のほかに、残留応力と初期たわみの大きさを含めて強度式を次式のように与えている。

\[
\frac{\sigma_u}{\sigma_Y} = \frac{1}{2R} \left(\beta - \sqrt{\beta^2 - 4R} \right) + 2.5R(\beta - R - 1)^2 \quad (R \leq R_0)
\]

\[
= \left(\beta - \sqrt{\beta^2 - 4R} \right) + 2.5R(\beta - R - 1)^2 \quad (R > R_0)
\] (11.4.12)
ここに、

\[\beta = 1 + \tilde{C}(R - R_0) + R \] \hspace{1cm} (11.4.13)

\[\tilde{C} = C_1 - C_2 \exp \left(-\frac{C_3 \sigma_{rc}}{\sigma_Y} \right) \] \hspace{1cm} (11.4.14)

\[C_1 = 0.276 - 4.71 \frac{\Delta}{b} \] \hspace{1cm} (11.4.15)

\[C_2 = 0.278 - 9.18 \frac{\Delta}{b} \] \hspace{1cm} (11.4.16)

\[C_3 = 3.55 - 211 \frac{\Delta}{b} \] \hspace{1cm} (11.4.17)

\[R_0 = \bar{A} - \bar{B} \ln \left(\frac{\Delta}{b} \right) \leq 1.0 \] \hspace{1cm} (11.4.18)

\[\bar{A} = -0.603 - 0.071 \exp \left(-13.6 \frac{\sigma_{rc}}{\sigma_Y} \right) \] \hspace{1cm} (11.4.19)

\[\bar{B} = 0.219 + 0.031 \exp \left(-13.2 \frac{\sigma_{rc}}{\sigma_Y} \right) \] \hspace{1cm} (11.4.20)

ただし、適用範囲は、

\[0 \leq \frac{\sigma_{rc}}{\sigma_Y} \leq 0.5 \right. , \quad \frac{1}{809} \leq \frac{\Delta}{b} \leq \frac{1}{50} \] \hspace{1cm} (11.4.21)

である。

図 11.4.4 3 辺単純支持 1 辺自由の板の耐荷力曲線

図 11.4.4 には、圧縮残留応力 \(\sigma_{rc} \) が \(\sigma_{rc}/\sigma_Y = 0.4 \)、最大初期たわみ \(\Delta \) が \(\Delta/b = 1/150 \) のときのそれぞれの耐荷力曲線を示したものである。図には、道路橋示方書 [日本道路協会、2002] および Euler 曲線もあわせて示すが、図からわかるように、道路橋示方書は、幅厚比の大きい範囲で、他の曲線に比べてかなり低い強度を与えていることがわかる。これは弾性座屈荷重を基本に定めたもので後座屈耐力を考慮していないためと考えられる。幅厚比パラメータ \(R < 1 \) の範囲では、Komatsu et al.[1983], Basler et al.[1961], 宇佐美ら (1996) はほとんど一致している。ただし、Komatsu et al. の適用範囲は \(R < 1.3 \) としている。また、Basler et al. は、\(R > 1 \) では他の曲線よりも低めに評価する。福本ら(1990) の曲線は、\(R < 1 \) の範囲では宇佐美らのそれ
11.4.3 面内の曲げと圧縮を受ける周辺単純支持板の終局強度

(1) 有効幅公式

圧縮と曲げを受けて板が屈屈した後，図 11.4.5 に示す斜線部分が有効に働くと考え，宇佐美ら (1982) は有効幅 b_e, b_{c1}, b_{c2} を提案した。さらに，初期不整の影響を考慮した有効幅を与えている [宇佐美ら，1992]。

終局状態（図 11.4.5 の最大圧縮応力 σ_1 が降伏応力 σ_Y に達する状態）での有効幅公式は次式で表される。

\[
b_{c1} = \frac{\bar{A}}{4R} \left(\beta - \sqrt{\beta^2 - 4R} \right) \quad (11.4.22)
\]

ここに,

\[
\beta = 1 + \bar{C}(R - R_0) + R \quad (11.4.23)
\]

\[
\bar{A} = \frac{\sigma_{re}}{0.3\sigma_Y} \left(1 + 45 \frac{\Delta}{b} \phi \right) + \left(1 - \frac{\sigma_{re}}{0.3\sigma_Y} \right) \left(1 - \frac{\phi^2}{16} \right) \quad (11.4.24)
\]

であり，\bar{C}, R_0 は，それぞれ式 (11.4.5), (11.4.6) で表される。

\[\sigma_1 \leq 0, \sigma_2 \leq 0 \quad \text{のとき} \]

\[
\frac{b_{c2}}{b} = (1 + \xi \phi) \frac{b_{c1}}{b} \quad (11.4.25)
\]

ここで,

\[
\xi = \frac{\sigma_{re}}{0.3\sigma_Y} \left(0.59 - 86 \frac{\Delta}{b} \right) + \left(1 - \frac{\sigma_{re}}{0.3\sigma_Y} \right) \left(0.44 + 29 \frac{\Delta}{b} \right) \quad (11.4.26)
\]

ただし，$b_{c1} + b_{c2} \leq b$ である。

\[\sigma_1 \leq 0, \sigma_2 \geq 0 \quad \text{のとき} \]

\[
\frac{b_{c2}}{b} = (1 + \xi) \frac{b_{c1}}{b} \quad (11.4.27)
\]
ここに、

\[\xi = \sigma_{cr} \left(-0.68 - 86 \frac{\Delta}{b} + \frac{1.27}{\phi^2} \right) + \left(1 - \frac{\sigma_{cr}}{0.3\sigma_Y} \right) \left(-0.53 + 29 \frac{\Delta}{b} + \frac{0.97}{\phi^2} \right) \] (11.4.28)

ただし、\(b_{t1} + b_{t2} \leq b/\phi \)である。これらの式中、\(\phi \) は終局状態での断面欠損を考慮した応力勾配係数で、

\[\phi = (\sigma_Y - \sigma_2)/\sigma_Y \] (11.4.29)

で与えられる。また、幅厚比パラメータ \(R \) については、次式の座屈係数 \(k \) を用いて計算するものとする。

\[k = \frac{8.4}{2.1 - \psi} \quad (0 \leq \psi \leq 1) \]
\[= 10\psi^2 - 13.73\psi + 11.36 \quad (1 \leq \psi \leq 2) \] (11.4.30)

ここに、\(\psi \) は断面欠損を考慮しない応力勾配係数で、

\[\psi = (\sigma_1 - \sigma_2)/\sigma_1 \] (11.4.31)

である。

式 (11.4.22)～(11.4.28) の適用範囲は、

\[0 \leq \frac{\sigma_{cr}}{\sigma_Y} \leq 0.3, \quad \frac{1}{500} \leq \frac{\Delta}{b} \leq \frac{1}{150} \] (11.4.32)

となっている。

式 (11.4.22)～(11.4.28) は、終局状態 (\(\sigma_1 = \sigma_Y \)) での有効幅公式であるが、任意状態での有効幅公式は、式 (11.4.22) の幅厚比パラメータ \(R \) を \(R = \sqrt{\sigma_1/\sigma_{cr}} \) に、式 (11.4.29) の \(\sigma_Y \) を \(\sigma_1 \) にそれぞれ書き換えることによって求められる。ここで、\(\sigma_{cr} \) は圧縮と曲げを受ける板の弾性座屈耐力（ただし、応力勾配係数は \(\phi \) を用いる）である。

図 11.4.6 は、有効幅公式による耐荷力と有限要素法解析結果を比較したものである。応力勾配係数 \(\phi \) が大きいときは有限要素法による解と有効幅公式によるそれとは多少の差異があるが、全体的にみて精度は十分と思われる。なお、図の縦軸 \(\sigma_{lm}/\sigma_Y \) は、

\[\frac{\sigma_{lm}}{\sigma_Y} = \frac{N_u}{N_Y} + \frac{M_u}{M_Y} \] (11.4.33)

で、\(N_u, M_u \) は、それぞれ圧縮耐荷力および耐荷曲げモーメント、\(N_Y, M_Y \) は、それぞれ全断面降伏軸力および降伏曲げモーメントである。

![図 11.4.6 有効幅公式による耐荷力と有限要素法解析結果との比較](image)
(2) 強度相関曲線

奈良ら (1987, 1988) は、軸圧縮のみが作用する強度と面内曲げのみが作用する強度を別々に求め、強度相関曲線から耐荷力を求める方法を提案している。

まず、軸力のみが作用する \((\phi = 0)\) 場合の圧縮耐荷力 \(N_{u0}\) は、表 11.4.1 に示す奈良らの強度評価式から求まる。すなわち

\[
\frac{N_{u0}}{N_Y} = \frac{\sigma_u}{\sigma_Y} \quad (11.4.34)
\]

一方、面内の曲げのみが作用する場合 \((\phi = 2)\) の耐荷力をモーメントは、次式で与えている。

a) 残留応力のある場合 \((\sigma_{rc}/\sigma_Y = 0.4)\)

\[
\frac{M_{u0}}{M_Y} = 1.5 \quad (R \leq 1.21)
\]

\[
= (1.21/R)^{0.429} \quad (R > 1.21)
\]

b) 残留応力のない場合 \((\sigma_{rc}/\sigma_Y = 0)\)

\[
\frac{M_{u0}}{M_Y} = 1.5 \quad (R \leq 0.79)
\]

\[
= (0.79/R)^{0.594} \quad (R > 0.79)
\]

強度相関曲線は次式で与える。

\[
\left(\frac{N_u}{N_{u0}}\right)^p + \left(\frac{M_u}{M_{u0}}\right)^q = 1 \quad (11.4.37)
\]

ここに、

a) 残留応力のある場合 \((\sigma_{rc}/\sigma_Y = 0.4)\)

\[
p = 0.468R^2 - 1.63R + 2.0, \quad q = 0.041R^2 + 0.34R + 0.974 \quad (11.4.38)
\]

b) 残留応力のない場合 \((\sigma_{rc}/\sigma_Y = 0)\)

\[
p = 0.782R^2 - 1.77R + 1.88, \quad q = -0.25R^2 + 0.523R + 0.968 \quad (11.4.39)
\]

図 11.4.7 に、式 (11.4.36) で表される強度相関曲線と有限要素法による弾塑性有限変位解析結果を比較して示す。図中のプロットした記号は解析結果を示し、実線が強度相関曲線である。図からわかるように、概ね図中の破線で示した直線 \(\frac{N_u}{N_{u0}} + \frac{M_u}{M_{u0}} = 1\) の外側にあることがわかる。

![図 11.4.7 強度相関曲線](image_url)
11.4.4 その他の境界条件を持つ圧縮板の終局強度

旧版の座席設計ガイドライン [土木学会，1987] では，上述以外の境界条件に対する矩形板の終局強度式が与えられている。現在では，板の耐荷力は，有限要素法により弾塑性有限変位解析を行って，比較的容易に得られるようになっているが，以下の条件で固定支持板と3辺固定支持1辺自由の板の耐荷力曲線を示しておく。

(1) 周辺固定支持された圧縮板

図11.2.3に示すコンクリート充てん方式の合成柱の圧縮鋼板や図11.2.4に示すようなアーチ橋補剛材の圧縮フランジなどでは，コンクリート側への鋼板の座屈が拘束され，その圧縮耐荷力は周辺固定支持された圧縮板モデルに近する。周辺が固定支持された矩形板の耐荷力は次式で与えられる [座席設計ガイドライン，1987]。

\[
\frac{\sigma_u}{\sigma_Y} = \begin{cases}
1 & (R \leq 0.5) \\
0.433(R - 0.5)^2 - 0.831(R - 0.5) + 1.0 & (R > 0.5)
\end{cases}
\] (11.4.40)

ここに，幅厚比パラメータ \(R \) における座屈係数は，\(k = 10.67 \) である。上式は，初期たわみ \(\Delta/b = 1/150 \)，残留応力 \(\sigma_{rc}/\sigma_Y = 0.4 \) を与えて，弾塑性有限変位解析結果を基に求めたものである。

(2) 3辺固定支持1辺自由の圧縮板

図11.2.5のプレートガーダーの圧縮フランジがコンクリート床版により拘束されるような場合，フランジの終局強度は3辺固定1辺自由の圧縮板のそれを用いて近似できる。

\[
\frac{\sigma_u}{\sigma_Y} = \begin{cases}
1 & (R \leq 0.5) \\
0.571(R - 0.5)^2 - 1.010(R - 0.5) + 1.0 & (R > 0.5)
\end{cases}
\] (11.4.41)

上式は，初期たわみ \(\Delta/b = 1/100 \) で残留応力 \(\sigma_{rc}/\sigma_Y = 0.3 \) を与えて，弾塑性有限変位解析結果を基に求めたものである。ただし，座屈係数は，

\[
k = \frac{4}{\alpha^2} + \frac{40}{3\pi^2} + \frac{15\alpha^2}{\pi^4} - \frac{20\nu}{\pi^2}
\] (11.4.42)

となり，\(\alpha = 2.26 \) のとき最小値 \(k = 2.31 \) となる。

11.5 補剛板の耐荷力

11.5.1 圧縮を受ける周辺単純支持補剛板の終局強度

補剛板の基本強度を評価する場合，無補剛板要素の基本強度のように幅厚比パラメータだけで整理することは不可能である。一方，実務面からみれば，補剛板の強度評価法はできるだけ簡単なものが望ましい。先に述べたように，多くの縦補剛材を有する補剛板は，補剛材と板の有効幅部分（図11.3.5）からなるT形柱を基本とする柱モデルアプローチ [小松ら，1980] が可能となる。柱モデルアプローチは，図11.5.1に示すように，補剛板を板パネルの有効部分（有効幅 \(b_e \)）と縦補剛材の有効部分からなるT形柱の集合とみなして，耐荷力を求める方法である。

柱モデルアプローチによれば，図11.5.1のように同じ縦補剛材が等間隔に配置されている補剛板が一緒圧縮を受ける場合の終局強度は次式で与えられる。

\[
N_u = \left\{ \sigma_u n A_T + \left(\frac{\sigma_u}{\sigma_Y} \right)_{plate} b_e t \right\} \sigma_Y
\] (11.5.1)

ここに，\(A_T \) はT形柱モデルの断面積，\(n \) はT形柱モデルの本数（図11.5.1では\(n = 3 \)），\(t \) は板パネルの板厚である。式中，\(\left(\frac{\sigma_u}{\sigma_Y} \right)_{plate} \) は，図11.5.1に示す補剛板断面の両端（支持線）部にある板の有効部分が
受け持つ圧縮強度であり、左右両方をあわせて周辺単純支持板の強度評価式（表 11.4.1 に示す）から得られる。また、$$\sigma_u / \sigma_Y$$ は、T 形柱 1 本の軸圧縮耐荷力で柱の終局強度曲線を用いて評価できる。

小松ら (1980) は、鋼種（降伏応力の違い）に対応して、それぞれの鋼種での T 形柱の終局強度 $$\sigma_u / \sigma_Y$$ を、T 形柱の細長比パラメータ

$$\hat{\lambda} = \frac{1}{\pi} \sqrt{\frac{\sigma_Y}{E} \frac{a}{r}}$$ (11.5.2)

の関数として与えている。ここに、$$r$$ は T 型柱の断面 2 次半径 ($$r = \sqrt{I_T / A_T}$$, $$I_T$$: T 型柱の断面 2 次モーメント) で、有効幅 $$b_e$$ は、次式で与えられている。

$$\frac{b_e}{b} = 0.702 R_e^3 - 1.640 R_e^2 + 0.654 R_e + 0.926$$ (11.5.3)

ここで、

$$R_e = 0.569 \frac{b}{t} \sqrt{\frac{\sigma_u}{E}}$$ (11.5.4)

上式では、$$R_e$$ の計算に $$\sigma_u$$ が必要であり、$$\sigma_u$$ を求めるためには反復計算となる。ただし、この反復は 2、3 回で収束する。

度を求めると、図 11.5.3 のようになる。また、図 11.5.4 には、補剛材の剛度を変化させて柱モデルアプローチにより求めた耐荷力曲線を示す。小松ら、1980。これらの図の鋼種は SS400 である。

図 11.5.3、図 11.5.4 から、道路橋示方書（日本道路協会、2002）の耐荷力曲線の傾向は弾塑性有限変位解析の結果とかなり異なっていることがわかる。道路橋示方書の耐荷力曲線は、比較的補剛材本数の少ない補剛板を用いた実験的に研究に基づいて定められたものであり、補剛材本数が多くなる（n ≥ 4）とかななりずしも合理的であるとはいえなくなる。

また、図 11.5.4 から、補剛材剛比 γ を道路橋示方書の必要剛比 γreq より大きくなりすることによって、圧縮強度がかなり上昇することがわかる。道路橋示方書では、補剛材の剛度に関係なく一定の耐荷力曲線を用いているので、補剛材の剛度を大きくすることによる利点が活かされていない。
奈良ら (1988b) は、補剛材本数が 4 本以上であれば、圧縮補剛板の終局強度は、$b_e/b = 1$ として、多リブモデルを用いて評価できるとし、このモデルを用いて、実橋の初期たわみデータと残留応力を考慮した強度曲線を統計学的手法に基づいて求めている。さらに、基本強度曲線を、近似式として幅厚比パラメータ R の 3 次多項式で与え、実験結果と本近似式から、圧縮補剛板の耐荷力評価式を式 (11.5.1) のように与え、T 形柱の強度 σ_u/σ_Y を次のように与えている [福本ら, 1990].

$$\frac{\sigma_u}{\sigma_Y} =
\begin{cases}
1 & (\bar{\lambda}^* \leq 0.2) \\
S - \sqrt{S - 4\bar{\lambda}^*^2 / 2\bar{\lambda}^*^2} & (\bar{\lambda}^* > 0.2)
\end{cases} \quad (11.5.5)$$

ここで、

$$S = 1 + C(\bar{\lambda}^* - 0.2) + \bar{\lambda}^*^2 \quad (11.5.6)$$

で、終局強度曲線の平均値曲線では $C = 0.339$、下限値曲線では $C = 0.765$ を採る。平均値曲線は、柱の耐荷力曲線である ECCS-b 曲線、下限値曲線 ECCS-d 曲線にほぼ一致する [ECCS,1983]. また、$
\bar{\lambda}^* = (235/\sigma_Y)^{1.2} \bar{\lambda}$

(11.5.7)

ただし、σ_Y の単位は、MPa(N/mm²) である。また、次式で表される細長比パラメータ

$$\bar{\lambda} = \frac{1}{\pi} \frac{1}{\sqrt{\left(\frac{\sigma_u}{\sigma_Y}\right)_{plate}}} \sqrt{\frac{\sigma_Y}{E}} \frac{a}{\beta \frac{a}{r}} \quad (11.5.8)$$

は、鋼種 SS400 に対応しているので、鋼種（降伏応力）の違いによる影響を考慮するために、式 (11.5.7) のように細長比パラメータを補正している。また、式 (11.5.8) の β は、

$$\beta = 1 \quad (C > 0.54)$$
$$= 1/(1.164C^{0.251}) \quad (0 \leq C \leq 0.54) \quad (11.5.9)$$

である。ここに、

$$C = (a/B)^{3}(I_t/I_T) \quad (11.5.10)$$

これらの式で、a : 橫補剛材間隔 (図 11.5.2 参照), r : 多リブモデルにおける T 柱の板パネルに平行な主軸回りの断面 2 次半径, B : 橫補剛板の全幅, I_t : 橫補剛材の板パネルに平行な主軸回りの断面 2 次モーメント, I_T : T 形柱の断面 2 次モーメントである。

11.5.2 圧縮と面内曲げを受ける周辺単純支持補剛板

(1) 弾性座屈応力と補剛材の最適剛比

宇佐美ら (1976) は、等間隔に配置された補剛材を有する補剛板の弾性座屈強度を、直交異方性板理論により求め、弾性座屈係数の近似式を求めて、それを基に補剛板の設計最小板厚、補剛材の必要剛比を与えた。この設計式は、基本的には道路橋示方書の基準と同じ観点に立っており、DIN4114 の剛な補剛材に対する設計概念を参考にして道路橋示方書の一定圧縮を受ける補剛板の規定を拡張したもので、応力勾配のない一様圧縮の場合には道路橋示方書の基準と一致する。なお、文献では、有限要素法により残留応力を考慮した非弾性座屈解析を実施して、補剛材が不等間隔に配置される場合の最適位置、補剛材必要剛比も提案しているが、ここでは
図 11.5.5 面内曲げと圧縮を受ける補剛板

割愛する。

直交異方性板理論に従うと、図 11.5.5 に示すような圧縮と面内曲げを受ける補剛板の弾性座屈応力度は次式で与えられる [宇佐美ら, 1976]。

\[
\sigma_{cr} = k_{bc} \sigma_e \quad (11.5.11)
\]

\[
\sigma_e = \frac{D\pi^2}{B^2 t} \quad (11.5.12)
\]

ここで、\(k_{bc} \) は、図 11.5.5 に示す補剛板の各サブパネルのうち最も危険となるサブパネルの座屈係数 \(k_{bcl} \) と補剛板全体の座屈係数 \(k_{bce} \) の小さい方で、

\[
k_{bc} = \min(k_{bcl}, k_{bce}) \quad (11.5.13)
\]

である。式 (11.5.13) の \(k_{bcl}, k_{bce} \) は、それぞれ次のように与えることができる。

\[
k_{bcl} = \frac{8.4n^3}{2.1n - \psi} \quad (11.5.14)
\]

ただし、上式の適用範囲は

\[
0 \leq \psi \leq 2 \quad \text{で、} \quad n \text{はサブパネルの数である。} \quad \text{式 (11.5.14) は、図 11.5.5 に示す基準サブパネルの応力勾配が} \psi/n \text{であるから、これを式 (11.4.30) へ代入して得られる。そこで、} \psi \text{は応力勾配式 (11.4.31) で与えられる。}
\]

一方、補剛板全体の座屈係数 \(k_{bce} \) は、

\[
k_{bce} = \frac{1}{\alpha_t^2(1 + n\delta)} \quad (11.5.15)
\]

ただし、上式の適用範囲は \(\alpha_t \leq \alpha_{10} \) である。

ここに、

\[
R_i = (1 + \delta^2 \alpha_i^2)^2 + n\gamma \quad i = 1, 2 \quad (11.5.16)
\]

\[
S_0 = 1 - \psi/2 \quad (11.5.17)
\]

\[
S_{12} = \frac{16\psi}{9\pi^2} \quad (11.5.18)
\]

であり、

\[
\alpha_t = a/B \quad (11.5.19)
\]

\[
\delta = \frac{A_s}{Bi} \quad (11.5.20)
\]
ここで、A_t は補剛材 1 本の断面積、t は補剛板の板厚である。

式 (11.5.15) の近似式として、次式を用いることもできる [宇佐美ら, 1976]。

① $0 \leq \psi \leq 1$ のとき

$$\frac{k_{bcg}}{k_e} = \frac{2.1}{2.1 - 0.9\psi} \quad (0 \leq \alpha_t \leq \infty) \quad (11.5.21)$$

② $1 \leq \psi \leq 2$ のとき

$$\frac{k_{bcg}}{k_e} = 1.75 + 2.1(\psi^2 - \psi) \frac{\alpha_t}{\alpha_{t0}} \quad (0 \leq \alpha_t \leq \alpha_{t0})$$

$$= 1.75 + 2.1(\psi^2 - \psi) \quad (\alpha_{t0} \leq \alpha_t) \quad (11.5.22)$$

ここで、k_e は、一様圧縮 ($\psi = 0$) のときの座屈係数で、

$$k_e = \left(1 + \frac{\alpha_t}{(1 + n\delta)}\right)^2 \quad (11.5.23)$$

である。

次に、補剛材の最適剛比 γ^* は、最も応力レベルの高いサブバレン（補剛材が等間隔に配置される場合には、図 11.5.5 の斜線部の基準サブバレンとなる）の座屈応力と補剛板全体のそれが等しいという条件から求められ、以下のようにになる。

① $\alpha_t \leq \alpha_{t0}$ のとき

$$\gamma^* = 4\rho_1 \alpha_t^2 n(1 + n\delta) - \frac{(1 + \alpha_t^2)^2}{n} \leq \frac{1}{n} (\alpha_{t0}^4 - 1) \quad (11.5.24)$$

② $\alpha_t \geq \alpha_{t0}$ のとき

$$\gamma^* = \frac{1}{n} (\alpha_{t0}^4 - 1) \quad (11.5.25)$$

ここで、

$$\alpha_{t0} = \sqrt{2\rho_0 n^2 (1 + n\delta)} - 1 \quad (11.5.26)$$

$$\rho = \frac{2.1 - 0.9\psi}{2.1 - \psi/n} \quad (0 \leq \psi \leq 1) \quad (11.5.27)$$

$$= \frac{2.1}{\left(2.1 - \frac{\psi}{n}\right) \left(1.75 + 2.1(\psi^2 - \psi) \frac{\alpha_t}{\alpha_{t0}}\right)} \quad (1 \leq \psi \leq 2)$$

$$\rho_0 = \rho \quad (0 \leq \psi \leq 1)$$

$$= \left(2.1 - \frac{\psi}{n}\right) \left(1.75 + 2.1(\psi^2 - \psi)\right) \quad (-1 \leq \psi \leq 0) \quad (11.5.28)$$

(2) 終局強度相関式

奈良ら (1987b), 福本ら (1990) は、面内曲げモーメントと軸圧縮力の組合せを受ける補剛板の終局強度相関式を次式のように与えている。

$$N_u^{*p} + M_u^{*q} = 1 \quad (11.5.29)$$

ここで、

$$N_u^* = \left(\frac{N}{N_Y}\right) / \left(\frac{N_u}{N_Y}\right)_{\varphi = 0} \quad (11.5.30)$$

$$M_u^* = \left(\frac{M}{M_Y}\right) / \left(\frac{M_u}{M_Y}\right)_{\varphi = 2} \quad (11.5.31)$$
で、N, M はそれぞれ圧縮耐荷力、耐荷曲げモーメントを示し、N_u, M_u はそれぞれ軸力のみおよび面内曲げモーメントのみが作用したときの終局耐荷力、N_Y, M_Y は、それぞれ降伏軸力、降伏曲げモーメントである。式 (11.5.29) で、

$$p = 3.636R^2 - 6.458R + 3.821$$ \hspace{1cm} (11.5.32)

$$q = -3.392R^2 + 5.571R - 0.961$$ \hspace{1cm} (11.5.33)

また、ϕ および R はそれぞれ断面力比、幅厚比パラメータで、次式で与えられる。

$$\phi = \frac{2M/M_Y}{[(N/N_Y) + (M/M_Y)]}$$ \hspace{1cm} (11.5.34)

$$R = \frac{b}{\pi t} \sqrt{\frac{12(1 - \nu^2)}{k}} \sqrt{\frac{E}{\sigma_Y}}$$ \hspace{1cm} (11.5.35)

ここで、座屈係数 k は、

$$k = 8.4/(2.1 - \phi) \quad \quad (0 \leq \phi \leq 1)$$

$$= 10(1 - \phi)^2 - 6.27(1 - \phi) + 7.63 \quad \quad (1 < \phi)$$ \hspace{1cm} (11.5.36)

である。

なお、面内曲げモーメントのみ作用する補剛板の耐荷曲げモーメント M_u は、次のようにして求められる。補剛材が必要剛を満たす補剛板が曲げを受けると、終局状態での補剛板の屈間応力分布は、幅厚比パラメータが小さく補剛材本数が少ないほど全塑性状態に近づき、逆に幅厚比パラメータが大きく補剛材本数が多いほど全塑性状態から遠ざかる傾向にある。また、圧縮側は座屈するために、応力分布は圧縮側と引張側で非対称になると考えられるが、補剛材本数が2以上の場合には圧縮側と引張側で対称な応力分布となることがわかった。これより図 11.5.6 に示すように、圧縮側と引張側で対称な応力分布を仮定し、端補剛材位置の補剛材を含む板パネルが終局状態に達したときに補剛板全体が終局状態を迎えると仮定する。すなわち、補剛板の上下綫応力が降伏応力 σ_Y、端補剛材位置ではモデル化により計算される終局強度の平均圧縮応力 σ_u を仮定して耐荷曲げモーメントを求める。奈良らは、幅厚比パラメータ R が大きい場合は残留応力によって曲げ応力分布はこのような簡単な分布にはならないものの、簡易計算法としては十分に終局状態の応力分布を反映しているとし、弾塑性有限変位解析結果と比較して、補剛材本数 ≤ 4、圧縮荷重のサブパネルの幅厚比パラメータ R が $0.5 \leq R \leq 1$ の場合には、本計算法が適用できるとしている [福本ら, 1990]。
11.5.3 2方向の圧縮力を受ける補剛板の終局強度

(1) 終局強度の相関曲線

北田ら（1988）, Kitada et al.(1991) は, 図 11.5.7 に示すような縦方向補剛材が4本あるいは2本の多リブモデルの弾塑性有限変位解析を行い, 図 11.5.8 に示すような終局強度相関曲線を提案している。この相関曲線は4つの区間からなっており, それぞれの区間の曲線は次式で与えられる。

(a) 縦方向に引張を受け, 横方向に圧縮の内力を受けける場合

(i) $|\bar{\sigma}_{zm}/\bar{\sigma}_{ym}| \leq \zeta_A$ の場合:

$$\left(\frac{\bar{\sigma}_{zm}}{\sigma_Y} \right)^2 + \left(\frac{\bar{\sigma}_{ym}}{\sigma_{ymo}} \right)^2 = 1$$

ここに,

$$\zeta_A = \left(\frac{\sigma_Y}{\sigma_{ymo}} \right)^2 - 1$$

これらの式中, σ_{zm} は2方向面内力を受けける場合の縦方向 (x 方向) の終局応力度, σ_{ym} は2方向面内力を受ける場合の横方向 (y 方向) の終局応力度, σ_{ymo} は横方向圧縮力のみを通る場合の終局強度である。なお, $\bar{\sigma}_{zm}$ および $\bar{\sigma}_{ym}$ は, 引張応力を負, および圧縮応力を正とする。

(ii) $|\bar{\sigma}_{zm}/\bar{\sigma}_{ym}| > \zeta_A$ の場合:

$$\left(\frac{\bar{\sigma}_{zm}}{\sigma_Y} \right)^2 - \left(\frac{\bar{\sigma}_{zm}}{\sigma_Y} \cdot \frac{\bar{\sigma}_{ym}}{\sigma_Y} \right) + \left(\frac{\bar{\sigma}_{ym}}{\sigma_Y} \right)^2 = 1$$

![図 11.5.7 連続補剛板の数値解析モデル](image)
図 11.5.8 2 方向面内力を受ける補剛板の終局強度相関図

b) 2 軸方向に圧縮力を受ける場合

\[
\left(\frac{\sigma_{xm}}{\sigma_{xmo}} \right)^2 + \left(\frac{\sigma_{ym}}{\sigma_{ymo}} \right)^2 = 1
\]

(11.5.40)

ここで、\(\sigma_{xmo} \) は縦方向圧縮力のみを受ける場合の終局強度である。

c) 縦方向が圧縮で、横方向が引張りの面内力を受ける場合

(i) \(|\sigma_{xm}/\sigma_{ym}| \leq \zeta_B \) の場合

\[
\left(\frac{\sigma_{xm}}{\sigma_{xmo}} \right)^2 + \left(\frac{\sigma_{ym}}{\sigma_Y} \right)^2 = 1
\]

(11.5.41)

ここで、

\[
\zeta_B = \left(\frac{\sigma_Y}{\sigma_{xmo}} \right)^2 - 1
\]

(11.5.42)

(ii) \(|\sigma_{xm}/\sigma_{ym}| > \zeta_B \) の場合

式 (11.5.39) を用いる。

\(\sigma_{xmo} \) と \(\sigma_{ymo} \) を求め、図 11.5.8 の相関曲線を用いれば、2 方向面内力を受ける補剛板の終局応力 \(\sigma_{xm} \) と \(\sigma_{ym} \) が計算できる。次節では、\(\sigma_{xmo} \) と \(\sigma_{ymo} \) の簡易算定法を述べる。

(2) 補剛板の縦方向終局圧縮強度 \(\sigma_{xmo} \) と横方向終局圧縮強度 \(\sigma_{ymo} \) の簡易計算法

a) 補剛板の縦方向強度 σ_{xmo} の簡易計算法

縦方向圧縮力を受ける補剛板の終局強度 σ_{xmo} は、式(11.5.1)に示す終局圧縮強度 N_u を用いて、

$$\sigma_{xmo} = \frac{N_u}{A} \quad (11.5.43)$$

と与えられる。ここに A は補剛板の断面積で、次式で表される。

$$A = nA_s + Bt \quad (11.5.44)$$

b) 横方向強度 σ_{ymp} の簡易計算法

横方向力を受ける補剛板の終局圧縮強度 σ_{ymp} は、次式で与えられる [北田ら、1992]。

$$\frac{\sigma_{ymp}}{\sigma_{ymp}} = 1 \quad \left(\frac{\gamma}{\gamma^*} > 1\right)$$

$$= (0.830 + 0.122 \frac{\gamma}{\gamma^*}) \quad \left(\frac{\gamma}{\gamma^*} \leq 1\right) \quad (11.5.45)$$

ここに、γ^* は弾性曲げモードが経補剛材位置で節となるのに必要な最小剛比、γ は経補剛材 1 本の剛比で $\gamma = I_V / (Bt^3/11)$、I_V は経補剛材の補剛材取り付け面に関する断面 2 次モーメント、B は補剛板の全幅である。

なお、式 (11.5.45) の適用範囲は、以下のようである。

- 横方向作用応力の分布を示すパラメータ $\kappa(=\sigma_{max}/\sigma)$ は、その分布が対称分布の場合 2.0 以下、片勾配分布の場合は 1.5 以下とする。ここで、σ_{max} は最大応力、σ は平均応力である。
- 鋼床版の場合、荷重による経補剛材のたわみは $a/2000$ 以下とする。
- 補剛材剛比 γ/γ^* は、0.3 以上とする。
- 縦横比 α は、1.0 以上、20 以下とする。ただし、$\alpha \geq 20$ の場合、$\alpha = \infty$ としてよい。
- 降伏応力 σ_Y は、235(MPa) $\leq \sigma_Y \leq 353$(MPa) とする。
- 幅厚比 b/t は、20 $\leq b/t \leq 40$ とする。

また、式 (11.5.45) の σ_{ymp} は、境界条件の違いにより、2 ケースに分けて以下のように与える。

(i) 縦方向補剛材が閉断面で、補剛材の内側にある板パネルが横梁位置で支持されていない場合

図 11.5.9 に示すようなトラフリプの鋼床版のような場合が該当し、この場合の強度 σ_{ymp} は、

$$\sigma_{ymp} = 0.9\sigma_{ymp} \quad (11.5.46)$$

とする。

[図 11.5.9 縦補剛材が閉断面で補剛材内部の板パネルが横補剛材位置で支持されていない例]
σ_{y_{mc}} は、図 11.5.10(c) に示すように、板パネルを 1 本の柱にモデル化した場合の圧縮強度であり、道路橋示方書[日本道路協会、2002]の柱の耐荷力曲線から求まる値で、以下の式で与えられる。

\[
\frac{\sigma_{y_{mc}}}{\sigma_Y} = \begin{cases}
1.0 & (\bar{\lambda} \leq 0.2) \\
1.109 - 0.545\bar{\lambda} & (0.2 \leq \bar{\lambda} \leq 1.0) \\
1.0/(0.773 + \bar{\lambda}^2) & (1.0 \leq \bar{\lambda})
\end{cases} \tag{11.5.47}
\]

ここで、\(\bar{\lambda}\) は単位幅の板パネル細長比パラメータで、

\[
\bar{\lambda} = \frac{\sqrt{12} b}{\pi t} \sqrt{\frac{\sigma_Y}{E}} \tag{11.5.48}
\]

また、式 (11.5.46) の乗数 0.9 は、柱と板パネルの許容初期たわみの違いを考慮するためである。式 (11.5.46) が利用できるのは、板パネルの座屈断面が筒状となるためである。

(ii) 板パネルが横補剛材位置で完全に支持されている場合

通常の開断面補剛材を有する板はこのケースに該当し、この場合の強度 \(\sigma_{ym\!p}\) は次式で与えられる。

\[
\sigma_{ym\!p} = \frac{\sigma_{ym} + 0.9\sigma_{y_{mc}}(\alpha - 1)}{\alpha} \tag{11.5.49}
\]

これは、図 11.5.10 に示すように、側辺部の板パネル（縦断面比 1 の周辺単純支持板とみなす部分）と中央部の板パネル（無補剛板とみなす部分）の強度を断面積を考慮して平均化したものである。これらの式で、\(\sigma_{ym}\) は図 11.5.10(a) に示す縦断面比が 1 の圧縮を受ける周辺単純支持板の強度で、

\[
\frac{\sigma_{ym}}{\sigma_Y} = 0.542R^3 - 1.249R^2 + 0.412R + 0.968 \quad \text{ただし} \quad 0.3 \leq R \leq 1.3 \tag{11.5.50}
\]

で与えられる [小松ら、1978]。ここに、\(R\) は式 (11.4.2) で与えられ、座屈係数 \(k = 4\) とする。

図 11.5.10 無補剛板の横方向強度を算定するための解析モデル
なお、横方向の応力分布が一様でない場合にも、最大応力が平均応力度の1.5倍以下であれば、平均応力が一様に作用していると仮定してよいとしている [染田ら, 1992]。

11.6 組合せ荷重を受ける薄肉箱形断面部材の終局強度相関曲線

中井ら (1998a) は、図 11.6.1 に示すような薄肉箱形断面部材に2軸曲げ、圧縮、ねじりの組合せ荷重が作用する場合の終局強度相関曲線を与えている。この相関曲線は、部材が局部座屈をしない場合の全塑性状態を仮定したときに得られる断面力とそれぞれの荷重が単独に作用したときにの全塑性断面力の比を用いた相関曲線（全塑性相関曲線）

\[
f \left(\frac{N_u}{N_p}, \frac{M_u}{M_p} \right) = 1
\]

に基づいて、相似した終局強度相関曲線

\[
f \left(\frac{N_u}{N_{u0}}, \frac{M_u}{M_{u0}} \right) = 1
\]

を与えており、(1) ねじりモーメントによる影響を、低減係数 \(k_\beta \) を用いて降伏点が見かけ上 \(k_\beta \sigma_Y \) に低減されたものとみなし、さらに、(2) 曲げが卓越しきた構成板要素の幅厚比が大きくなるにつれて線形相関式に近づくことを考慮して、相関相数を重み係数 \(\beta \) を用いて補正している。

ここで、式 (11.6.2) を、ねじりモーメントの影響を低減係数 \(k_\beta \) を用いて、次式のように書き直す。

\[
f \left(\frac{N_u}{k_\beta N_{u0}}, \frac{M_u}{k_\beta M_{u0}} \right) = 1
\]

ここに,

\[
k_\beta = \sqrt{1 - \left(\frac{T_u}{T_p} \right)^2}
\]

これらの式 (11.6.1)～(11.6.4) で、\(N_u, T_u, M_u \) は、組合せ荷重における終局軸力、終局ねじりモーメント、終局曲げモーメントを示し、\(N_p, T_p, M_p \) は、軸力、ねじりモーメント、曲げモーメントが、それぞれ単独に作用した時の全塑性断面力である。\(N_{u0}, T_{u0}, M_{u0} \) は、軸力、ねじりモーメント、曲げモーメントが、それぞれ単独に作用した時の終局強度 (断面力) で、表 11.6.1 で与えられる。

![図 11.6.1 組合せ荷重を受ける無補剛板および補剛板](image)
<table>
<thead>
<tr>
<th>荷重</th>
<th>耐荷力曲線</th>
<th>福厚比パラメータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>純圧</td>
<td>$N_{u0}/N_p = 1 \quad (R_c \leq 0.3)$</td>
<td>$R_c = b \frac{12(1-\nu^2)}{\pi^2k_{fw}} \sigma_{fy}$</td>
</tr>
<tr>
<td></td>
<td>$= 0.702R_c^2 - 1.604R_c^2 + 0.654 R_c + 0.926$</td>
<td>ここに、</td>
</tr>
<tr>
<td></td>
<td>$(0.3 \leq R_c \leq 1.3)$</td>
<td>$k_{fw} = (a_f + 1/a_f)^2 + (t_u/t_f)^3(d/b)(a_w + 1/a_w)^2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1 + (d/b)^3(t_u/t_f)^3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$a_f = a/b, a_w = a/d$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$a = b \left{ \frac{1}{1 + (d/b)(t_u/t_f)^2} \right}^{1/4}$ (座屈モードの半波長)</td>
</tr>
<tr>
<td>純曲げ</td>
<td>$M_{u0}/M_p = 1 \quad (R_b \leq 0.343)$</td>
<td>$R_b = R_b + \Delta R_b$</td>
</tr>
<tr>
<td></td>
<td>$= -0.345R_b + 1.118$ $(0.343 \leq R_b \leq 1.2)$</td>
<td>ここに、</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_b' = \frac{I_r R_f + I_w R_w}{I_f + I_w}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0 \leq \tan \theta \leq \frac{d}{d'}$ のとき</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta R_b = \zeta \left{ \theta - \tan^{-1}(d/b) \right}^2 \xi$ $(\Delta R_b \geq 0)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Delta R_b = \zeta \left{ 90 - \theta - \tan^{-1}(d/b) \right}^2 \xi$ $(\Delta R_b \geq 0)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ここに、</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\zeta = { -3.511(A_f/A_w) + 0.625 } \times 10^{-4}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\xi = 0.481R_c - 0.138$</td>
</tr>
</tbody>
</table>

補剛板の耐荷力曲線

<table>
<thead>
<tr>
<th>荷重</th>
<th>耐荷力曲線</th>
<th>福厚比パラメータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>純圧</td>
<td>$N_{u0}/N_p = 1 \quad (R_{cs} \leq 0.256)$</td>
<td>$R_{cs} = \frac{A_f R_{fs} + A_w R_{ws}}{A_f + A_w}$</td>
</tr>
<tr>
<td></td>
<td>$= 0.475R_{cs} + 1.123$ $(0.256 \leq R_{cs} \leq 1.2)$</td>
<td>ここに、</td>
</tr>
<tr>
<td>純曲げ</td>
<td>$M_{u0}/M_p = 1 \quad (R_{bs} \leq 0.188)$</td>
<td>$R_{bs} = R_{bs} + \omega \Delta R_b$</td>
</tr>
<tr>
<td></td>
<td>$= -0.393R_{bs} + 1.074$ $(0.188 \leq R_{bs} \leq 1.2)$</td>
<td>ここに、</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\omega = \frac{2}{n_f + n_w + 2}$</td>
</tr>
<tr>
<td>純ねじり</td>
<td>$T_{u0}/T_p = 1 \quad (R_{xs} \leq 0.486)$</td>
<td>$R_{xs} = \frac{1}{\tau_{cxs}}$</td>
</tr>
<tr>
<td></td>
<td>$(0.486/R_{xs})^{0.333} \quad (0.486 \leq R_{xs} \leq 2)$</td>
<td>ここに、</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\tau_{cxs} :$ 補剛板全体およびサブパネルの弾性せん断座屈応力度のうちの最小値</td>
</tr>
</tbody>
</table>

次に、曲げが卓越しきつ構成板要素の福厚比が大きくなるにつれて、終局強度相関曲線は、全塑性相関曲線に相似した式 (11.6.2) から線形相関式

$$\frac{N_u}{N_u} + \frac{M_u}{M_u} = 1 \quad \tag{11.6.5}$$

に近づくことを考慮して、次式より相関曲線を補正する (図 11.6.2 参照)。

$$\frac{M_u}{M_{u0}} = \beta x_1 + (1 - \beta x_2 \quad \tag{11.6.6}$$

$$\frac{N_u}{N_{u0}} = \beta y_1 + (1 - \beta y_2 \quad \tag{11.6.7}$$
図 11.6.2 重み係数 ρ を用いる終局強度関係曲線

ここに、重み係数 ρ は、幅厚比パラメータの関数で、

\[
\begin{align*}
\beta &= 1.0 \\
&= 1.0 - 1.255(R_c - 0.357) \\
&= 0.357 < R_c \leq 1.2
\end{align*}
\]

(11.6.8)

である。

上記で求めた終局強度は、実験結果と比較して安全側であることが示されている [中井ら, 1998b]。

11.7 圧縮を受ける開口部を有する補剛板

11.7.1 静的耐荷力

中井ら (1999) は、縦補剛材が3本以上取り付けられた、補強されていない開口を有する補剛板の静的圧縮耐荷力を次式で与えている。

\[
P_g = \sigma_p A_p + \sigma_{spm} A_{spm} + \sigma_{hsp} A_{hsp}
\]

(11.7.1)

ここに、\(P_g \) は補剛板パネルの圧縮強度。\(\sigma_p \) は補剛板パネルの側辺付近の端板パネルが分担する終局圧縮応力（図 11.7.1 に示す領域 I）、\(A_p \) は 図 11.7.1 に示す領域 I の部分の断面積 (= \(b_p t \))、\(\sigma_{spm} \) は 図 11.7.1 に示す領域 II の部分の補剛板パネルの終局限界強度、\(A_{spm} \) は 図 11.7.1 に示す領域 II の部分の断面積 (\(= (n_l - 2)(bt + A) \)）、\(\sigma_{hsp} \) は開口を有する部分パネル（図 11.7.1 に示す領域 III）が分担する終局限界強度、\(A_{hsp} \) は 図 11.7.1 に示す領域 III の部分の開口部を考慮いない断面積 = \(2(bt + A) \)、である。
上式で，σp および σspm は，たとえば小松ら (1980)，中井ら (1985b) の柱モデルアプローチなどによって算出できる．また，開口部の終局圧縮応力 σhsp については，開口率 b_H/2b （適用範囲：0.2 ≤ b_H/2b ≤ 0.6）を用いて次式で与えている．

\[
\sigma_{hsp} / \sigma_y = -0.225 (b_H/2b) + 0.560 \quad (0.52 \leq R \leq 0.73) \\
= -0.451 (b_H/2b) + 0.705 \quad (0.30 \leq R \leq 0.52) \\
= -0.743 (b_H/2b) + 0.872 \quad (R \leq 0.30)
\]

ここで，R = \frac{1}{\pi b t} \sqrt{\frac{12(1-\nu^2)}{k}} \sqrt{\frac{\sigma_y}{E}} は対象とする補剛板の開口を設けない部分のサブパネルの幅厚比パラメータである．図 11.7.1 に示す開口部パネルの弾塑性有限変位解析結果を示せば，図 11.7.2 のようになる．11.7.3 式は，実験調査 [中井ら，1996] による開口部の板厚を考慮して，この結果をもとに最小二乗法により直線近似したものである．

また，開口部の補強は，次式で求められる板厚の板（ダブルリングプレート）を用いて開口を有する補剛板パネル全面を補強すれば，開口を有する板厚のパネルと同等と考えてよいとしている．

\[
t_d,req = \frac{B_{ht} + A}{2b - b_H}
\]

ここに，t_d,req はダブルリングプレートの板厚，A は切断された帯補剛材の断面積である．

11.7.2 繰り返し軸力を受けける場合の耐荷力

藤井 (2002) は，引張および圧縮の繰り返し軸力を受ける有孔補剛板の終局挙動を解析的に調べている．荷重一軸変位包絡線の包絡線の最高荷重 P_{max} は，Usami et al. (1998) の開口のない補剛板の強度式

\[
P_{max}^{*}/P_Y = 1.24 - 0.54R
\]

を拡張し，断面欠損率を考慮して次式で与えられるとしている．

\[
P_{max}/P_Y = \frac{A}{A_n} \frac{P_{max}^*}{P_Y}
\]
ここに，P_{max} は開口を有する補剛板の圧縮耐荷力，P_{max}^* は開口のない補剛板の圧縮耐荷力，P_Y は開口のない補剛板の全断面降伏軸力，A は開口部の横断面積，A_n は開口のない補剛板の横断面積，である。

ダブリンゲプレートや補剛材による補強がなされた場合でも，上式 (11.7.5) に開口部での横断面積 A に補強にともなう断面積の増分を加えれば耐荷力が得られる（図 11.7.3）。

なお，変形能については，図 11.7.4 に示すように，補剛材の剛性を高めるのがダブリング補強よりも効果が大きい，これらの図で，$\mu_{\text{max}}, \mu_{95}$ は，それぞれ最高荷重時および最高荷重の 95%まで耐力が低下したときの塑性率を示し，DO，DS はそれぞれ小判形および矩形断面のダブリングプレートによる補強を示す。図 11.7.4から，ダブリング補強に比べて補剛材剛比 γ/γ^* が 3 程度以上であれば変形能の改善効果が大きいことがわかる。

図 11.7.3 繰り返し力を受ける補剛板の開口部断面積と終局強度の関係

図 11.7.4 繰り返し力を受ける補剛板の開口部断面積と塑性率の関係

11.8 今後の展望

座屈設計ガイドライン・旧版 [土木学会，1987] 発刊後に我が国で発表された板および補剛板の座屈強度に関する研究成果を追加した。一方，板要素単独の実験は境界条件の設定や載荷条件が特に難しく，旧版に示されてい るような収めの細かい技術が要求されるが，その後の実験技術の革新的な向上・改善はみられないので，実験技術の重要性は認識しつつも本章では割愛することとした。本章で追加した主な内容は，以下のとおりである。

(1) 有限要素法解析による板要素の強度解析における境界条件
(2) 後座屈挙動における変形の局所化
(3) 補剛材の必要剛比と最適剛比の定義の明確化
第11章 板要素

(4) 新たに提案された板および補剛板の強度評価式
(5) 組合せ応力状態での座屈強度評価
(6) 開口を有する補剛板の静的および繰り返し強度

昨今のコンピュータ技術および解析技術は高くまた広く普及しており、かなり高度な複合非線形解析でもノートパソコン程度で解けるようになっている。このような状況を鑑みると、構造物から板要素を単独で取り出しモデル化解析を行うことは少なくなり、今後は、材料あるいは構造物を対象とした有限要素法による複合非線形解析が多用されると予想される。この場合、板要素のみならず、部材と連成座屈も同時に扱えるという利点があるが、境界条件の設定や初期不整の扱いやは細心の注意が必要である。

11.4.1 に示すように、板要素についてだけでも様々な座屈強度評価式が提案されている。これは、初期たわみや残留応力、降伏応力あるいは応力ひずみ関係式のモデル化などの違いに依存するのは明らかであるが、実験結果や解析結果のまとめ方、すなわち強度の評価指標の採り方にも依存しているようにみえる。たとえば、道路橋示方書（日本道路協会、2002）では、製作精度の面から部材の初期変形の許容値（トレランス）が規定されており、箱桁等の許容初期たわみ 0 は板幅（縦補材間の距離）の 1/150 以内とされているが、初期たわみと板厚との比 0 の 1 で板の座屈強度を統一的に表現できる可能性も示されている（Kaita et al., 2001）。

昨今、2 主桁橋のフランジなどに 100mm 程度の極厚板が使用されつつあるが、このような極厚板の初期たわみは、0 の 1 で板厚を極めて小さくするのは明らかであり、その座屈強度は従来の初期たわみのトレランスを基準にした座屈強度評価値よりも大きくなることが予想される。また、極厚板では、製造過程において板厚方向に材料特性や残留応力が変化することが指摘されている（石川ら，2003）。板厚方向に分布する残留応力は、現在の設計では考慮されていないが、板厚板を有効に利用するためには、今後、これが構造物の耐荷力に及ぼす影響を解明しておく必要がある。

板厚方向に分布する残留応力の影響という面では、異種金属からなるクラッド鋼板の耐荷力も検討すべきと思われる。ステンレスクラッド鋼板では、圧延、冷却、歪正プロセスで板厚方向に分布する残留応力が導入される（藤井ら，1998,1999）。この種の鋼板は、ライフサイクルコスト低減、構造物の耐久性、耐候性の向上のために、今後、使用機会は増加することを予想されるが、この残留応力の影響についてなお検討すべきと思われる。

さらに、板厚は変化する板（LP 鋼板）の終局挙動と耐荷力の検討も必要といえる（村上ら，1997, 塩田ら，1997）。曲げモーメントの変化に対応させて LP 鋼板を使用することにより、橋脚の塑性ヒンジ長を長くして変形能を向上させることなどが期待できる。

参考文献
DIN4114 Blatt 1(1952): Stahlbau, Stabilitätsfälle (Knickung, Kippung, Beulung), Berechnungsgrundlagen, Vor- schriften, 1952.

